rust/crates/ide-completion/src/completions/dot.rs

1282 lines
26 KiB
Rust

//! Completes references after dot (fields and method calls).
use ide_db::FxHashSet;
use syntax::SmolStr;
use crate::{
context::{
CompletionContext, DotAccess, DotAccessExprCtx, DotAccessKind, PathCompletionCtx,
PathExprCtx, Qualified,
},
CompletionItem, CompletionItemKind, Completions,
};
/// Complete dot accesses, i.e. fields or methods.
pub(crate) fn complete_dot(
acc: &mut Completions,
ctx: &CompletionContext<'_>,
dot_access: &DotAccess,
) {
let receiver_ty = match dot_access {
DotAccess { receiver_ty: Some(receiver_ty), .. } => &receiver_ty.original,
_ => return,
};
// Suggest .await syntax for types that implement Future trait
if receiver_ty.impls_into_future(ctx.db) {
let mut item = CompletionItem::new(
CompletionItemKind::Keyword,
ctx.source_range(),
SmolStr::new_static("await"),
);
item.detail("expr.await");
item.add_to(acc, ctx.db);
}
let is_field_access = matches!(dot_access.kind, DotAccessKind::Field { .. });
let is_method_access_with_parens =
matches!(dot_access.kind, DotAccessKind::Method { has_parens: true });
complete_fields(
acc,
ctx,
receiver_ty,
|acc, field, ty| acc.add_field(ctx, dot_access, None, field, &ty),
|acc, field, ty| acc.add_tuple_field(ctx, None, field, &ty),
is_field_access,
is_method_access_with_parens,
);
complete_methods(ctx, receiver_ty, |func| acc.add_method(ctx, dot_access, func, None, None));
}
pub(crate) fn complete_undotted_self(
acc: &mut Completions,
ctx: &CompletionContext<'_>,
path_ctx: &PathCompletionCtx,
expr_ctx: &PathExprCtx,
) {
if !ctx.config.enable_self_on_the_fly {
return;
}
if !path_ctx.is_trivial_path() {
return;
}
if !ctx.qualifier_ctx.none() {
return;
}
if !matches!(path_ctx.qualified, Qualified::No) {
return;
}
let self_param = match expr_ctx {
PathExprCtx { self_param: Some(self_param), .. } => self_param,
_ => return,
};
let ty = self_param.ty(ctx.db);
complete_fields(
acc,
ctx,
&ty,
|acc, field, ty| {
acc.add_field(
ctx,
&DotAccess {
receiver: None,
receiver_ty: None,
kind: DotAccessKind::Field { receiver_is_ambiguous_float_literal: false },
ctx: DotAccessExprCtx {
in_block_expr: expr_ctx.in_block_expr,
in_breakable: expr_ctx.in_breakable,
},
},
Some(hir::known::SELF_PARAM),
field,
&ty,
)
},
|acc, field, ty| acc.add_tuple_field(ctx, Some(hir::known::SELF_PARAM), field, &ty),
true,
false,
);
complete_methods(ctx, &ty, |func| {
acc.add_method(
ctx,
&DotAccess {
receiver: None,
receiver_ty: None,
kind: DotAccessKind::Method { has_parens: false },
ctx: DotAccessExprCtx {
in_block_expr: expr_ctx.in_block_expr,
in_breakable: expr_ctx.in_breakable,
},
},
func,
Some(hir::known::SELF_PARAM),
None,
)
});
}
fn complete_fields(
acc: &mut Completions,
ctx: &CompletionContext<'_>,
receiver: &hir::Type,
mut named_field: impl FnMut(&mut Completions, hir::Field, hir::Type),
mut tuple_index: impl FnMut(&mut Completions, usize, hir::Type),
is_field_access: bool,
is_method_access_with_parens: bool,
) {
let mut seen_names = FxHashSet::default();
for receiver in receiver.autoderef(ctx.db) {
for (field, ty) in receiver.fields(ctx.db) {
if seen_names.insert(field.name(ctx.db))
&& (is_field_access
|| (is_method_access_with_parens && (ty.is_fn() || ty.is_closure())))
{
named_field(acc, field, ty);
}
}
for (i, ty) in receiver.tuple_fields(ctx.db).into_iter().enumerate() {
// Tuples are always the last type in a deref chain, so just check if the name is
// already seen without inserting into the hashset.
