rust/src/libcore/int-template.rs
gifnksm 62f2749775 Inlining methods/functions in core.
Also inlining some functions which take functions as arguments.
2013-01-14 00:13:44 +09:00

317 lines
8.9 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// NB: transitionary, de-mode-ing.
#[forbid(deprecated_mode)];
#[forbid(deprecated_pattern)];
use T = self::inst::T;
use char;
use cmp::{Eq, Ord};
use cmp;
use from_str::FromStr;
use iter;
use num;
use num::Num::from_int;
use prelude::*;
use str;
use uint;
use vec;
pub const bits : uint = inst::bits;
pub const bytes : uint = (inst::bits / 8);
pub const min_value: T = (-1 as T) << (bits - 1);
pub const max_value: T = min_value - 1 as T;
#[inline(always)]
pub pure fn min(x: T, y: T) -> T { if x < y { x } else { y } }
#[inline(always)]
pub pure fn max(x: T, y: T) -> T { if x > y { x } else { y } }
#[inline(always)]
pub pure fn add(x: T, y: T) -> T { x + y }
#[inline(always)]
pub pure fn sub(x: T, y: T) -> T { x - y }
#[inline(always)]
pub pure fn mul(x: T, y: T) -> T { x * y }
#[inline(always)]
pub pure fn div(x: T, y: T) -> T { x / y }
#[inline(always)]
pub pure fn rem(x: T, y: T) -> T { x % y }
#[inline(always)]
pub pure fn lt(x: T, y: T) -> bool { x < y }
#[inline(always)]
pub pure fn le(x: T, y: T) -> bool { x <= y }
#[inline(always)]
pub pure fn eq(x: T, y: T) -> bool { x == y }
#[inline(always)]
pub pure fn ne(x: T, y: T) -> bool { x != y }
#[inline(always)]
pub pure fn ge(x: T, y: T) -> bool { x >= y }
#[inline(always)]
pub pure fn gt(x: T, y: T) -> bool { x > y }
#[inline(always)]
pub pure fn is_positive(x: T) -> bool { x > 0 as T }
#[inline(always)]
pub pure fn is_negative(x: T) -> bool { x < 0 as T }
#[inline(always)]
pub pure fn is_nonpositive(x: T) -> bool { x <= 0 as T }
#[inline(always)]
pub pure fn is_nonnegative(x: T) -> bool { x >= 0 as T }
#[inline(always)]
/// Iterate over the range [`lo`..`hi`)
pub fn range(lo: T, hi: T, it: fn(T) -> bool) {
let mut i = lo;
while i < hi {
if !it(i) { break }
i += 1 as T;
}
}
/// Computes the bitwise complement
#[inline(always)]
pub pure fn compl(i: T) -> T {
-1 as T ^ i
}
/// Computes the absolute value
#[inline(always)]
pub pure fn abs(i: T) -> T {
if is_negative(i) { -i } else { i }
}
#[cfg(notest)]
impl T : Ord {
#[inline(always)]
pure fn lt(&self, other: &T) -> bool { return (*self) < (*other); }
#[inline(always)]
pure fn le(&self, other: &T) -> bool { return (*self) <= (*other); }
#[inline(always)]
pure fn ge(&self, other: &T) -> bool { return (*self) >= (*other); }
#[inline(always)]
pure fn gt(&self, other: &T) -> bool { return (*self) > (*other); }
}
#[cfg(notest)]
impl T : Eq {
#[inline(always)]
pure fn eq(&self, other: &T) -> bool { return (*self) == (*other); }
#[inline(always)]
pure fn ne(&self, other: &T) -> bool { return (*self) != (*other); }
}
impl T: num::Num {
#[inline(always)]
pure fn add(&self, other: &T) -> T { return *self + *other; }
#[inline(always)]
pure fn sub(&self, other: &T) -> T { return *self - *other; }
#[inline(always)]
pure fn mul(&self, other: &T) -> T { return *self * *other; }
#[inline(always)]
pure fn div(&self, other: &T) -> T { return *self / *other; }
#[inline(always)]
pure fn modulo(&self, other: &T) -> T { return *self % *other; }
#[inline(always)]
pure fn neg(&self) -> T { return -*self; }
#[inline(always)]
pure fn to_int(&self) -> int { return *self as int; }
#[inline(always)]
static pure fn from_int(n: int) -> T { return n as T; }
}
impl T: num::Zero {
#[inline(always)]
static pure fn zero() -> T { 0 }
}
impl T: num::One {
#[inline(always)]
static pure fn one() -> T { 1 }
}
impl T: iter::Times {
#[inline(always)]
#[doc = "A convenience form for basic iteration. Given a variable `x` \
of any numeric type, the expression `for x.times { /* anything */ }` \
will execute the given function exactly x times. If we assume that \
`x` is an int, this is functionally equivalent to \
`for int::range(0, x) |_i| { /* anything */ }`."]
