35f16c60e7
rustc_lint and rustc_lint_defs weren't switched because they're included in the compiler book and so can't use intra-doc links.
1184 lines
39 KiB
Rust
1184 lines
39 KiB
Rust
use crate::vec::{Idx, IndexVec};
|
|
use arrayvec::ArrayVec;
|
|
use std::fmt;
|
|
use std::iter;
|
|
use std::marker::PhantomData;
|
|
use std::mem;
|
|
use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Not, Range, Shl};
|
|
use std::slice;
|
|
|
|
use rustc_macros::{Decodable, Encodable};
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
|
|
pub type Word = u64;
|
|
pub const WORD_BYTES: usize = mem::size_of::<Word>();
|
|
pub const WORD_BITS: usize = WORD_BYTES * 8;
|
|
|
|
/// A fixed-size bitset type with a dense representation.
|
|
///
|
|
/// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
|
|
///
|
|
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
|
|
/// just be `usize`.
|
|
///
|
|
/// All operations that involve an element will panic if the element is equal
|
|
/// to or greater than the domain size. All operations that involve two bitsets
|
|
/// will panic if the bitsets have differing domain sizes.
|
|
///
|
|
#[derive(Eq, PartialEq, Decodable, Encodable)]
|
|
pub struct BitSet<T> {
|
|
domain_size: usize,
|
|
words: Vec<Word>,
|
|
marker: PhantomData<T>,
|
|
}
|
|
|
|
impl<T> BitSet<T> {
|
|
/// Gets the domain size.
|
|
pub fn domain_size(&self) -> usize {
|
|
self.domain_size
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> BitSet<T> {
|
|
/// Creates a new, empty bitset with a given `domain_size`.
|
|
#[inline]
|
|
pub fn new_empty(domain_size: usize) -> BitSet<T> {
|
|
let num_words = num_words(domain_size);
|
|
BitSet { domain_size, words: vec![0; num_words], marker: PhantomData }
|
|
}
|
|
|
|
/// Creates a new, filled bitset with a given `domain_size`.
|
|
#[inline]
|
|
pub fn new_filled(domain_size: usize) -> BitSet<T> {
|
|
let num_words = num_words(domain_size);
|
|
let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData };
|
|
result.clear_excess_bits();
|
|
result
|
|
}
|
|
|
|
/// Clear all elements.
|
|
#[inline]
|
|
pub fn clear(&mut self) {
|
|
for word in &mut self.words {
|
|
*word = 0;
|
|
}
|
|
}
|
|
|
|
/// Clear excess bits in the final word.
|
|
fn clear_excess_bits(&mut self) {
|
|
let num_bits_in_final_word = self.domain_size % WORD_BITS;
|
|
if num_bits_in_final_word > 0 {
|
|
let mask = (1 << num_bits_in_final_word) - 1;
|
|
let final_word_idx = self.words.len() - 1;
|
|
self.words[final_word_idx] &= mask;
|
|
}
|
|
}
|
|
|
|
/// Count the number of set bits in the set.
|
|
pub fn count(&self) -> usize {
|
|
self.words.iter().map(|e| e.count_ones() as usize).sum()
|
|
}
|
|
|
|
/// Returns `true` if `self` contains `elem`.
|
|
#[inline]
|
|
pub fn contains(&self, elem: T) -> bool {
|
|
assert!(elem.index() < self.domain_size);
|
|
let (word_index, mask) = word_index_and_mask(elem);
|
|
(self.words[word_index] & mask) != 0
|
|
}
|
|
|
|
/// Is `self` is a (non-strict) superset of `other`?
|
|
#[inline]
|
|
pub fn superset(&self, other: &BitSet<T>) -> bool {
|
|
assert_eq!(self.domain_size, other.domain_size);
|
|
self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
|
|
}
|
|
|
|
/// Is the set empty?
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.words.iter().all(|a| *a == 0)
|
|
}
|
|
|
|
/// Insert `elem`. Returns whether the set has changed.
|
|
#[inline]
|
|
pub fn insert(&mut self, elem: T) -> bool {
|
|
assert!(elem.index() < self.domain_size);
|
|
let (word_index, mask) = word_index_and_mask(elem);
|
|
let word_ref = &mut self.words[word_index];
|
|
let word = *word_ref;
|
|
let new_word = word | mask;
|
|
*word_ref = new_word;
|
|
new_word != word
|
|
}
|
|
|
|
/// Sets all bits to true.
|
|
pub fn insert_all(&mut self) {
|
|
for word in &mut self.words {
|
|
*word = !0;
|
|
}
|
|
self.clear_excess_bits();
|
|
}
|
|
|
|
/// Returns `true` if the set has changed.
|
|
#[inline]
|
|
pub fn remove(&mut self, elem: T) -> bool {
|
|
assert!(elem.index() < self.domain_size);
|
|
let (word_index, mask) = word_index_and_mask(elem);
|
|
let word_ref = &mut self.words[word_index];
|
|
let word = *word_ref;
|
|
let new_word = word & !mask;
|
|
*word_ref = new_word;
|
|
new_word != word
|
|
}
|
|
|
|
/// Sets `self = self | other` and returns `true` if `self` changed
|
|
/// (i.e., if new bits were added).
|
|
pub fn union(&mut self, other: &impl UnionIntoBitSet<T>) -> bool {
|
|
other.union_into(self)
|
|
}
|
|
|
|
/// Sets `self = self - other` and returns `true` if `self` changed.
|
|
/// (i.e., if any bits were removed).