if !seen_names.contains(&hir::Name::new_tuple_field(i))
&& (is_field_access
|| (is_method_access_with_parens && (ty.is_fn() || ty.is_closure())))
{
// Tuple fields are always public (tuple struct fields are handled above).
tuple_index(acc, i, ty);
}
}
}
}
fn complete_methods(
ctx: &CompletionContext<'_>,
receiver: &hir::Type,
mut f: impl FnMut(hir::Function),
) {
let mut seen_methods = FxHashSet::default();
receiver.iterate_method_candidates_with_traits(
ctx.db,
&ctx.scope,
&ctx.traits_in_scope(),
Some(ctx.module),
None,
|func| {
if func.self_param(ctx.db).is_some() && seen_methods.insert(func.name(ctx.db)) {
f(func);
}
None::<()>
},
);
}
#[cfg(test)]
mod tests {
use expect_test::{expect, Expect};
use crate::tests::{
check_edit, completion_list_no_kw, completion_list_no_kw_with_private_editable,
};
fn check(ra_fixture: &str, expect: Expect) {
let actual = completion_list_no_kw(ra_fixture);
expect.assert_eq(&actual);
}
fn check_with_private_editable(ra_fixture: &str, expect: Expect) {
let actual = completion_list_no_kw_with_private_editable(ra_fixture);
expect.assert_eq(&actual);
}
#[test]
fn test_struct_field_and_method_completion() {
check(
r#"
struct S { foo: u32 }
impl S {
fn bar(&self) {}
}
fn foo(s: S) { s.$0 }
"#,
expect![[r#"
fd foo u32
me bar() fn(&self)
"#]],
);
}
#[test]
fn no_unstable_method_on_stable() {
check(
r#"
//- /main.rs crate:main deps:std
fn foo(s: std::S) { s.$0 }
//- /std.rs crate:std
pub struct S;
impl S {
#[unstable]
pub fn bar(&self) {}
}
"#,
expect![""],
);
}
#[test]
fn unstable_method_on_nightly() {
check(
r#"
//- toolchain:nightly
//- /main.rs crate:main deps:std
fn foo(s: std::S) { s.$0 }
//- /std.rs crate:std
pub struct S;
impl S {
#[unstable]
pub fn bar(&self) {}
}
"#,
expect![[r#"
me bar() fn(&self)
"#]],
);
}
#[test]
fn test_struct_field_completion_self() {
check(
r#"
struct S { the_field: (u32,) }
impl S {
fn foo(self) { self.$0 }
}
"#,
expect![[r#"
fd the_field (u32,)
me foo() fn(self)
"#]],
)
}
#[test]
fn test_struct_field_completion_autoderef() {
check(
r#"
struct A { the_field: (u32, i32) }
impl A {
fn foo(&self) { self.$0 }
}
"#,
expect![[r#"
fd the_field (u32, i32)
me foo() fn(&self)
"#]],
)
}
#[test]
fn test_no_struct_field_completion_for_method_call() {
check(
r#"
struct A { the_field: u32 }
fn foo(a: A) { a.$0() }
"#,
expect![[r#""#]],
);
}
#[test]
fn test_visibility_filtering() {
check(
r#"
//- /lib.rs crate:lib new_source_root:local
pub mod m {
pub struct A {
private_field: u32,
pub pub_field: u32,
pub(crate) crate_field: u32,
pub(super) super_field: u32,
}
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::m::A) { a.$0 }
"#,
expect![[r#"
fd pub_field u32
"#]],
);
check(
r#"
//- /lib.rs crate:lib new_source_root:library
pub mod m {
pub struct A {
private_field: u32,
pub pub_field: u32,
pub(crate) crate_field: u32,
pub(super) super_field: u32,
}
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::m::A) { a.$0 }
"#,
expect![[r#"
fd pub_field u32
"#]],
);
check(
r#"
//- /lib.rs crate:lib new_source_root:library
pub mod m {
pub struct A(
i32,
pub f64,
);
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::m::A) { a.$0 }
"#,
expect![[r#"
fd 1 f64
"#]],
);
