rust/src/liballoc/boxed.rs
bors 99093b79f1 Auto merge of #29580 - alexbool:smart-pointer-conversion, r=alexcrichton
Sometimes when writing generic code you want to abstract over
owning/pointer type so that calling code isn't restricted by one
concrete owning/pointer type. This commit makes possible such code:
```rust
fn i_will_work_with_arc<T: Into<Arc<MyTy>>>(t: T) {
    let the_arc = t.into();
    // Do something
}

i_will_work_with_arc(MyTy::new());

i_will_work_with_arc(Box::new(MyTy::new()));

let arc_that_i_already_have = Arc::new(MyTy::new());
i_will_work_with_arc(arc_that_i_already_have);
```

Please note that this patch doesn't work with DSTs.
Also to mention, I made those impls stable, and I don't know whether they should be actually stable from the beginning. Please tell me if this should be feature-gated.
2015-11-16 19:06:52 +00:00

625 lines
17 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A pointer type for heap allocation.
//!
//! `Box<T>`, casually referred to as a 'box', provides the simplest form of
//! heap allocation in Rust. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope.
//!
//! # Examples
//!
//! Creating a box:
//!
//! ```
//! let x = Box::new(5);
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
//! #[derive(Debug)]
//! enum List<T> {
//! Cons(T, Box<List<T>>),
//! Nil,
//! }
//!
//! fn main() {
//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//! println!("{:?}", list);
//! }
//! ```
//!
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```rust,ignore
//! Cons(T, List<T>),
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a `Box`, which has a defined size, we know how
//! big `Cons` needs to be.
#![stable(feature = "rust1", since = "1.0.0")]
use heap;
use raw_vec::RawVec;
use core::any::Any;
use core::borrow;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{self, Hash};
use core::marker::{self, Unsize};
use core::mem;
use core::ops::{CoerceUnsized, Deref, DerefMut};
use core::ops::{Placer, Boxed, Place, InPlace, BoxPlace};
use core::ptr::{self, Unique};
use core::raw::TraitObject;
use core::convert::From;
/// A value that represents the heap. This is the default place that the `box`
/// keyword allocates into when no place is supplied.
///
/// The following two examples are equivalent:
///
/// ```
/// #![feature(box_heap)]
///
/// #![feature(box_syntax, placement_in_syntax)]
/// use std::boxed::HEAP;
///
/// fn main() {
/// let foo: Box<i32> = in HEAP { 5 };
/// let foo = box 5;
/// }
/// ```
#[unstable(feature = "box_heap",
reason = "may be renamed; uncertain about custom allocator design",
issue = "27779")]
pub const HEAP: ExchangeHeapSingleton =
ExchangeHeapSingleton { _force_singleton: () };
/// This the singleton type used solely for `boxed::HEAP`.
#[unstable(feature = "box_heap",
reason = "may be renamed; uncertain about custom allocator design",
issue = "27779")]
#[derive(Copy, Clone)]
pub struct ExchangeHeapSingleton {
_force_singleton: (),
}
/// A pointer type for heap allocation.
///
/// See the [module-level documentation](../../std/boxed/index.html) for more.
#[lang = "owned_box"]
#[stable(feature = "rust1", since = "1.0.0")]
#[fundamental]
pub struct Box<T: ?Sized>(Unique<T>);
/// `IntermediateBox` represents uninitialized backing storage for `Box`.
///
/// FIXME (pnkfelix): Ideally we would just reuse `Box<T>` instead of
/// introducing a separate `IntermediateBox<T>`; but then you hit
/// issues when you e.g. attempt to destructure an instance of `Box`,
/// since it is a lang item and so it gets special handling by the
/// compiler. Easier just to make this parallel type for now.
///
/// FIXME (pnkfelix): Currently the `box` protocol only supports
/// creating instances of sized types. This IntermediateBox is
/// designed to be forward-compatible with a future protocol that
/// supports creating instances of unsized types; that is why the type
/// parameter has the `?Sized` generalization marker, and is also why
/// this carries an explicit size. However, it probably does not need
/// to carry the explicit alignment; that is just a work-around for
/// the fact that the `align_of` intrinsic currently requires the
/// input type to be Sized (which I do not think is strictly
/// necessary).