|
|
pub fn subtract(&mut self, other: &impl SubtractFromBitSet<T>) -> bool {
|
|
other.subtract_from(self)
|
|
}
|
|
|
|
/// Sets `self = self & other` and return `true` if `self` changed.
|
|
/// (i.e., if any bits were removed).
|
|
pub fn intersect(&mut self, other: &BitSet<T>) -> bool {
|
|
assert_eq!(self.domain_size, other.domain_size);
|
|
bitwise(&mut self.words, &other.words, |a, b| a & b)
|
|
}
|
|
|
|
/// Gets a slice of the underlying words.
|
|
pub fn words(&self) -> &[Word] {
|
|
&self.words
|
|
}
|
|
|
|
/// Iterates over the indices of set bits in a sorted order.
|
|
#[inline]
|
|
pub fn iter(&self) -> BitIter<'_, T> {
|
|
BitIter::new(&self.words)
|
|
}
|
|
|
|
/// Duplicates the set as a hybrid set.
|
|
pub fn to_hybrid(&self) -> HybridBitSet<T> {
|
|
// Note: we currently don't bother trying to make a Sparse set.
|
|
HybridBitSet::Dense(self.to_owned())
|
|
}
|
|
|
|
/// Set `self = self | other`. In contrast to `union` returns `true` if the set contains at
|
|
/// least one bit that is not in `other` (i.e. `other` is not a superset of `self`).
|
|
///
|
|
/// This is an optimization for union of a hybrid bitset.
|
|
fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
|
|
assert!(sparse.domain_size == self.domain_size);
|
|
self.clear_excess_bits();
|
|
|
|
let mut not_already = false;
|
|
// Index of the current word not yet merged.
|
|
let mut current_index = 0;
|
|
// Mask of bits that came from the sparse set in the current word.
|
|
let mut new_bit_mask = 0;
|
|
for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) {
|
|
// Next bit is in a word not inspected yet.
|
|
if word_index > current_index {
|
|
self.words[current_index] |= new_bit_mask;
|
|
// Were there any bits in the old word that did not occur in the sparse set?
|
|
not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
|
|
// Check all words we skipped for any set bit.
|
|
not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0);
|
|
// Update next word.
|
|
current_index = word_index;
|
|
// Reset bit mask, no bits have been merged yet.
|
|
new_bit_mask = 0;
|
|
}
|
|
// Add bit and mark it as coming from the sparse set.
|
|
// self.words[word_index] |= mask;
|
|
new_bit_mask |= mask;
|
|
}
|
|
self.words[current_index] |= new_bit_mask;
|
|
// Any bits in the last inspected word that were not in the sparse set?
|
|
not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
|
|
// Any bits in the tail? Note `clear_excess_bits` before.
|
|
not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0);
|
|
|
|
not_already
|
|
}
|
|
}
|
|
|
|
/// This is implemented by all the bitsets so that BitSet::union() can be
|
|
/// passed any type of bitset.
|
|
pub trait UnionIntoBitSet<T: Idx> {
|
|
// Performs `other = other | self`.
|
|
fn union_into(&self, other: &mut BitSet<T>) -> bool;
|
|
}
|
|
|
|
/// This is implemented by all the bitsets so that BitSet::subtract() can be
|
|
/// passed any type of bitset.
|
|
pub trait SubtractFromBitSet<T: Idx> {
|
|
// Performs `other = other - self`.
|
|
fn subtract_from(&self, other: &mut BitSet<T>) -> bool;
|
|
}
|
|
|
|
impl<T: Idx> UnionIntoBitSet<T> for BitSet<T> {
|
|
fn union_into(&self, other: &mut BitSet<T>) -> bool {
|
|
assert_eq!(self.domain_size, other.domain_size);
|
|
bitwise(&mut other.words, &self.words, |a, b| a | b)
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> SubtractFromBitSet<T> for BitSet<T> {
|
|
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
|
|
assert_eq!(self.domain_size, other.domain_size);
|
|
bitwise(&mut other.words, &self.words, |a, b| a & !b)
|
|
}
|
|
}
|
|
|
|
impl<T> Clone for BitSet<T> {
|
|
fn clone(&self) -> Self {
|
|
BitSet { domain_size: self.domain_size, words: self.words.clone(), marker: PhantomData }
|
|
}
|
|
|
|
fn clone_from(&mut self, from: &Self) {
|
|
if self.domain_size != from.domain_size {
|
|
self.words.resize(from.domain_size, 0);
|
|
self.domain_size = from.domain_size;
|
|
}
|
|
|
|
self.words.copy_from_slice(&from.words);
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> fmt::Debug for BitSet<T> {
|
|
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
w.debug_list().entries(self.iter()).finish()
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> ToString for BitSet<T> {
|
|
fn to_string(&self) -> String {
|
|
let mut result = String::new();
|
|
let mut sep = '[';
|
|
|
|
// Note: this is a little endian printout of bytes.
|
|
|
|
// i tracks how many bits we have printed so far.
|
|
let mut i = 0;
|
|
for word in &self.words {
|
|
let mut word = *word;
|
|
for _ in 0..WORD_BYTES {
|
|
// for each byte in `word`:
|
|
let remain = self.domain_size - i;
|
|
// If less than a byte remains, then mask just that many bits.