check(
r#"
//- /lib.rs crate:lib new_source_root:local
pub struct A {}
mod m {
impl super::A {
fn private_method(&self) {}
pub(crate) fn crate_method(&self) {}
pub fn pub_method(&self) {}
}
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::A) { a.$0 }
"#,
expect![[r#"
me pub_method() fn(&self)
"#]],
);
check(
r#"
//- /lib.rs crate:lib new_source_root:library
pub struct A {}
mod m {
impl super::A {
fn private_method(&self) {}
pub(crate) fn crate_method(&self) {}
pub fn pub_method(&self) {}
}
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::A) { a.$0 }
"#,
expect![[r#"
me pub_method() fn(&self)
"#]],
);
}
#[test]
fn test_visibility_filtering_with_private_editable_enabled() {
check_with_private_editable(
r#"
//- /lib.rs crate:lib new_source_root:local
pub mod m {
pub struct A {
private_field: u32,
pub pub_field: u32,
pub(crate) crate_field: u32,
pub(super) super_field: u32,
}
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::m::A) { a.$0 }
"#,
expect![[r#"
fd crate_field u32
fd private_field u32
fd pub_field u32
fd super_field u32
"#]],
);
check_with_private_editable(
r#"
//- /lib.rs crate:lib new_source_root:library
pub mod m {
pub struct A {
private_field: u32,
pub pub_field: u32,
pub(crate) crate_field: u32,
pub(super) super_field: u32,
}
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::m::A) { a.$0 }
"#,
expect![[r#"
fd pub_field u32
"#]],
);
check_with_private_editable(
r#"
//- /lib.rs crate:lib new_source_root:library
pub mod m {
pub struct A(
i32,
pub f64,
);
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::m::A) { a.$0 }
"#,
expect![[r#"
fd 1 f64
"#]],
);
check_with_private_editable(
r#"
//- /lib.rs crate:lib new_source_root:local
pub struct A {}
mod m {
impl super::A {
fn private_method(&self) {}
pub(crate) fn crate_method(&self) {}
pub fn pub_method(&self) {}
}
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::A) { a.$0 }
"#,
expect![[r#"
me crate_method() fn(&self)
me private_method() fn(&self)
me pub_method() fn(&self)
"#]],
);
check_with_private_editable(
r#"
//- /lib.rs crate:lib new_source_root:library
pub struct A {}
mod m {
impl super::A {
fn private_method(&self) {}
pub(crate) fn crate_method(&self) {}
pub fn pub_method(&self) {}
}
}
//- /main.rs crate:main deps:lib new_source_root:local
fn foo(a: lib::A) { a.$0 }
"#,
expect![[r#"
me pub_method() fn(&self)
"#]],
);
}
#[test]
fn test_local_impls() {
check(
r#"
pub struct A {}
mod m {
impl super::A {
pub fn pub_module_method(&self) {}
}
fn f() {
impl super::A {
pub fn pub_foreign_local_method(&self) {}
}
}
}
fn foo(a: A) {
impl A {
fn local_method(&self) {}
}
a.$0
}
"#,
expect![[r#"
me local_method() fn(&self)
me pub_module_method() fn(&self)
"#]],
);
}
#[test]
fn test_doc_hidden_filtering() {
check(
r#"
//- /lib.rs crate:lib deps:dep
fn foo(a: dep::A) { a.$0 }
//- /dep.rs crate:dep
pub struct A {
#[doc(hidden)]
pub hidden_field: u32,
pub pub_field: u32,
}
impl A {
pub fn pub_method(&self) {}
#[doc(hidden)]
pub fn hidden_method(&self) {}
}
"#,
expect![[r#"
fd pub_field u32
me pub_method() fn(&self)
"#]],
)
}
#[test]
fn test_union_field_completion() {
check(
r#"
union U { field: u8, other: u16 }
fn foo(u: U) { u.$0 }
