rust/src/librustc/middle/privacy.rs
Flavio Percoco 968633b60a Replace crate usage with krate
This patch replaces all `crate` usage with `krate` before introducing the
new keyword. This ensures that after introducing the keyword, there
won't be any compilation errors.

krate might not be the most expressive substitution for crate but it's a
very close abbreviation for it. `module` was already used in several
places already.
2014-02-13 20:52:07 +01:00

1147 lines
47 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A pass that checks to make sure private fields and methods aren't used
//! outside their scopes. This pass will also generate a set of exported items
//! which are available for use externally when compiled as a library.
use std::hashmap::{HashSet, HashMap};
use std::mem::replace;
use metadata::csearch;
use middle::resolve;
use middle::ty;
use middle::typeck::{method_map, method_origin, method_param};
use middle::typeck::{method_static, method_object};
use syntax::ast;
use syntax::ast_map;
use syntax::ast_util::{is_local, def_id_of_def, local_def};
use syntax::attr;
use syntax::codemap::Span;
use syntax::parse::token;
use syntax::opt_vec;
use syntax::visit;
use syntax::visit::Visitor;
type Context<'a> = (&'a method_map, &'a resolve::ExportMap2);
/// A set of AST nodes exported by the crate.
pub type ExportedItems = HashSet<ast::NodeId>;
/// A set of AST nodes that are fully public in the crate. This map is used for
/// documentation purposes (reexporting a private struct inlines the doc,
/// reexporting a public struct doesn't inline the doc).
pub type PublicItems = HashSet<ast::NodeId>;
////////////////////////////////////////////////////////////////////////////////
/// The parent visitor, used to determine what's the parent of what (node-wise)
////////////////////////////////////////////////////////////////////////////////
struct ParentVisitor {
parents: HashMap<ast::NodeId, ast::NodeId>,
curparent: ast::NodeId,
}
impl Visitor<()> for ParentVisitor {
fn visit_item(&mut self, item: &ast::Item, _: ()) {
self.parents.insert(item.id, self.curparent);
let prev = self.curparent;
match item.node {
ast::ItemMod(..) => { self.curparent = item.id; }
// Enum variants are parented to the enum definition itself beacuse
// they inherit privacy
ast::ItemEnum(ref def, _) => {
for variant in def.variants.iter() {
// If variants are private, then their logical "parent" is
// the enclosing module because everyone in the enclosing
// module can still use the private variant
if variant.node.vis == ast::Private {
self.parents.insert(variant.node.id, self.curparent);
// Otherwise, if the variant is public, then the parent is
// considered the enclosing enum because the enum will
// dictate the privacy visibility of this variant instead.
} else {
self.parents.insert(variant.node.id, item.id);
}
}
}
// Trait methods are always considered "public", but if the trait is
// private then we need some private item in the chain from the
// method to the root. In this case, if the trait is private, then
// parent all the methods to the trait to indicate that they're
// private.
ast::ItemTrait(_, _, ref methods) if item.vis != ast::Public => {
for m in methods.iter() {
match *m {
ast::Provided(ref m) => self.parents.insert(m.id, item.id),
ast::Required(ref m) => self.parents.insert(m.id, item.id),
};
}
}
_ => {}
}
visit::walk_item(self, item, ());
self.curparent = prev;
}
fn visit_foreign_item(&mut self, a: &ast::ForeignItem, _: ()) {
self.parents.insert(a.id, self.curparent);
visit::walk_foreign_item(self, a, ());
}
fn visit_fn(&mut self, a: &visit::FnKind, b: &ast::FnDecl,
c: &ast::Block, d: Span, id: ast::NodeId, _: ()) {
// We already took care of some trait methods above, otherwise things
// like impl methods and pub trait methods are parented to the
// containing module, not the containing trait.
if !self.parents.contains_key(&id) {
self.parents.insert(id, self.curparent);
}
visit::walk_fn(self, a, b, c, d, id, ());
}
fn visit_struct_def(&mut self, s: &ast::StructDef, i: ast::Ident,
g: &ast::Generics, n: ast::NodeId, _: ()) {
// Struct constructors are parented to their struct definitions because
// they essentially are the struct definitions.
match s.ctor_id {
Some(id) => { self.parents.insert(id, n); }
None => {}
}
// While we have the id of the struct definition, go ahead and parent
// all the fields.