|
|
let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
|
|
assert!(mask <= 0xFF);
|
|
let byte = word & mask;
|
|
|
|
result.push_str(&format!("{}{:02x}", sep, byte));
|
|
|
|
if remain <= 8 {
|
|
break;
|
|
}
|
|
word >>= 8;
|
|
i += 8;
|
|
sep = '-';
|
|
}
|
|
sep = '|';
|
|
}
|
|
result.push(']');
|
|
|
|
result
|
|
}
|
|
}
|
|
|
|
pub struct BitIter<'a, T: Idx> {
|
|
/// A copy of the current word, but with any already-visited bits cleared.
|
|
/// (This lets us use `trailing_zeros()` to find the next set bit.) When it
|
|
/// is reduced to 0, we move onto the next word.
|
|
word: Word,
|
|
|
|
/// The offset (measured in bits) of the current word.
|
|
offset: usize,
|
|
|
|
/// Underlying iterator over the words.
|
|
iter: slice::Iter<'a, Word>,
|
|
|
|
marker: PhantomData<T>,
|
|
}
|
|
|
|
impl<'a, T: Idx> BitIter<'a, T> {
|
|
#[inline]
|
|
fn new(words: &'a [Word]) -> BitIter<'a, T> {
|
|
// We initialize `word` and `offset` to degenerate values. On the first
|
|
// call to `next()` we will fall through to getting the first word from
|
|
// `iter`, which sets `word` to the first word (if there is one) and
|
|
// `offset` to 0. Doing it this way saves us from having to maintain
|
|
// additional state about whether we have started.
|
|
BitIter {
|
|
word: 0,
|
|
offset: usize::MAX - (WORD_BITS - 1),
|
|
iter: words.iter(),
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Idx> Iterator for BitIter<'a, T> {
|
|
type Item = T;
|
|
fn next(&mut self) -> Option<T> {
|
|
loop {
|
|
if self.word != 0 {
|
|
// Get the position of the next set bit in the current word,
|
|
// then clear the bit.
|
|
let bit_pos = self.word.trailing_zeros() as usize;
|
|
let bit = 1 << bit_pos;
|
|
self.word ^= bit;
|
|
return Some(T::new(bit_pos + self.offset));
|
|
}
|
|
|
|
// Move onto the next word. `wrapping_add()` is needed to handle
|
|
// the degenerate initial value given to `offset` in `new()`.
|
|
let word = self.iter.next()?;
|
|
self.word = *word;
|
|
self.offset = self.offset.wrapping_add(WORD_BITS);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool
|
|
where
|
|
Op: Fn(Word, Word) -> Word,
|
|
{
|
|
assert_eq!(out_vec.len(), in_vec.len());
|
|
let mut changed = false;
|
|
for (out_elem, in_elem) in out_vec.iter_mut().zip(in_vec.iter()) {
|
|
let old_val = *out_elem;
|
|
let new_val = op(old_val, *in_elem);
|
|
*out_elem = new_val;
|
|
changed |= old_val != new_val;
|
|
}
|
|
changed
|
|
}
|
|
|
|
const SPARSE_MAX: usize = 8;
|
|
|
|
/// A fixed-size bitset type with a sparse representation and a maximum of
|
|
/// `SPARSE_MAX` elements. The elements are stored as a sorted `ArrayVec` with
|
|
/// no duplicates.
|
|
///
|
|
/// This type is used by `HybridBitSet`; do not use directly.
|
|
#[derive(Clone, Debug)]
|
|
pub struct SparseBitSet<T> {
|
|
domain_size: usize,
|
|
elems: ArrayVec<[T; SPARSE_MAX]>,
|
|
}
|
|
|
|
impl<T: Idx> SparseBitSet<T> {
|
|
fn new_empty(domain_size: usize) -> Self {
|
|
SparseBitSet { domain_size, elems: ArrayVec::new() }
|
|
}
|
|
|
|
fn len(&self) -> usize {
|
|
self.elems.len()
|
|
}
|
|
|
|
fn is_empty(&self) -> bool {
|
|
self.elems.len() == 0
|
|
}
|
|
|
|
fn contains(&self, elem: T) -> bool {
|
|
assert!(elem.index() < self.domain_size);
|
|
self.elems.contains(&elem)
|
|
}
|
|
|
|
fn insert(&mut self, elem: T) -> bool {
|
|
assert!(elem.index() < self.domain_size);
|
|
let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) {
|
|
if self.elems[i] == elem {
|
|
// `elem` is already in the set.
|
|
false
|
|
} else {
|
|
// `elem` is smaller than one or more existing elements.
|
|
self.elems.insert(i, elem);
|
|
true
|
|
}
|
|
} else {
|
|
// `elem` is larger than all existing elements.
|
|
self.elems.push(elem);
|
|
true
|
|
};
|
|
assert!(self.len() <= SPARSE_MAX);
|
|
changed
|
|
}
|
|
|
|
fn remove(&mut self, elem: T) -> bool {
|
|
assert!(elem.index() < self.domain_size);
|
|
if let Some(i) = self.elems.iter().position(|&e| e == elem) {
|
|
self.elems.remove(i);
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
fn to_dense(&self) -> BitSet<T> {
|
|
let mut dense = BitSet::new_empty(self.domain_size);
|
|
for elem in self.elems.iter() {
|
|
dense.insert(*elem);
|
|
}
|
|
dense
|
|
}
|
|
|
|
fn iter(&self) -> slice::Iter<'_, T> {
|
|
self.elems.iter()
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> {
|
|
fn union_into(&self, other: &mut BitSet<T>) -> bool {
|
|
assert_eq!(self.domain_size, other.domain_size);
|
|
let mut changed = false;
|
|
for elem in self.iter() {
|
|
changed |= other.insert(*elem);
|
|
}
|
|
changed
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
|
|
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
|
|
assert_eq!(self.domain_size, other.domain_size);
|
|
let mut changed = false;
|
|
for elem in self.iter() {
|
|
changed |= other.remove(*elem);
|
|
}
|
|
changed
|
|
}
|
|
}
|
|
|
|
/// A fixed-size bitset type with a hybrid representation: sparse when there
|
|
/// are up to a `SPARSE_MAX` elements in the set, but dense when there are more
|
|
/// than `SPARSE_MAX`.