"#,
expect![[r#"
fd field u8
fd other u16
"#]],
);
}
#[test]
fn test_method_completion_only_fitting_impls() {
check(
r#"
struct A<T> {}
impl A<u32> {
fn the_method(&self) {}
}
impl A<i32> {
fn the_other_method(&self) {}
}
fn foo(a: A<u32>) { a.$0 }
"#,
expect![[r#"
me the_method() fn(&self)
"#]],
)
}
#[test]
fn test_trait_method_completion() {
check(
r#"
struct A {}
trait Trait { fn the_method(&self); }
impl Trait for A {}
fn foo(a: A) { a.$0 }
"#,
expect![[r#"
me the_method() (as Trait) fn(&self)
"#]],
);
check_edit(
"the_method",
r#"
struct A {}
trait Trait { fn the_method(&self); }
impl Trait for A {}
fn foo(a: A) { a.$0 }
"#,
r#"
struct A {}
trait Trait { fn the_method(&self); }
impl Trait for A {}
fn foo(a: A) { a.the_method()$0 }
"#,
);
}
#[test]
fn test_trait_method_completion_deduplicated() {
check(
r"
struct A {}
trait Trait { fn the_method(&self); }
impl<T> Trait for T {}
fn foo(a: &A) { a.$0 }
",
expect![[r#"
me the_method() (as Trait) fn(&self)
"#]],
);
}
#[test]
fn completes_trait_method_from_other_module() {
check(
r"
struct A {}
mod m {
pub trait Trait { fn the_method(&self); }
}
use m::Trait;
impl Trait for A {}
fn foo(a: A) { a.$0 }
",
expect![[r#"
me the_method() (as Trait) fn(&self)
"#]],
);
}
#[test]
fn test_no_non_self_method() {
check(
r#"
struct A {}
impl A {
fn the_method() {}
}
fn foo(a: A) {
a.$0
}
"#,
expect![[r#""#]],
);
}
#[test]
fn test_tuple_field_completion() {
check(
r#"
fn foo() {
let b = (0, 3.14);
b.$0
}
"#,
expect![[r#"
fd 0 i32
fd 1 f64
"#]],
);
}
#[test]
fn test_tuple_struct_field_completion() {
check(
r#"
struct S(i32, f64);
fn foo() {
let b = S(0, 3.14);
b.$0
}
"#,
expect![[r#"
fd 0 i32
fd 1 f64
"#]],
);
}
#[test]
fn test_tuple_field_inference() {
check(
r#"
pub struct S;
impl S { pub fn blah(&self) {} }
struct T(S);
impl T {
fn foo(&self) {
// FIXME: This doesn't work without the trailing `a` as `0.` is a float
self.0.a$0
}
}
"#,
expect![[r#"
me blah() fn(&self)
"#]],
);
}
#[test]
fn test_field_no_same_name() {
check(
r#"
//- minicore: deref
struct A { field: u8 }
struct B { field: u16, another: u32 }
impl core::ops::Deref for A {
type Target = B;
fn deref(&self) -> &Self::Target { loop {} }
}
fn test(a: A) {
a.$0
}
"#,
expect![[r#"
fd another u32
fd field u8
me deref() (use core::ops::Deref) fn(&self) -> &<Self as Deref>::Target
"#]],
);
}
#[test]
fn test_tuple_field_no_same_index() {
check(
r#"
//- minicore: deref
struct A(u8);
struct B(u16, u32);
impl core::ops::Deref for A {
type Target = B;
fn deref(&self) -> &Self::Target { loop {} }
}
fn test(a: A) {
a.$0
}
"#,
expect![[r#"
fd 0 u8
fd 1 u32
me deref() (use core::ops::Deref) fn(&self) -> &<Self as Deref>::Target
"#]],
);
}
#[test]
fn test_tuple_struct_deref_to_tuple_no_same_index() {
check(
r#"
//- minicore: deref
struct A(u8);
impl core::ops::Deref for A {
type Target = (u16, u32);
fn deref(&self) -> &Self::Target { loop {} }
}
fn test(a: A) {
a.$0
}
"#,
expect![[r#"
fd 0 u8
fd 1 u32
me deref() (use core::ops::Deref) fn(&self) -> &<Self as Deref>::Target
"#]],
);
}
#[test]
fn test_completion_works_in_consts() {
check(
r#"
struct A { the_field: u32 }
const X: u32 = {
A { the_field: 92 }.$0
};
"#,
expect![[r#"