pure fn times(&self, it: fn() -> bool) {
if *self < 0 {
fail fmt!("The .times method expects a nonnegative number, \
but found %?", self);
}
let mut i = *self;
while i > 0 {
if !it() { break }
i -= 1;
}
}
}
/**
* Parse a buffer of bytes
*
* # Arguments
*
* * buf - A byte buffer
* * radix - The base of the number
*/
pub pure fn parse_bytes(buf: &[u8], radix: uint) -> Option<T> {
if vec::len(buf) == 0u { return None; }
let mut i = vec::len(buf) - 1u;
let mut start = 0u;
let mut power = 1 as T;
if buf[0] == ('-' as u8) {
power = -1 as T;
start = 1u;
}
let mut n = 0 as T;
loop {
match char::to_digit(buf[i] as char, radix) {
Some(d) => n += (d as T) * power,
None => return None
}
power *= radix as T;
if i <= start { return Some(n); }
i -= 1u;
};
}
/// Parse a string to an int
#[inline(always)]
pub pure fn from_str(s: &str) -> Option<T>
{
parse_bytes(str::to_bytes(s), 10u)
}
impl T : FromStr {
#[inline(always)]
static pure fn from_str(s: &str) -> Option<T> { from_str(s) }
}
/// Convert to a string in a given base
#[inline(always)]
pub pure fn to_str(n: T, radix: uint) -> ~str {
do to_str_bytes(n, radix) |slice| {
do vec::as_imm_buf(slice) |p, len| {
unsafe { str::raw::from_buf_len(p, len) }
}
}
}
#[inline(always)]
pub pure fn to_str_bytes<U>(n: T, radix: uint, f: fn(v: &[u8]) -> U) -> U {
if n < 0 as T {
uint::to_str_bytes(true, -n as uint, radix, f)
} else {
uint::to_str_bytes(false, n as uint, radix, f)
}
}
/// Convert to a string
#[inline(always)]
pub pure fn str(i: T) -> ~str { return to_str(i, 10u); }
#[test]
fn test_from_str() {
assert from_str(~"0") == Some(0 as T);
assert from_str(~"3") == Some(3 as T);
assert from_str(~"10") == Some(10 as T);
assert from_str(~"123456789") == Some(123456789 as T);
assert from_str(~"00100") == Some(100 as T);
assert from_str(~"-1") == Some(-1 as T);
assert from_str(~"-3") == Some(-3 as T);
assert from_str(~"-10") == Some(-10 as T);
assert from_str(~"-123456789") == Some(-123456789 as T);
assert from_str(~"-00100") == Some(-100 as T);
assert from_str(~" ").is_none();
assert from_str(~"x").is_none();
}
#[test]
fn test_parse_bytes() {
use str::to_bytes;
assert parse_bytes(to_bytes(~"123"), 10u) == Some(123 as T);
assert parse_bytes(to_bytes(~"1001"), 2u) == Some(9 as T);
assert parse_bytes(to_bytes(~"123"), 8u) == Some(83 as T);
assert parse_bytes(to_bytes(~"123"), 16u) == Some(291 as T);
assert parse_bytes(to_bytes(~"ffff"), 16u) == Some(65535 as T);
assert parse_bytes(to_bytes(~"FFFF"), 16u) == Some(65535 as T);
assert parse_bytes(to_bytes(~"z"), 36u) == Some(35 as T);
assert parse_bytes(to_bytes(~"Z"), 36u) == Some(35 as T);
assert parse_bytes(to_bytes(~"-123"), 10u) == Some(-123 as T);
assert parse_bytes(to_bytes(~"-1001"), 2u) == Some(-9 as T);
assert parse_bytes(to_bytes(~"-123"), 8u) == Some(-83 as T);
assert parse_bytes(to_bytes(~"-123"), 16u) == Some(-291 as T);
assert parse_bytes(to_bytes(~"-ffff"), 16u) == Some(-65535 as T);
assert parse_bytes(to_bytes(~"-FFFF"), 16u) == Some(-65535 as T);
assert parse_bytes(to_bytes(~"-z"), 36u) == Some(-35 as T);
assert parse_bytes(to_bytes(~"-Z"), 36u) == Some(-35 as T);
assert parse_bytes(to_bytes(~"Z"), 35u).is_none();
assert parse_bytes(to_bytes(~"-9"), 2u).is_none();
}
#[test]
fn test_to_str() {
assert (to_str(0 as T, 10u) == ~"0");
assert (to_str(1 as T, 10u) == ~"1");
assert (to_str(-1 as T, 10u) == ~"-1");
assert (to_str(127 as T, 16u) == ~"7f");
assert (to_str(100 as T, 10u) == ~"100");
}
#[test]
fn test_interfaces() {
fn test<U:num::Num cmp::Eq>(ten: U) {
assert (ten.to_int() == 10);
let two: U = from_int(2);
assert (two.to_int() == 2);
assert (ten.add(&two) == from_int(12));
assert (ten.sub(&two) == from_int(8));
assert (ten.mul(&two) == from_int(20));
assert (ten.div(&two) == from_int(5));
assert (ten.modulo(&two) == from_int(0));
assert (ten.neg() == from_int(-10));
}
test(10 as T);
}
#[test]
fn test_times() {
use iter::Times;
let ten = 10 as T;
let mut accum = 0;
for ten.times { accum += 1; }
assert (accum == 10);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_times_negative() {
use iter::Times;
for (-10).times { log(error, ~"nope!"); }
}