|
|
///
|
|
/// This type is especially efficient for sets that typically have a small
|
|
/// number of elements, but a large `domain_size`, and are cleared frequently.
|
|
///
|
|
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
|
|
/// just be `usize`.
|
|
///
|
|
/// All operations that involve an element will panic if the element is equal
|
|
/// to or greater than the domain size. All operations that involve two bitsets
|
|
/// will panic if the bitsets have differing domain sizes.
|
|
#[derive(Clone)]
|
|
pub enum HybridBitSet<T> {
|
|
Sparse(SparseBitSet<T>),
|
|
Dense(BitSet<T>),
|
|
}
|
|
|
|
impl<T: Idx> fmt::Debug for HybridBitSet<T> {
|
|
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
Self::Sparse(b) => b.fmt(w),
|
|
Self::Dense(b) => b.fmt(w),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> HybridBitSet<T> {
|
|
pub fn new_empty(domain_size: usize) -> Self {
|
|
HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size))
|
|
}
|
|
|
|
pub fn domain_size(&self) -> usize {
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) => sparse.domain_size,
|
|
HybridBitSet::Dense(dense) => dense.domain_size,
|
|
}
|
|
}
|
|
|
|
pub fn clear(&mut self) {
|
|
let domain_size = self.domain_size();
|
|
*self = HybridBitSet::new_empty(domain_size);
|
|
}
|
|
|
|
pub fn contains(&self, elem: T) -> bool {
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) => sparse.contains(elem),
|
|
HybridBitSet::Dense(dense) => dense.contains(elem),
|
|
}
|
|
}
|
|
|
|
pub fn superset(&self, other: &HybridBitSet<T>) -> bool {
|
|
match (self, other) {
|
|
(HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => {
|
|
self_dense.superset(other_dense)
|
|
}
|
|
_ => {
|
|
assert!(self.domain_size() == other.domain_size());
|
|
other.iter().all(|elem| self.contains(elem))
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) => sparse.is_empty(),
|
|
HybridBitSet::Dense(dense) => dense.is_empty(),
|
|
}
|
|
}
|
|
|
|
pub fn insert(&mut self, elem: T) -> bool {
|
|
// No need to check `elem` against `self.domain_size` here because all
|
|
// the match cases check it, one way or another.
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => {
|
|
// The set is sparse and has space for `elem`.
|
|
sparse.insert(elem)
|
|
}
|
|
HybridBitSet::Sparse(sparse) if sparse.contains(elem) => {
|
|
// The set is sparse and does not have space for `elem`, but
|
|
// that doesn't matter because `elem` is already present.
|
|
false
|
|
}
|
|
HybridBitSet::Sparse(sparse) => {
|
|
// The set is sparse and full. Convert to a dense set.
|
|
let mut dense = sparse.to_dense();
|
|
let changed = dense.insert(elem);
|
|
assert!(changed);
|
|
*self = HybridBitSet::Dense(dense);
|
|
changed
|
|
}
|
|
HybridBitSet::Dense(dense) => dense.insert(elem),
|
|
}
|
|
}
|
|
|
|
pub fn insert_all(&mut self) {
|
|
let domain_size = self.domain_size();
|
|
match self {
|
|
HybridBitSet::Sparse(_) => {
|
|
*self = HybridBitSet::Dense(BitSet::new_filled(domain_size));
|
|
}
|
|
HybridBitSet::Dense(dense) => dense.insert_all(),
|
|
}
|
|
}
|
|
|
|
pub fn remove(&mut self, elem: T) -> bool {
|
|
// Note: we currently don't bother going from Dense back to Sparse.
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) => sparse.remove(elem),
|
|
HybridBitSet::Dense(dense) => dense.remove(elem),
|
|
}
|
|
}
|
|
|
|
pub fn union(&mut self, other: &HybridBitSet<T>) -> bool {
|
|
match self {
|
|
HybridBitSet::Sparse(self_sparse) => {
|
|
match other {
|
|
HybridBitSet::Sparse(other_sparse) => {
|
|
// Both sets are sparse. Add the elements in
|
|
// `other_sparse` to `self` one at a time. This
|
|
// may or may not cause `self` to be densified.
|
|
assert_eq!(self.domain_size(), other.domain_size());
|
|
let mut changed = false;
|
|
for elem in other_sparse.iter() {
|
|
changed |= self.insert(*elem);
|
|
}
|
|
changed
|
|
}
|
|
HybridBitSet::Dense(other_dense) => {
|
|
// `self` is sparse and `other` is dense. To
|
|
// merge them, we have two available strategies:
|
|
// * Densify `self` then merge other
|
|
// * Clone other then integrate bits from `self`
|
|
// The second strategy requires dedicated method
|
|
// since the usual `union` returns the wrong
|
|
// result. In the dedicated case the computation
|
|
// is slightly faster if the bits of the sparse
|
|
// bitset map to only few words of the dense
|
|
// representation, i.e. indices are near each
|
|
// other.