fd the_field u32
"#]],
);
}
#[test]
fn works_in_simple_macro_1() {
check(
r#"
macro_rules! m { ($e:expr) => { $e } }
struct A { the_field: u32 }
fn foo(a: A) {
m!(a.x$0)
}
"#,
expect![[r#"
fd the_field u32
"#]],
);
}
#[test]
fn works_in_simple_macro_2() {
// this doesn't work yet because the macro doesn't expand without the token -- maybe it can be fixed with better recovery
check(
r#"
macro_rules! m { ($e:expr) => { $e } }
struct A { the_field: u32 }
fn foo(a: A) {
m!(a.$0)
}
"#,
expect![[r#"
fd the_field u32
"#]],
);
}
#[test]
fn works_in_simple_macro_recursive_1() {
check(
r#"
macro_rules! m { ($e:expr) => { $e } }
struct A { the_field: u32 }
fn foo(a: A) {
m!(m!(m!(a.x$0)))
}
"#,
expect![[r#"
fd the_field u32
"#]],
);
}
#[test]
fn macro_expansion_resilient() {
check(
r#"
macro_rules! d {
() => {};
($val:expr) => {
match $val { tmp => { tmp } }
};
// Trailing comma with single argument is ignored
($val:expr,) => { $crate::d!($val) };
($($val:expr),+ $(,)?) => {
($($crate::d!($val)),+,)
};
}
struct A { the_field: u32 }
fn foo(a: A) {
d!(a.$0)
}
"#,
expect![[r#"
fd the_field u32
"#]],
);
}
#[test]
fn test_method_completion_issue_3547() {
check(
r#"
struct HashSet<T> {}
impl<T> HashSet<T> {
pub fn the_method(&self) {}
}
fn foo() {
let s: HashSet<_>;
s.$0
}
"#,
expect![[r#"
me the_method() fn(&self)
"#]],
);
}
#[test]
fn completes_method_call_when_receiver_is_a_macro_call() {
check(
r#"
struct S;
impl S { fn foo(&self) {} }
macro_rules! make_s { () => { S }; }
fn main() { make_s!().f$0; }
"#,
expect![[r#"
me foo() fn(&self)
"#]],
)
}
#[test]
fn completes_after_macro_call_in_submodule() {
check(
r#"
macro_rules! empty {
() => {};
}
mod foo {
#[derive(Debug, Default)]
struct Template2 {}
impl Template2 {
fn private(&self) {}
}
fn baz() {
let goo: Template2 = Template2 {};
empty!();
goo.$0
}
}
"#,
expect![[r#"
me private() fn(&self)
"#]],
);
}
#[test]
fn issue_8931() {
check(
r#"
//- minicore: fn
struct S;
struct Foo;
impl Foo {
fn foo(&self) -> &[u8] { loop {} }
}
impl S {
fn indented(&mut self, f: impl FnOnce(&mut Self)) {
}
fn f(&mut self, v: Foo) {
self.indented(|this| v.$0)
}
}
"#,
expect![[r#"
me foo() fn(&self) -> &[u8]
"#]],
);
}
#[test]
fn completes_bare_fields_and_methods_in_methods() {
check(
r#"
struct Foo { field: i32 }
impl Foo { fn foo(&self) { $0 } }"#,
expect![[r#"
fd self.field i32
lc self &Foo
sp Self Foo
st Foo Foo
bt u32 u32
me self.foo() fn(&self)
"#]],
);
check(
r#"
struct Foo(i32);
impl Foo { fn foo(&mut self) { $0 } }"#,
expect![[r#"
fd self.0 i32
lc self &mut Foo
sp Self Foo
st Foo Foo
bt u32 u32
me self.foo() fn(&mut self)
"#]],
);
}
#[test]
fn macro_completion_after_dot() {
check(
r#"
macro_rules! m {
($e:expr) => { $e };
}
struct Completable;
impl Completable {
fn method(&self) {}
}
fn f() {
let c = Completable;
m!(c.$0);
}
"#,
expect![[r#"
me method() fn(&self)
"#]],
);
}
#[test]
fn completes_method_call_when_receiver_type_has_errors_issue_10297() {
check(
r#"
//- minicore: iterator, sized
struct Vec<T>;
impl<T> IntoIterator for Vec<T> {
type Item = ();
type IntoIter = ();
fn into_iter(self);
}
fn main() {
let x: Vec<_>;
x.$0;
}
"#,
expect![[r#"