#[unstable(feature = "placement_in",
reason = "placement box design is still being worked out.",
issue = "27779")]
pub struct IntermediateBox<T: ?Sized> {
ptr: *mut u8,
size: usize,
align: usize,
marker: marker::PhantomData<*mut T>,
}
impl<T> Place<T> for IntermediateBox<T> {
fn pointer(&mut self) -> *mut T {
self.ptr as *mut T
}
}
unsafe fn finalize<T>(b: IntermediateBox<T>) -> Box<T> {
let p = b.ptr as *mut T;
mem::forget(b);
mem::transmute(p)
}
fn make_place<T>() -> IntermediateBox<T> {
let size = mem::size_of::<T>();
let align = mem::align_of::<T>();
let p = if size == 0 {
heap::EMPTY as *mut u8
} else {
let p = unsafe { heap::allocate(size, align) };
if p.is_null() {
panic!("Box make_place allocation failure.");
}
p
};
IntermediateBox {
ptr: p,
size: size,
align: align,
marker: marker::PhantomData,
}
}
impl<T> BoxPlace<T> for IntermediateBox<T> {
fn make_place() -> IntermediateBox<T> {
make_place()
}
}
impl<T> InPlace<T> for IntermediateBox<T> {
type Owner = Box<T>;
unsafe fn finalize(self) -> Box<T> {
finalize(self)
}
}
impl<T> Boxed for Box<T> {
type Data = T;
type Place = IntermediateBox<T>;
unsafe fn finalize(b: IntermediateBox<T>) -> Box<T> {
finalize(b)
}
}
impl<T> Placer<T> for ExchangeHeapSingleton {
type Place = IntermediateBox<T>;
fn make_place(self) -> IntermediateBox<T> {
make_place()
}
}
impl<T: ?Sized> Drop for IntermediateBox<T> {
fn drop(&mut self) {
if self.size > 0 {
unsafe { heap::deallocate(self.ptr, self.size, self.align) }
}
}
}
impl<T> Box<T> {
/// Allocates memory on the heap and then moves `x` into it.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline(always)]
pub fn new(x: T) -> Box<T> {
box x
}
}
impl<T : ?Sized> Box<T> {
/// Constructs a box from the raw pointer.
///
/// After this function call, pointer is owned by resulting box.
/// In particular, it means that `Box` destructor calls destructor
/// of `T` and releases memory. Since the way `Box` allocates and
/// releases memory is unspecified, the only valid pointer to pass
/// to this function is the one taken from another `Box` with
/// `Box::into_raw` function.
///
/// Function is unsafe, because improper use of this function may
/// lead to memory problems like double-free, for example if the
/// function is called twice on the same raw pointer.
#[stable(feature = "box_raw", since = "1.4.0")]
#[inline]
pub unsafe fn from_raw(raw: *mut T) -> Self {
mem::transmute(raw)
}
/// Consumes the `Box`, returning the wrapped raw pointer.
///
/// After call to this function, caller is responsible for the memory
/// previously managed by `Box`, in particular caller should properly
/// destroy `T` and release memory. The proper way to do it is to
/// convert pointer back to `Box` with `Box::from_raw` function, because
/// `Box` does not specify, how memory is allocated.
///
/// # Examples
///
/// ```
/// let seventeen = Box::new(17u32);
/// let raw = Box::into_raw(seventeen);
/// let boxed_again = unsafe { Box::from_raw(raw) };
/// ```
#[stable(feature = "box_raw", since = "1.4.0")]
#[inline]
pub fn into_raw(b: Box<T>) -> *mut T {
unsafe { mem::transmute(b) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Box<T> {
fn default() -> Box<T> {
box Default::default()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Box<[T]> {
fn default() -> Box<[T]> {
Box::<[T; 0]>::new([])
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for Box<T> {
/// Returns a new box with a `clone()` of this box's contents.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let y = x.clone();
/// ```
#[rustfmt_skip]
#[inline]
fn clone(&self) -> Box<T> {
box { (**self).clone() }
}
/// Copies `source`'s contents into `self` without creating a new allocation.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let mut y = Box::new(10);
///
/// y.clone_from(&x);
///
/// assert_eq!(*y, 5);
/// ```
#[inline]
fn clone_from(&mut self, source: &Box<T>) {
(**self).clone_from(&(**source));
}
}
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl Clone for Box<str> {
fn clone(&self) -> Self {
let len = self.len();
let buf = RawVec::with_capacity(len);
unsafe {
ptr::copy_nonoverlapping(self.as_ptr(), buf.ptr(), len);
mem::transmute(buf.into_box()) // bytes to str ~magic
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
#[inline]
fn eq(&self, other: &Box<T>) -> bool {
PartialEq::eq(&**self, &**other)
}
#[inline]
fn ne(&self, other: &Box<T>) -> bool {
PartialEq::ne(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
#[inline]
fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
#[inline]
fn lt(&self, other: &Box<T>) -> bool {
PartialOrd::lt(&**self, &**other)
}
#[inline]
fn le(&self, other: &Box<T>) -> bool {
PartialOrd::le(&**self, &**other)
}
#[inline]
fn ge(&self, other: &Box<T>) -> bool {
PartialOrd::ge(&**self, &**other)
}
#[inline]
fn gt(&self, other: &Box<T>) -> bool {
PartialOrd::gt(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Box<T> {
#[inline]
fn cmp(&self, other: &Box<T>) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Box<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Box<T> {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Box<T> {
fn from(t: T) -> Self {
Box::new(t)
}
}
impl Box<Any> {
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
/// Attempt to downcast the box to a concrete type.
pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any>> {
if self.is::<T>() {
unsafe {
// Get the raw representation of the trait object
let raw = Box::into_raw(self);
let to: TraitObject = mem::transmute::<*mut Any, TraitObject>(raw);
// Extract the data pointer
Ok(Box::from_raw(to.data as *mut T))
}
} else {
Err(self)
}
}
}
impl Box<Any + Send> {
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
/// Attempt to downcast the box to a concrete type.
pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<Any + Send>> {
<Box<Any>>::downcast(self).map_err(|s| unsafe {
// reapply the Send marker
mem::transmute::<Box<Any>, Box<Any + Send>>(s)
})
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Pointer for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// It's not possible to extract the inner Uniq directly from the Box,
// instead we cast it to a *const which aliases the Unique
let ptr: *const T = &**self;
fmt::Pointer::fmt(&ptr, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Box<T> {
type Target = T;
fn deref(&self) -> &T {
&**self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> DerefMut for Box<T> {
fn deref_mut(&mut self) -> &mut T {
&mut **self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator + ?Sized> Iterator for Box<I> {
type Item = I::Item;
fn next(&mut self) -> Option<I::Item> {
(**self).next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(**self).size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
fn next_back(&mut self) -> Option<I::Item> {
(**self).next_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {}
/// `FnBox` is a version of the `FnOnce` intended for use with boxed
/// closure objects. The idea is that where one would normally store a
/// `Box<FnOnce()>` in a data structure, you should use
/// `Box<FnBox()>`. The two traits behave essentially the same, except
/// that a `FnBox` closure can only be called if it is boxed. (Note
/// that `FnBox` may be deprecated in the future if `Box<FnOnce()>`
/// closures become directly usable.)
///
/// ### Example
///
/// Here is a snippet of code which creates a hashmap full of boxed
/// once closures and then removes them one by one, calling each
/// closure as it is removed. Note that the type of the closures
/// stored in the map is `Box<FnBox() -> i32>` and not `Box<FnOnce()
/// -> i32>`.
///
/// ```
/// #![feature(fnbox)]
///
/// use std::boxed::FnBox;
/// use std::collections::HashMap;
///
/// fn make_map() -> HashMap<i32, Box<FnBox() -> i32>> {
/// let mut map: HashMap<i32, Box<FnBox() -> i32>> = HashMap::new();
/// map.insert(1, Box::new(|| 22));
/// map.insert(2, Box::new(|| 44));
/// map
/// }
///
/// fn main() {
/// let mut map = make_map();
/// for i in &[1, 2] {
/// let f = map.remove(&i).unwrap();
/// assert_eq!(f(), i * 22);
/// }
/// }
/// ```
#[rustc_paren_sugar]
#[unstable(feature = "fnbox", reason = "Newly introduced", issue = "0")]
pub trait FnBox<A> {
type Output;
fn call_box(self: Box<Self>, args: A) -> Self::Output;
}
impl<A,F> FnBox<A> for F
where F: FnOnce<A>
{
type Output = F::Output;
fn call_box(self: Box<F>, args: A) -> F::Output {
self.call_once(args)
}
}
impl<'a,A,R> FnOnce<A> for Box<FnBox<A,Output=R>+'a> {
type Output = R;
extern "rust-call" fn call_once(self, args: A) -> R {
self.call_box(args)
}
}
impl<'a,A,R> FnOnce<A> for Box<FnBox<A,Output=R>+Send+'a> {
type Output = R;
extern "rust-call" fn call_once(self, args: A) -> R {
self.call_box(args)
}
}
impl<T: ?Sized+Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl<T: Clone> Clone for Box<[T]> {
fn clone(&self) -> Self {
let mut new = BoxBuilder {
data: RawVec::with_capacity(self.len()),
len: 0,
};
let mut target = new.data.ptr();
for item in self.iter() {
unsafe {
ptr::write(target, item.clone());
target = target.offset(1);
};
new.len += 1;
}
return unsafe { new.into_box() };
// Helper type for responding to panics correctly.
struct BoxBuilder<T> {
data: RawVec<T>,
len: usize,
}
impl<T> BoxBuilder<T> {
unsafe fn into_box(self) -> Box<[T]> {
let raw = ptr::read(&self.data);
mem::forget(self);
raw.into_box()
}
}
impl<T> Drop for BoxBuilder<T> {
fn drop(&mut self) {
let mut data = self.data.ptr();
let max = unsafe { data.offset(self.len as isize) };
while data != max {
unsafe {
ptr::read(data);
data = data.offset(1);
}
}
}
}
}
}
impl<T: ?Sized> borrow::Borrow<T> for Box<T> {
fn borrow(&self) -> &T {
&**self
}
}
impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> {
fn borrow_mut(&mut self) -> &mut T {
&mut **self
}
}
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsRef<T> for Box<T> {
fn as_ref(&self) -> &T {
&**self
}
}
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsMut<T> for Box<T> {
fn as_mut(&mut self) -> &mut T {
&mut **self
}
}