|
|
//
|
|
// Benchmarking seems to suggest that the second
|
|
// option is worth it.
|
|
let mut new_dense = other_dense.clone();
|
|
let changed = new_dense.reverse_union_sparse(self_sparse);
|
|
*self = HybridBitSet::Dense(new_dense);
|
|
changed
|
|
}
|
|
}
|
|
}
|
|
|
|
HybridBitSet::Dense(self_dense) => self_dense.union(other),
|
|
}
|
|
}
|
|
|
|
/// Converts to a dense set, consuming itself in the process.
|
|
pub fn to_dense(self) -> BitSet<T> {
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) => sparse.to_dense(),
|
|
HybridBitSet::Dense(dense) => dense,
|
|
}
|
|
}
|
|
|
|
pub fn iter(&self) -> HybridIter<'_, T> {
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()),
|
|
HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> {
|
|
fn union_into(&self, other: &mut BitSet<T>) -> bool {
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) => sparse.union_into(other),
|
|
HybridBitSet::Dense(dense) => dense.union_into(other),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Idx> SubtractFromBitSet<T> for HybridBitSet<T> {
|
|
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
|
|
match self {
|
|
HybridBitSet::Sparse(sparse) => sparse.subtract_from(other),
|
|
HybridBitSet::Dense(dense) => dense.subtract_from(other),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub enum HybridIter<'a, T: Idx> {
|
|
Sparse(slice::Iter<'a, T>),
|
|
Dense(BitIter<'a, T>),
|
|
}
|
|
|
|
impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
|
|
type Item = T;
|
|
|
|
fn next(&mut self) -> Option<T> {
|
|
match self {
|
|
HybridIter::Sparse(sparse) => sparse.next().copied(),
|
|
HybridIter::Dense(dense) => dense.next(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A resizable bitset type with a dense representation.
|
|
///
|
|
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
|
|
/// just be `usize`.
|
|
///
|
|
/// All operations that involve an element will panic if the element is equal
|
|
/// to or greater than the domain size.
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
pub struct GrowableBitSet<T: Idx> {
|
|
bit_set: BitSet<T>,
|
|
}
|
|
|
|
impl<T: Idx> GrowableBitSet<T> {
|
|
/// Ensure that the set can hold at least `min_domain_size` elements.
|
|
pub fn ensure(&mut self, min_domain_size: usize) {
|
|
if self.bit_set.domain_size < min_domain_size {
|
|
self.bit_set.domain_size = min_domain_size;
|
|
}
|
|
|
|
let min_num_words = num_words(min_domain_size);
|
|
if self.bit_set.words.len() < min_num_words {
|
|
self.bit_set.words.resize(min_num_words, 0)
|
|
}
|
|
}
|
|
|
|
pub fn new_empty() -> GrowableBitSet<T> {
|
|
GrowableBitSet { bit_set: BitSet::new_empty(0) }
|
|
}
|
|
|
|
pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> {
|
|
GrowableBitSet { bit_set: BitSet::new_empty(capacity) }
|
|
}
|
|
|
|
/// Returns `true` if the set has changed.
|
|
#[inline]
|
|
pub fn insert(&mut self, elem: T) -> bool {
|
|
self.ensure(elem.index() + 1);
|
|
self.bit_set.insert(elem)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn contains(&self, elem: T) -> bool {
|
|
let (word_index, mask) = word_index_and_mask(elem);
|
|
if let Some(word) = self.bit_set.words.get(word_index) { (word & mask) != 0 } else { false }
|
|
}
|
|
}
|
|
|
|
/// A fixed-size 2D bit matrix type with a dense representation.
|
|
///
|
|
/// `R` and `C` are index types used to identify rows and columns respectively;
|
|
/// typically newtyped `usize` wrappers, but they can also just be `usize`.
|
|
///
|
|
/// All operations that involve a row and/or column index will panic if the
|
|
/// index exceeds the relevant bound.
|
|
#[derive(Clone, Eq, PartialEq, Decodable, Encodable)]
|
|
pub struct BitMatrix<R: Idx, C: Idx> {
|
|
num_rows: usize,
|
|
num_columns: usize,
|
|
words: Vec<Word>,
|
|
marker: PhantomData<(R, C)>,
|
|
}
|
|
|
|
impl<R: Idx, C: Idx> BitMatrix<R, C> {
|
|
/// Creates a new `rows x columns` matrix, initially empty.
|
|
pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
|
|
// For every element, we need one bit for every other
|
|
// element. Round up to an even number of words.
|
|
let words_per_row = num_words(num_columns);
|
|
BitMatrix {
|
|
num_rows,
|
|
num_columns,
|
|
words: vec![0; num_rows * words_per_row],
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
|
|
/// Creates a new matrix, with `row` used as the value for every row.
|
|
pub fn from_row_n(row: &BitSet<C>, num_rows: usize) -> BitMatrix<R, C> {
|
|
let num_columns = row.domain_size();
|
|
let words_per_row = num_words(num_columns);
|
|
assert_eq!(words_per_row, row.words().len());
|
|
BitMatrix {
|
|
num_rows,
|
|
num_columns,
|
|
words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(),
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
|
|
pub fn rows(&self) -> impl Iterator<Item = R> {
|
|
(0..self.num_rows).map(R::new)
|
|
}
|
|
|
|
/// The range of bits for a given row.