me into_iter() (as IntoIterator) fn(self) -> <Self as IntoIterator>::IntoIter
"#]],
)
}
#[test]
fn postfix_drop_completion() {
cov_mark::check!(postfix_drop_completion);
check_edit(
"drop",
r#"
//- minicore: drop
struct Vec<T>(T);
impl<T> Drop for Vec<T> {
fn drop(&mut self) {}
}
fn main() {
let x = Vec(0u32)
x.$0;
}
"#,
r"
struct Vec<T>(T);
impl<T> Drop for Vec<T> {
fn drop(&mut self) {}
}
fn main() {
let x = Vec(0u32)
drop($0x);
}
",
)
}
#[test]
fn issue_12484() {
check(
r#"
//- minicore: sized
trait SizeUser {
type Size;
}
trait Closure: SizeUser {}
trait Encrypt: SizeUser {
fn encrypt(self, _: impl Closure<Size = Self::Size>);
}
fn test(thing: impl Encrypt) {
thing.$0;
}
"#,
expect![[r#"
me encrypt(…) (as Encrypt) fn(self, impl Closure<Size = <Self as SizeUser>::Size>)
"#]],
)
}
#[test]
fn only_consider_same_type_once() {
check(
r#"
//- minicore: deref
struct A(u8);
struct B(u16);
impl core::ops::Deref for A {
type Target = B;
fn deref(&self) -> &Self::Target { loop {} }
}
impl core::ops::Deref for B {
type Target = A;
fn deref(&self) -> &Self::Target { loop {} }
}
fn test(a: A) {
a.$0
}
"#,
expect![[r#"
fd 0 u8
me deref() (use core::ops::Deref) fn(&self) -> &<Self as Deref>::Target
"#]],
);
}
#[test]
fn no_inference_var_in_completion() {
check(
r#"
struct S<T>(T);
fn test(s: S<Unknown>) {
s.$0
}
"#,
expect![[r#"
fd 0 {unknown}
"#]],
);
}
#[test]
fn assoc_impl_1() {
check(
r#"
//- minicore: deref
fn main() {
let foo: Foo<&u8> = Foo::new(&42_u8);
foo.$0
}
trait Bar {
fn bar(&self);
}
impl Bar for u8 {
fn bar(&self) {}
}
struct Foo<F> {
foo: F,
}
impl<F> Foo<F> {
fn new(foo: F) -> Foo<F> {
Foo { foo }
}
}
impl<F: core::ops::Deref<Target = impl Bar>> Foo<F> {
fn foobar(&self) {
self.foo.deref().bar()
}
}
"#,
expect![[r#"
fd foo &u8
me foobar() fn(&self)
"#]],
);
}
#[test]
fn assoc_impl_2() {
check(
r#"
//- minicore: deref
fn main() {
let foo: Foo<&u8> = Foo::new(&42_u8);
foo.$0
}
trait Bar {
fn bar(&self);
}
struct Foo<F> {
foo: F,
}
impl<F> Foo<F> {
fn new(foo: F) -> Foo<F> {
Foo { foo }
}
}
impl<B: Bar, F: core::ops::Deref<Target = B>> Foo<F> {
fn foobar(&self) {
self.foo.deref().bar()
}
}
"#,
expect![[r#"
fd foo &u8
"#]],
);
}
#[test]
fn test_struct_function_field_completion() {
check(
r#"
struct S { va_field: u32, fn_field: fn() }
fn foo() { S { va_field: 0, fn_field: || {} }.fi$0() }
"#,
expect![[r#"
fd fn_field fn()
"#]],
);
check_edit(
"fn_field",
r#"
struct S { va_field: u32, fn_field: fn() }
fn foo() { S { va_field: 0, fn_field: || {} }.fi$0() }
"#,
r#"
struct S { va_field: u32, fn_field: fn() }
fn foo() { (S { va_field: 0, fn_field: || {} }.fn_field)() }
"#,
);
}
#[test]
fn test_tuple_function_field_completion() {
check(
r#"
struct B(u32, fn())
fn foo() {
let b = B(0, || {});
b.$0()
}
"#,
expect![[r#"
fd 1 fn()
"#]],
);
check_edit(
"1",
r#"
struct B(u32, fn())
fn foo() {
let b = B(0, || {});
b.$0()
}
"#,
r#"
struct B(u32, fn())
fn foo() {
let b = B(0, || {});
(b.1)()
}
"#,
)
}
#[test]
fn test_fn_field_dot_access_method_has_parens_false() {
check(
r#"
struct Foo { baz: fn() }
impl Foo {
fn bar<T>(self, t: T): T { t }
}
fn baz() {
let foo = Foo{ baz: || {} };
foo.ba$0::<>;
}
"#,
expect![[r#"
me bar(…) fn(self, T)
"#]],
);
}
}