for field in s.fields.iter() {
self.parents.insert(field.node.id, self.curparent);
}
visit::walk_struct_def(self, s, i, g, n, ())
}
}
////////////////////////////////////////////////////////////////////////////////
/// The embargo visitor, used to determine the exports of the ast
////////////////////////////////////////////////////////////////////////////////
struct EmbargoVisitor<'a> {
tcx: ty::ctxt,
exp_map2: &'a resolve::ExportMap2,
// This flag is an indicator of whether the previous item in the
// hierarchical chain was exported or not. This is the indicator of whether
// children should be exported as well. Note that this can flip from false
// to true if a reexported module is entered (or an action similar).
prev_exported: bool,
// This is a list of all exported items in the AST. An exported item is any
// function/method/item which is usable by external crates. This essentially
// means that the result is "public all the way down", but the "path down"
// may jump across private boundaries through reexport statements.
exported_items: ExportedItems,
// This sets contains all the destination nodes which are publicly
// re-exported. This is *not* a set of all reexported nodes, only a set of
// all nodes which are reexported *and* reachable from external crates. This
// means that the destination of the reexport is exported, and hence the
// destination must also be exported.
reexports: HashSet<ast::NodeId>,
// These two fields are closely related to one another in that they are only
// used for generation of the 'PublicItems' set, not for privacy checking at
// all
public_items: PublicItems,
prev_public: bool,
}
impl<'a> EmbargoVisitor<'a> {
// There are checks inside of privacy which depend on knowing whether a
// trait should be exported or not. The two current consumers of this are:
//
// 1. Should default methods of a trait be exported?
// 2. Should the methods of an implementation of a trait be exported?
//
// The answer to both of these questions partly rely on whether the trait
// itself is exported or not. If the trait is somehow exported, then the
// answers to both questions must be yes. Right now this question involves
// more analysis than is currently done in rustc, so we conservatively
// answer "yes" so that all traits need to be exported.
fn exported_trait(&self, _id: ast::NodeId) -> bool {
true
}
}
impl<'a> Visitor<()> for EmbargoVisitor<'a> {
fn visit_item(&mut self, item: &ast::Item, _: ()) {
let orig_all_pub = self.prev_public;
self.prev_public = orig_all_pub && item.vis == ast::Public;
if self.prev_public {
self.public_items.insert(item.id);
}
let orig_all_exported = self.prev_exported;
match item.node {
// impls/extern blocks do not break the "public chain" because they
// cannot have visibility qualifiers on them anyway
ast::ItemImpl(..) | ast::ItemForeignMod(..) => {}
// Traits are a little special in that even if they themselves are
// not public they may still be exported.
ast::ItemTrait(..) => {
self.prev_exported = self.exported_trait(item.id);
}
// Private by default, hence we only retain the "public chain" if
// `pub` is explicitly listed.
_ => {
self.prev_exported =
(orig_all_exported && item.vis == ast::Public) ||
self.reexports.contains(&item.id);
}
}
let public_first = self.prev_exported &&
self.exported_items.insert(item.id);
match item.node {
// Enum variants inherit from their parent, so if the enum is
// public all variants are public unless they're explicitly priv
ast::ItemEnum(ref def, _) if public_first => {
for variant in def.variants.iter() {
if variant.node.vis != ast::Private {
self.exported_items.insert(variant.node.id);
}
}
}
// Implementations are a little tricky to determine what's exported
// out of them. Here's a few cases which are currently defined:
//
// * Impls for private types do not need to export their methods
// (either public or private methods)
//
// * Impls for public types only have public methods exported
//
// * Public trait impls for public types must have all methods
// exported.
//
// * Private trait impls for public types can be ignored
//
// * Public trait impls for private types have their methods
// exported. I'm not entirely certain that this is the correct
// thing to do, but I have seen use cases of where this will cause
// undefined symbols at linkage time if this case is not handled.