|
|
fn range(&self, row: R) -> (usize, usize) {
|
|
let words_per_row = num_words(self.num_columns);
|
|
let start = row.index() * words_per_row;
|
|
(start, start + words_per_row)
|
|
}
|
|
|
|
/// Sets the cell at `(row, column)` to true. Put another way, insert
|
|
/// `column` to the bitset for `row`.
|
|
///
|
|
/// Returns `true` if this changed the matrix.
|
|
pub fn insert(&mut self, row: R, column: C) -> bool {
|
|
assert!(row.index() < self.num_rows && column.index() < self.num_columns);
|
|
let (start, _) = self.range(row);
|
|
let (word_index, mask) = word_index_and_mask(column);
|
|
let words = &mut self.words[..];
|
|
let word = words[start + word_index];
|
|
let new_word = word | mask;
|
|
words[start + word_index] = new_word;
|
|
word != new_word
|
|
}
|
|
|
|
/// Do the bits from `row` contain `column`? Put another way, is
|
|
/// the matrix cell at `(row, column)` true? Put yet another way,
|
|
/// if the matrix represents (transitive) reachability, can
|
|
/// `row` reach `column`?
|
|
pub fn contains(&self, row: R, column: C) -> bool {
|
|
assert!(row.index() < self.num_rows && column.index() < self.num_columns);
|
|
let (start, _) = self.range(row);
|
|
let (word_index, mask) = word_index_and_mask(column);
|
|
(self.words[start + word_index] & mask) != 0
|
|
}
|
|
|
|
/// Returns those indices that are true in rows `a` and `b`. This
|
|
/// is an *O*(*n*) operation where *n* is the number of elements
|
|
/// (somewhat independent from the actual size of the
|
|
/// intersection, in particular).
|
|
pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
|
|
assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
|
|
let (row1_start, row1_end) = self.range(row1);
|
|
let (row2_start, row2_end) = self.range(row2);
|
|
let mut result = Vec::with_capacity(self.num_columns);
|
|
for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
|
|
let mut v = self.words[i] & self.words[j];
|
|
for bit in 0..WORD_BITS {
|
|
if v == 0 {
|
|
break;
|
|
}
|
|
if v & 0x1 != 0 {
|
|
result.push(C::new(base * WORD_BITS + bit));
|
|
}
|
|
v >>= 1;
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Adds the bits from row `read` to the bits from row `write`, and
|
|
/// returns `true` if anything changed.
|
|
///
|
|
/// This is used when computing transitive reachability because if
|
|
/// you have an edge `write -> read`, because in that case
|
|
/// `write` can reach everything that `read` can (and
|
|
/// potentially more).
|
|
pub fn union_rows(&mut self, read: R, write: R) -> bool {
|
|
assert!(read.index() < self.num_rows && write.index() < self.num_rows);
|
|
let (read_start, read_end) = self.range(read);
|
|
let (write_start, write_end) = self.range(write);
|
|
let words = &mut self.words[..];
|
|
let mut changed = false;
|
|
for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) {
|
|
let word = words[write_index];
|
|
let new_word = word | words[read_index];
|
|
words[write_index] = new_word;
|
|
changed |= word != new_word;
|
|
}
|
|
changed
|
|
}
|
|
|
|
/// Adds the bits from `with` to the bits from row `write`, and
|
|
/// returns `true` if anything changed.
|
|
pub fn union_row_with(&mut self, with: &BitSet<C>, write: R) -> bool {
|
|
assert!(write.index() < self.num_rows);
|
|
assert_eq!(with.domain_size(), self.num_columns);
|
|
let (write_start, write_end) = self.range(write);
|
|
let mut changed = false;
|
|
for (read_index, write_index) in (0..with.words().len()).zip(write_start..write_end) {
|
|
let word = self.words[write_index];
|
|
let new_word = word | with.words()[read_index];
|
|
self.words[write_index] = new_word;
|
|
changed |= word != new_word;
|
|
}
|
|
changed
|
|
}
|
|
|
|
/// Sets every cell in `row` to true.
|
|
pub fn insert_all_into_row(&mut self, row: R) {
|
|
assert!(row.index() < self.num_rows);
|
|
let (start, end) = self.range(row);
|
|
let words = &mut self.words[..];
|
|
for index in start..end {
|
|
words[index] = !0;
|
|
}
|
|
self.clear_excess_bits(row);
|
|
}
|
|
|
|
/// Clear excess bits in the final word of the row.
|
|
fn clear_excess_bits(&mut self, row: R) {
|
|
let num_bits_in_final_word = self.num_columns % WORD_BITS;
|
|
if num_bits_in_final_word > 0 {
|
|
let mask = (1 << num_bits_in_final_word) - 1;
|
|
let (_, end) = self.range(row);
|
|
let final_word_idx = end - 1;
|
|
self.words[final_word_idx] &= mask;
|
|
}
|
|
}
|
|
|
|
/// Gets a slice of the underlying words.
|
|
pub fn words(&self) -> &[Word] {
|
|
&self.words
|
|
}
|
|
|
|
/// Iterates through all the columns set to true in a given row of
|
|
/// the matrix.
|
|
pub fn iter(&self, row: R) -> BitIter<'_, C> {
|
|
assert!(row.index() < self.num_rows);
|
|
let (start, end) = self.range(row);
|
|
BitIter::new(&self.words[start..end])
|
|
}
|
|
|
|
/// Returns the number of elements in `row`.