//
// * Private trait impls for private types can be completely ignored
ast::ItemImpl(_, _, ref ty, ref methods) => {
let public_ty = match ty.node {
ast::TyPath(_, _, id) => {
let def_map = self.tcx.def_map.borrow();
match def_map.get().get_copy(&id) {
ast::DefPrimTy(..) => true,
def => {
let did = def_id_of_def(def);
!is_local(did) ||
self.exported_items.contains(&did.node)
}
}
}
_ => true,
};
let tr = ty::impl_trait_ref(self.tcx, local_def(item.id));
let public_trait = tr.map_or(false, |tr| {
!is_local(tr.def_id) ||
self.exported_items.contains(&tr.def_id.node)
});
if public_ty || public_trait {
for method in methods.iter() {
let meth_public = match method.explicit_self.node {
ast::SelfStatic => public_ty,
_ => true,
} && method.vis == ast::Public;
if meth_public || tr.is_some() {
self.exported_items.insert(method.id);
}
}
}
}
// Default methods on traits are all public so long as the trait
// is public
ast::ItemTrait(_, _, ref methods) if public_first => {
for method in methods.iter() {
match *method {
ast::Provided(ref m) => {
debug!("provided {}", m.id);
self.exported_items.insert(m.id);
}
ast::Required(ref m) => {
debug!("required {}", m.id);
self.exported_items.insert(m.id);
}
}
}
}
// Struct constructors are public if the struct is all public.
ast::ItemStruct(ref def, _) if public_first => {
match def.ctor_id {
Some(id) => { self.exported_items.insert(id); }
None => {}
}
}
_ => {}
}
visit::walk_item(self, item, ());
self.prev_exported = orig_all_exported;
self.prev_public = orig_all_pub;
}
fn visit_foreign_item(&mut self, a: &ast::ForeignItem, _: ()) {
if self.prev_exported && a.vis == ast::Public {
self.exported_items.insert(a.id);
}
}
fn visit_mod(&mut self, m: &ast::Mod, _sp: Span, id: ast::NodeId, _: ()) {
// This code is here instead of in visit_item so that the
// crate module gets processed as well.
if self.prev_exported {
let exp_map2 = self.exp_map2.borrow();
assert!(exp_map2.get().contains_key(&id), "wut {:?}", id);
for export in exp_map2.get().get(&id).iter() {
if is_local(export.def_id) {
self.reexports.insert(export.def_id.node);
}
}
}
visit::walk_mod(self, m, ())
}
}
////////////////////////////////////////////////////////////////////////////////
/// The privacy visitor, where privacy checks take place (violations reported)
////////////////////////////////////////////////////////////////////////////////
struct PrivacyVisitor<'a> {
tcx: ty::ctxt,
curitem: ast::NodeId,
in_fn: bool,
in_foreign: bool,
method_map: &'a method_map,
parents: HashMap<ast::NodeId, ast::NodeId>,
external_exports: resolve::ExternalExports,
last_private_map: resolve::LastPrivateMap,
}
enum PrivacyResult {
Allowable,
ExternallyDenied,
DisallowedBy(ast::NodeId),
}
impl<'a> PrivacyVisitor<'a> {
// used when debugging
fn nodestr(&self, id: ast::NodeId) -> ~str {
ast_map::node_id_to_str(self.tcx.items, id, token::get_ident_interner())
}
// Determines whether the given definition is public from the point of view
// of the current item.
fn def_privacy(&self, did: ast::DefId) -> PrivacyResult {
if !is_local(did) {
if self.external_exports.contains(&did) {
debug!("privacy - {:?} was externally exported", did);
return Allowable;
}
debug!("privacy - is {:?} a public method", did);
let methods = self.tcx.methods.borrow();
return match methods.get().find(&did) {
Some(meth) => {
debug!("privacy - well at least it's a method: {:?}", meth);
match meth.container {
ty::TraitContainer(id) => {
debug!("privacy - recursing on trait {:?}", id);
self.def_privacy(id)
}
ty::ImplContainer(id) => {
match ty::impl_trait_ref(self.tcx, id) {
Some(t) => {
debug!("privacy - impl of trait {:?}", id);
self.def_privacy(t.def_id)
}
None => {
debug!("privacy - found a method {:?}",
meth.vis);
if meth.vis == ast::Public {
Allowable
} else {
ExternallyDenied
}
}
}
}
}
}
None => {
debug!("privacy - nope, not even a method");
ExternallyDenied
}
};
}
debug!("privacy - local {:?} not public all the way down", did);
// return quickly for things in the same module
if self.parents.find(&did.node) == self.parents.find(&self.curitem) {
debug!("privacy - same parent, we're done here");
return Allowable;
}
// We now know that there is at least one private member between the
// destination and the root.
let mut closest_private_id = did.node;
loop {
debug!("privacy - examining {}", self.nodestr(closest_private_id));
let vis = match self.tcx.items.find(closest_private_id) {
// If this item is a method, then we know for sure that it's an
// actual method and not a static method. The reason for this is
// that these cases are only hit in the ExprMethodCall
// expression, and ExprCall will have its path checked later
// (the path of the trait/impl) if it's a static method.
//
// With this information, then we can completely ignore all
// trait methods. The privacy violation would be if the trait
// couldn't get imported, not if the method couldn't be used
// (all trait methods are public).
//
// However, if this is an impl method, then we dictate this
// decision solely based on the privacy of the method
// invocation.
// FIXME(#10573) is this the right behavior? Why not consider
// where the method was defined?
Some(ast_map::NodeMethod(ref m, imp, _)) => {
match ty::impl_trait_ref(self.tcx, imp) {
Some(..) => return Allowable,
_ if m.vis == ast::Public => return Allowable,
_ => m.vis
}
}
Some(ast_map::NodeTraitMethod(..)) => {
return Allowable;
}
// This is not a method call, extract the visibility as one
// would normally look at it
Some(ast_map::NodeItem(it, _)) => it.vis,
Some(ast_map::NodeForeignItem(_, _, v, _)) => v,
Some(ast_map::NodeVariant(ref v, _, _)) => {
// sadly enum variants still inherit visibility, so only
// break out of this is explicitly private
if v.node.vis == ast::Private { break }
ast::Public // need to move up a level (to the enum)
}
_ => ast::Public,
};
if vis != ast::Public { break }
// if we've reached the root, then everything was allowable and this
// access is public.
if closest_private_id == ast::CRATE_NODE_ID { return Allowable }
closest_private_id = *self.parents.get(&closest_private_id);
// If we reached the top, then we were public all the way down and
// we can allow this access.
if closest_private_id == ast::DUMMY_NODE_ID { return Allowable }
}
debug!("privacy - closest priv {}", self.nodestr(closest_private_id));
if self.private_accessible(closest_private_id) {
Allowable
} else {
DisallowedBy(closest_private_id)
}
}
/// For a local private node in the AST, this function will determine
/// whether the node is accessible by the current module that iteration is
/// inside.
fn private_accessible(&self, id: ast::NodeId) -> bool {
let parent = *self.parents.get(&id);
debug!("privacy - accessible parent {}", self.nodestr(parent));
// After finding `did`'s closest private member, we roll ourselves back
// to see if this private member's parent is anywhere in our ancestry.
// By the privacy rules, we can access all of our ancestor's private
// members, so that's why we test the parent, and not the did itself.
let mut cur = self.curitem;
loop {
debug!("privacy - questioning {}", self.nodestr(cur));
match cur {
// If the relevant parent is in our history, then we're allowed
// to look inside any of our ancestor's immediate private items,
// so this access is valid.
x if x == parent => return true,
// If we've reached the root, then we couldn't access this item
// in the first place
ast::DUMMY_NODE_ID => return false,
// Keep going up
_ => {}
}
cur = *self.parents.get(&cur);
}
}
/// Guarantee that a particular definition is public, possibly emitting an
/// error message if it's not.
fn ensure_public(&self, span: Span, to_check: ast::DefId,
source_did: Option<ast::DefId>, msg: &str) -> bool {
match self.def_privacy(to_check) {
ExternallyDenied => {
self.tcx.sess.span_err(span, format!("{} is private", msg))
}
DisallowedBy(id) => {
if id == source_did.unwrap_or(to_check).node {
self.tcx.sess.span_err(span, format!("{} is private", msg));
return false;
} else {
self.tcx.sess.span_err(span, format!("{} is inaccessible",
msg));
}
match self.tcx.items.find(id) {
Some(ast_map::NodeItem(item, _)) => {
let desc = match item.node {
ast::ItemMod(..) => "module",
ast::ItemTrait(..) => "trait",
_ => return false,
};
let string = token::get_ident(item.ident.name);
let msg = format!("{} `{}` is private",
desc,
string.get());
self.tcx.sess.span_note(span, msg);
}
Some(..) | None => {}
}
}
Allowable => return true
}
return false;
}
// Checks that a field is in scope.