|
|
pub fn count(&self, row: R) -> usize {
|
|
let (start, end) = self.range(row);
|
|
self.words[start..end].iter().map(|e| e.count_ones() as usize).sum()
|
|
}
|
|
}
|
|
|
|
impl<R: Idx, C: Idx> fmt::Debug for BitMatrix<R, C> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
/// Forces its contents to print in regular mode instead of alternate mode.
|
|
struct OneLinePrinter<T>(T);
|
|
impl<T: fmt::Debug> fmt::Debug for OneLinePrinter<T> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(fmt, "{:?}", self.0)
|
|
}
|
|
}
|
|
|
|
write!(fmt, "BitMatrix({}x{}) ", self.num_rows, self.num_columns)?;
|
|
let items = self.rows().flat_map(|r| self.iter(r).map(move |c| (r, c)));
|
|
fmt.debug_set().entries(items.map(OneLinePrinter)).finish()
|
|
}
|
|
}
|
|
|
|
/// A fixed-column-size, variable-row-size 2D bit matrix with a moderately
|
|
/// sparse representation.
|
|
///
|
|
/// Initially, every row has no explicit representation. If any bit within a
|
|
/// row is set, the entire row is instantiated as `Some(<HybridBitSet>)`.
|
|
/// Furthermore, any previously uninstantiated rows prior to it will be
|
|
/// instantiated as `None`. Those prior rows may themselves become fully
|
|
/// instantiated later on if any of their bits are set.
|
|
///
|
|
/// `R` and `C` are index types used to identify rows and columns respectively;
|
|
/// typically newtyped `usize` wrappers, but they can also just be `usize`.
|
|
#[derive(Clone, Debug)]
|
|
pub struct SparseBitMatrix<R, C>
|
|
where
|
|
R: Idx,
|
|
C: Idx,
|
|
{
|
|
num_columns: usize,
|
|
rows: IndexVec<R, Option<HybridBitSet<C>>>,
|
|
}
|
|
|
|
impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
|
|
/// Creates a new empty sparse bit matrix with no rows or columns.
|
|
pub fn new(num_columns: usize) -> Self {
|
|
Self { num_columns, rows: IndexVec::new() }
|
|
}
|
|
|
|
fn ensure_row(&mut self, row: R) -> &mut HybridBitSet<C> {
|
|
// Instantiate any missing rows up to and including row `row` with an
|
|
// empty HybridBitSet.
|
|
self.rows.ensure_contains_elem(row, || None);
|
|
|
|
// Then replace row `row` with a full HybridBitSet if necessary.
|
|
let num_columns = self.num_columns;
|
|
self.rows[row].get_or_insert_with(|| HybridBitSet::new_empty(num_columns))
|
|
}
|
|
|
|
/// Sets the cell at `(row, column)` to true. Put another way, insert
|
|
/// `column` to the bitset for `row`.
|
|
///
|
|
/// Returns `true` if this changed the matrix.
|
|
pub fn insert(&mut self, row: R, column: C) -> bool {
|
|
self.ensure_row(row).insert(column)
|
|
}
|
|
|
|
/// Do the bits from `row` contain `column`? Put another way, is
|
|
/// the matrix cell at `(row, column)` true? Put yet another way,
|
|
/// if the matrix represents (transitive) reachability, can
|
|
/// `row` reach `column`?
|
|
pub fn contains(&self, row: R, column: C) -> bool {
|
|
self.row(row).map_or(false, |r| r.contains(column))
|
|
}
|
|
|
|
/// Adds the bits from row `read` to the bits from row `write`, and
|
|
/// returns `true` if anything changed.
|
|
///
|
|
/// This is used when computing transitive reachability because if
|
|
/// you have an edge `write -> read`, because in that case
|
|
/// `write` can reach everything that `read` can (and
|
|
/// potentially more).
|
|
pub fn union_rows(&mut self, read: R, write: R) -> bool {
|
|
if read == write || self.row(read).is_none() {
|
|
return false;
|
|
}
|
|
|
|
self.ensure_row(write);
|
|
if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) {
|
|
write_row.union(read_row)
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
/// Union a row, `from`, into the `into` row.
|
|
pub fn union_into_row(&mut self, into: R, from: &HybridBitSet<C>) -> bool {
|
|
self.ensure_row(into).union(from)
|
|
}
|
|
|
|
/// Insert all bits in the given row.
|
|
pub fn insert_all_into_row(&mut self, row: R) {
|
|
self.ensure_row(row).insert_all();
|
|
}
|
|
|
|
pub fn rows(&self) -> impl Iterator<Item = R> {
|
|
self.rows.indices()
|
|
}
|
|
|
|
/// Iterates through all the columns set to true in a given row of
|
|
/// the matrix.
|
|
pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
|
|
self.row(row).into_iter().flat_map(|r| r.iter())
|
|
}
|
|
|
|
pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
|
|
if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn num_words<T: Idx>(domain_size: T) -> usize {
|
|
(domain_size.index() + WORD_BITS - 1) / WORD_BITS
|
|
}
|
|
|
|
#[inline]
|
|
fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
|
|
let elem = elem.index();
|
|
let word_index = elem / WORD_BITS;
|
|
let mask = 1 << (elem % WORD_BITS);
|
|
(word_index, mask)
|
|
}
|
|
|
|
/// Integral type used to represent the bit set.
|
|
pub trait FiniteBitSetTy:
|
|
BitAnd<Output = Self>
|
|
+ BitAndAssign
|
|
+ BitOrAssign
|
|
+ Clone
|
|
+ Copy
|
|
+ Shl
|
|
+ Not<Output = Self>
|
|
+ PartialEq
|
|
+ Sized
|
|
{
|
|
/// Size of the domain representable by this type, e.g. 64 for `u64`.