// FIXME #6993: change type (and name) from Ident to Name
fn check_field(&mut self, span: Span, id: ast::DefId, ident: ast::Ident,
enum_id: Option<ast::DefId>) {
let fields = ty::lookup_struct_fields(self.tcx, id);
let struct_vis = if is_local(id) {
match self.tcx.items.get(id.node) {
ast_map::NodeItem(ref it, _) => it.vis,
ast_map::NodeVariant(ref v, ref it, _) => {
if v.node.vis == ast::Inherited {it.vis} else {v.node.vis}
}
_ => {
self.tcx.sess.span_bug(span,
format!("not an item or variant def"));
}
}
} else {
let cstore = self.tcx.sess.cstore;
match enum_id {
Some(enum_id) => {
let v = csearch::get_enum_variants(self.tcx, enum_id);
match v.iter().find(|v| v.id == id) {
Some(variant) => {
if variant.vis == ast::Inherited {
csearch::get_item_visibility(cstore, enum_id)
} else {
variant.vis
}
}
None => {
self.tcx.sess.span_bug(span, "no xcrate variant");
}
}
}
None => csearch::get_item_visibility(cstore, id)
}
};
for field in fields.iter() {
if field.name != ident.name { continue; }
// public structs have public fields by default, and private structs
// have private fields by default.
if struct_vis == ast::Public && field.vis != ast::Private { break }
if struct_vis != ast::Public && field.vis == ast::Public { break }
if !is_local(field.id) ||
!self.private_accessible(field.id.node) {
let string = token::get_ident(ident.name);
self.tcx.sess.span_err(span,
format!("field `{}` is private",
string.get()))
}
break;
}
}
// Given the ID of a method, checks to ensure it's in scope.
fn check_static_method(&mut self, span: Span, method_id: ast::DefId,
name: &ast::Ident) {
// If the method is a default method, we need to use the def_id of
// the default implementation.
let method_id = ty::method(self.tcx, method_id).provided_source
.unwrap_or(method_id);
let string = token::get_ident(name.name);
self.ensure_public(span,
method_id,
None,
format!("method `{}`", string.get()));
}
// Checks that a path is in scope.
fn check_path(&mut self, span: Span, path_id: ast::NodeId, path: &ast::Path) {
debug!("privacy - path {}", self.nodestr(path_id));
let def_map = self.tcx.def_map.borrow();
let def = def_map.get().get_copy(&path_id);
let ck = |tyname: &str| {
let origdid = def_id_of_def(def);
match *self.last_private_map.get(&path_id) {
resolve::AllPublic => {},
resolve::DependsOn(def) => {
let name = token::get_ident(path.segments
.last()
.unwrap()
.identifier
.name);
self.ensure_public(span,
def,
Some(origdid),
format!("{} `{}`",
tyname,
name.get()));
}
}
};
let def_map = self.tcx.def_map.borrow();
match def_map.get().get_copy(&path_id) {
ast::DefStaticMethod(..) => ck("static method"),
ast::DefFn(..) => ck("function"),
ast::DefStatic(..) => ck("static"),
ast::DefVariant(..) => ck("variant"),
ast::DefTy(..) => ck("type"),
ast::DefTrait(..) => ck("trait"),
ast::DefStruct(..) => ck("struct"),
ast::DefMethod(_, Some(..)) => ck("trait method"),
ast::DefMethod(..) => ck("method"),
ast::DefMod(..) => ck("module"),
_ => {}
}
}
// Checks that a method is in scope.
fn check_method(&mut self, span: Span, origin: &method_origin,
ident: ast::Ident) {
match *origin {
method_static(method_id) => {
self.check_static_method(span, method_id, &ident)
}
// Trait methods are always all public. The only controlling factor
// is whether the trait itself is accessible or not.
method_param(method_param { trait_id: trait_id, .. }) |
method_object(method_object { trait_id: trait_id, .. }) => {
self.ensure_public(span, trait_id, None, "source trait");
}
}
}
}
impl<'a> Visitor<()> for PrivacyVisitor<'a> {
fn visit_item(&mut self, item: &ast::Item, _: ()) {
// Do not check privacy inside items with the resolve_unexported
// attribute. This is used for the test runner.
if attr::contains_name(item.attrs, "!resolve_unexported") {
return;
}
let orig_curitem = replace(&mut self.curitem, item.id);
visit::walk_item(self, item, ());
self.curitem = orig_curitem;
}
fn visit_expr(&mut self, expr: &ast::Expr, _: ()) {
match expr.node {
ast::ExprField(base, ident, _) => {
// Method calls are now a special syntactic form,
// so `a.b` should always be a field.
let method_map = self.method_map.borrow();
assert!(!method_map.get().contains_key(&expr.id));
// With type_autoderef, make sure we don't
// allow pointers to violate privacy
let t = ty::type_autoderef(ty::expr_ty(self.tcx, base));
match ty::get(t).sty {
ty::ty_struct(id, _) => {
self.check_field(expr.span, id, ident, None);
}
_ => {}
}
}
ast::ExprMethodCall(_, ident, _, ref args, _) => {
// see above
let t = ty::type_autoderef(ty::expr_ty(self.tcx, args[0]));
match ty::get(t).sty {
ty::ty_enum(_, _) | ty::ty_struct(_, _) => {
let method_map = self.method_map.borrow();
let entry = match method_map.get().find(&expr.id) {
None => {
self.tcx.sess.span_bug(expr.span,
"method call not in \
method map");
}
Some(entry) => entry
};
debug!("(privacy checking) checking impl method");
self.check_method(expr.span, &entry.origin, ident);
}
_ => {}
}
}
ast::ExprStruct(_, ref fields, _) => {
match ty::get(ty::expr_ty(self.tcx, expr)).sty {
ty::ty_struct(id, _) => {
for field in (*fields).iter() {
self.check_field(expr.span, id, field.ident.node,
None);
}
}
ty::ty_enum(_, _) => {
let def_map = self.tcx.def_map.borrow();
match def_map.get().get_copy(&expr.id) {
ast::DefVariant(enum_id, variant_id, _) => {
for field in fields.iter() {
self.check_field(expr.span, variant_id,
field.ident.node,
Some(enum_id));
}
}
_ => self.tcx.sess.span_bug(expr.span,
"resolve didn't \
map enum struct \
constructor to a \
variant def"),
}
}
_ => self.tcx.sess.span_bug(expr.span, "struct expr \
didn't have \
struct type?!"),
}
}
_ => {}
}
visit::walk_expr(self, expr, ());
}
fn visit_view_item(&mut self, a: &ast::ViewItem, _: ()) {
match a.node {
ast::ViewItemExternMod(..) => {}
ast::ViewItemUse(ref uses) => {
for vpath in uses.iter() {
match vpath.node {
ast::ViewPathSimple(..) | ast::ViewPathGlob(..) => {}
ast::ViewPathList(_, ref list, _) => {
for pid in list.iter() {
debug!("privacy - list {}", pid.node.id);
let seg = ast::PathSegment {
identifier: pid.node.name,
lifetimes: opt_vec::Empty,
types: opt_vec::Empty,
};
let segs = ~[seg];
let path = ast::Path {
global: false,
span: pid.span,
segments: segs,
};
self.check_path(pid.span, pid.node.id, &path);
}
}
}
}
}
}
visit::walk_view_item(self, a, ());
}
fn visit_pat(&mut self, pattern: &ast::Pat, _: ()) {
// Foreign functions do not have their patterns mapped in the def_map,
// and there's nothing really relevant there anyway, so don't bother
// checking privacy. If you can name the type then you can pass it to an
// external C function anyway.
if self.in_foreign { return }
match pattern.node {
ast::PatStruct(_, ref fields, _) => {
match ty::get(ty::pat_ty(self.tcx, pattern)).sty {
ty::ty_struct(id, _) => {
for field in fields.iter() {
self.check_field(pattern.span, id, field.ident,
None);
}
}
ty::ty_enum(_, _) => {
let def_map = self.tcx.def_map.borrow();
match def_map.get().find(&pattern.id) {
Some(&ast::DefVariant(enum_id, variant_id, _)) => {
for field in fields.iter() {
self.check_field(pattern.span, variant_id,
field.ident, Some(enum_id));
}
}
_ => self.tcx.sess.span_bug(pattern.span,
"resolve didn't \
map enum struct \
pattern to a \
variant def"),
}
}
_ => self.tcx.sess.span_bug(pattern.span,
"struct pattern didn't have \
struct type?!"),
}
}
_ => {}
}
visit::walk_pat(self, pattern, ());