|
|
const DOMAIN_SIZE: u32;
|
|
|
|
/// Value which represents the `FiniteBitSet` having every bit set.
|
|
const FILLED: Self;
|
|
/// Value which represents the `FiniteBitSet` having no bits set.
|
|
const EMPTY: Self;
|
|
|
|
/// Value for one as the integral type.
|
|
const ONE: Self;
|
|
/// Value for zero as the integral type.
|
|
const ZERO: Self;
|
|
|
|
/// Perform a checked left shift on the integral type.
|
|
fn checked_shl(self, rhs: u32) -> Option<Self>;
|
|
/// Perform a checked right shift on the integral type.
|
|
fn checked_shr(self, rhs: u32) -> Option<Self>;
|
|
}
|
|
|
|
impl FiniteBitSetTy for u32 {
|
|
const DOMAIN_SIZE: u32 = 32;
|
|
|
|
const FILLED: Self = Self::MAX;
|
|
const EMPTY: Self = Self::MIN;
|
|
|
|
const ONE: Self = 1u32;
|
|
const ZERO: Self = 0u32;
|
|
|
|
fn checked_shl(self, rhs: u32) -> Option<Self> {
|
|
self.checked_shl(rhs)
|
|
}
|
|
|
|
fn checked_shr(self, rhs: u32) -> Option<Self> {
|
|
self.checked_shr(rhs)
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Debug for FiniteBitSet<u32> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "{:032b}", self.0)
|
|
}
|
|
}
|
|
|
|
impl FiniteBitSetTy for u64 {
|
|
const DOMAIN_SIZE: u32 = 64;
|
|
|
|
const FILLED: Self = Self::MAX;
|
|
const EMPTY: Self = Self::MIN;
|
|
|
|
const ONE: Self = 1u64;
|
|
const ZERO: Self = 0u64;
|
|
|
|
fn checked_shl(self, rhs: u32) -> Option<Self> {
|
|
self.checked_shl(rhs)
|
|
}
|
|
|
|
fn checked_shr(self, rhs: u32) -> Option<Self> {
|
|
self.checked_shr(rhs)
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Debug for FiniteBitSet<u64> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "{:064b}", self.0)
|
|
}
|
|
}
|
|
|
|
impl FiniteBitSetTy for u128 {
|
|
const DOMAIN_SIZE: u32 = 128;
|
|
|
|
const FILLED: Self = Self::MAX;
|
|
const EMPTY: Self = Self::MIN;
|
|
|
|
const ONE: Self = 1u128;
|
|
const ZERO: Self = 0u128;
|
|
|
|
fn checked_shl(self, rhs: u32) -> Option<Self> {
|
|
self.checked_shl(rhs)
|
|
}
|
|
|
|
fn checked_shr(self, rhs: u32) -> Option<Self> {
|
|
self.checked_shr(rhs)
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Debug for FiniteBitSet<u128> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "{:0128b}", self.0)
|
|
}
|
|
}
|
|
|
|
/// A fixed-sized bitset type represented by an integer type. Indices outwith than the range
|
|
/// representable by `T` are considered set.
|
|
#[derive(Copy, Clone, Eq, PartialEq, Decodable, Encodable)]
|
|
pub struct FiniteBitSet<T: FiniteBitSetTy>(pub T);
|
|
|
|
impl<T: FiniteBitSetTy> FiniteBitSet<T> {
|
|
/// Creates a new, empty bitset.
|
|
pub fn new_empty() -> Self {
|
|
Self(T::EMPTY)
|
|
}
|
|
|
|
/// Sets the `index`th bit.
|
|
pub fn set(&mut self, index: u32) {
|
|
self.0 |= T::ONE.checked_shl(index).unwrap_or(T::ZERO);
|
|
}
|
|
|
|
/// Unsets the `index`th bit.
|
|
pub fn clear(&mut self, index: u32) {
|
|
self.0 &= !T::ONE.checked_shl(index).unwrap_or(T::ZERO);
|
|
}
|
|
|
|
/// Sets the `i`th to `j`th bits.
|
|
pub fn set_range(&mut self, range: Range<u32>) {
|
|
let bits = T::FILLED
|
|
.checked_shl(range.end - range.start)
|
|
.unwrap_or(T::ZERO)
|
|
.not()
|
|
.checked_shl(range.start)
|
|
.unwrap_or(T::ZERO);
|
|
self.0 |= bits;
|
|
}
|
|
|
|
/// Is the set empty?
|
|
pub fn is_empty(&self) -> bool {
|
|
self.0 == T::EMPTY
|
|
}
|
|
|
|
/// Returns the domain size of the bitset.
|
|
pub fn within_domain(&self, index: u32) -> bool {
|
|
index < T::DOMAIN_SIZE
|
|
}
|
|
|
|
/// Returns if the `index`th bit is set.
|
|
pub fn contains(&self, index: u32) -> Option<bool> {
|
|
self.within_domain(index)
|
|
.then(|| ((self.0.checked_shr(index).unwrap_or(T::ONE)) & T::ONE) == T::ONE)
|
|
}
|
|
}
|
|
|
|
impl<T: FiniteBitSetTy> Default for FiniteBitSet<T> {
|
|
fn default() -> Self {
|
|
Self::new_empty()
|
|
}
|
|
}
|