}
fn visit_foreign_item(&mut self, fi: &ast::ForeignItem, _: ()) {
self.in_foreign = true;
visit::walk_foreign_item(self, fi, ());
self.in_foreign = false;
}
fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId, _: ()) {
self.check_path(path.span, id, path);
visit::walk_path(self, path, ());
}
}
////////////////////////////////////////////////////////////////////////////////
/// The privacy sanity check visitor, ensures unnecessary visibility isn't here
////////////////////////////////////////////////////////////////////////////////
struct SanePrivacyVisitor {
tcx: ty::ctxt,
in_fn: bool,
}
impl Visitor<()> for SanePrivacyVisitor {
fn visit_item(&mut self, item: &ast::Item, _: ()) {
if self.in_fn {
self.check_all_inherited(item);
} else {
self.check_sane_privacy(item);
}
let orig_in_fn = replace(&mut self.in_fn, match item.node {
ast::ItemMod(..) => false, // modules turn privacy back on
_ => self.in_fn, // otherwise we inherit
});
visit::walk_item(self, item, ());
self.in_fn = orig_in_fn;
}
fn visit_fn(&mut self, fk: &visit::FnKind, fd: &ast::FnDecl,
b: &ast::Block, s: Span, n: ast::NodeId, _: ()) {
// This catches both functions and methods
let orig_in_fn = replace(&mut self.in_fn, true);
visit::walk_fn(self, fk, fd, b, s, n, ());
self.in_fn = orig_in_fn;
}
fn visit_view_item(&mut self, i: &ast::ViewItem, _: ()) {
match i.vis {
ast::Inherited => {}
ast::Private => {
self.tcx.sess.span_err(i.span, "unnecessary visibility \
qualifier");
}
ast::Public => {
if self.in_fn {
self.tcx.sess.span_err(i.span, "unnecessary `pub`, imports \
in functions are never \
reachable");
} else {
match i.node {
ast::ViewItemExternMod(..) => {
self.tcx.sess.span_err(i.span, "`pub` visibility \
is not allowed");
}
_ => {}
}
}
}
}
visit::walk_view_item(self, i, ());
}
}
impl SanePrivacyVisitor {
/// Validates all of the visibility qualifers placed on the item given. This
/// ensures that there are no extraneous qualifiers that don't actually do
/// anything. In theory these qualifiers wouldn't parse, but that may happen
/// later on down the road...
fn check_sane_privacy(&self, item: &ast::Item) {
let tcx = self.tcx;
let check_inherited = |sp: Span, vis: ast::Visibility, note: &str| {
if vis != ast::Inherited {
tcx.sess.span_err(sp, "unnecessary visibility qualifier");
if note.len() > 0 {
tcx.sess.span_note(sp, note);
}
}
};
let check_not_priv = |sp: Span, vis: ast::Visibility, note: &str| {
if vis == ast::Private {
tcx.sess.span_err(sp, "unnecessary `priv` qualifier");
if note.len() > 0 {
tcx.sess.span_note(sp, note);
}
}
};
let check_struct = |def: &@ast::StructDef,
vis: ast::Visibility,
parent_vis: Option<ast::Visibility>| {
let public_def = match vis {
ast::Public => true,
ast::Inherited | ast::Private => parent_vis == Some(ast::Public),
};
for f in def.fields.iter() {
match f.node.kind {
ast::NamedField(_, ast::Public) if public_def => {
tcx.sess.span_err(f.span, "unnecessary `pub` \
visibility");
}
ast::NamedField(_, ast::Private) if !public_def => {
tcx.sess.span_err(f.span, "unnecessary `priv` \
visibility");
}
ast::NamedField(..) | ast::UnnamedField => {}
}
}
};
match item.node {
// implementations of traits don't need visibility qualifiers because
// that's controlled by having the trait in scope.
ast::ItemImpl(_, Some(..), _, ref methods) => {
check_inherited(item.span, item.vis,
"visibility qualifiers have no effect on trait \
impls");
for m in methods.iter() {
check_inherited(m.span, m.vis, "");
}
}
ast::ItemImpl(_, _, _, ref methods) => {
check_inherited(item.span, item.vis,
"place qualifiers on individual methods instead");
for i in methods.iter() {
check_not_priv(i.span, i.vis, "functions are private by \
default");
}
}
ast::ItemForeignMod(ref fm) => {
check_inherited(item.span, item.vis,
"place qualifiers on individual functions \
instead");
for i in fm.items.iter() {
check_not_priv(i.span, i.vis, "functions are private by \
default");
}
}
ast::ItemEnum(ref def, _) => {
for v in def.variants.iter() {
match v.node.vis {
ast::Public => {
if item.vis == ast::Public {
tcx.sess.span_err(v.span, "unnecessary `pub` \
visibility");
}
}
ast::Private => {
if item.vis != ast::Public {
tcx.sess.span_err(v.span, "unnecessary `priv` \
visibility");
}
}
ast::Inherited => {}
}
match v.node.kind {
ast::StructVariantKind(ref s) => {
check_struct(s, v.node.vis, Some(item.vis));
}
ast::TupleVariantKind(..) => {}
}
}
}
ast::ItemStruct(ref def, _) => check_struct(def, item.vis, None),
ast::ItemTrait(_, _, ref methods) => {
for m in methods.iter() {
match *m {
ast::Provided(ref m) => {
check_inherited(m.span, m.vis,
"unnecessary visibility");
}
ast::Required(..) => {}
}
}
}
ast::ItemStatic(..) |
ast::ItemFn(..) | ast::ItemMod(..) | ast::ItemTy(..) |
ast::ItemMac(..) => {
check_not_priv(item.span, item.vis, "items are private by \
default");
}
}
}
/// When inside of something like a function or a method, visibility has no
/// control over anything so this forbids any mention of any visibility
fn check_all_inherited(&self, item: &ast::Item) {
let tcx = self.tcx;
let check_inherited = |sp: Span, vis: ast::Visibility| {
if vis != ast::Inherited {
tcx.sess.span_err(sp, "visibility has no effect inside functions");
}
};
let check_struct = |def: &@ast::StructDef| {
for f in def.fields.iter() {
match f.node.kind {
ast::NamedField(_, p) => check_inherited(f.span, p),
ast::UnnamedField => {}
}
}
};
check_inherited(item.span, item.vis);
match item.node {
ast::ItemImpl(_, _, _, ref methods) => {
for m in methods.iter() {
check_inherited(m.span, m.vis);
}
}
ast::ItemForeignMod(ref fm) => {
for i in fm.items.iter() {
check_inherited(i.span, i.vis);
}
}
ast::ItemEnum(ref def, _) => {
for v in def.variants.iter() {
check_inherited(v.span, v.node.vis);
match v.node.kind {
ast::StructVariantKind(ref s) => check_struct(s),
ast::TupleVariantKind(..) => {}
}
}
}
ast::ItemStruct(ref def, _) => check_struct(def),
ast::ItemTrait(_, _, ref methods) => {
for m in methods.iter() {
match *m {
ast::Required(..) => {}
ast::Provided(ref m) => check_inherited(m.span, m.vis),
}
}
}
ast::ItemStatic(..) |
ast::ItemFn(..) | ast::ItemMod(..) | ast::ItemTy(..) |
ast::ItemMac(..) => {}
}
}
}
pub fn check_crate(tcx: ty::ctxt,
method_map: &method_map,
exp_map2: &resolve::ExportMap2,
external_exports: resolve::ExternalExports,
last_private_map: resolve::LastPrivateMap,
krate: &ast::Crate) -> (ExportedItems, PublicItems) {
// Figure out who everyone's parent is
let mut visitor = ParentVisitor {
parents: HashMap::new(),
curparent: ast::DUMMY_NODE_ID,
};
visit::walk_crate(&mut visitor, krate, ());
// Use the parent map to check the privacy of everything
let mut visitor = PrivacyVisitor {
curitem: ast::DUMMY_NODE_ID,
in_fn: false,
in_foreign: false,
tcx: tcx,
parents: visitor.parents,
method_map: method_map,
external_exports: external_exports,
last_private_map: last_private_map,
};
visit::walk_crate(&mut visitor, krate, ());
// Sanity check to make sure that all privacy usage and controls are
// reasonable.
let mut visitor = SanePrivacyVisitor {
in_fn: false,
tcx: tcx,
};
visit::walk_crate(&mut visitor, krate, ());
tcx.sess.abort_if_errors();
// Build up a set of all exported items in the AST. This is a set of all
// items which are reachable from external crates based on visibility.
let mut visitor = EmbargoVisitor {
tcx: tcx,
exported_items: HashSet::new(),
public_items: HashSet::new(),
reexports: HashSet::new(),
exp_map2: exp_map2,
prev_exported: true,
prev_public: true,
};
loop {
let before = visitor.exported_items.len();
visit::walk_crate(&mut visitor, krate, ());
if before == visitor.exported_items.len() {
break
}
}
let EmbargoVisitor { exported_items, public_items, .. } = visitor;
return (exported_items, public_items);
}