2013-06-01 15:31:56 -07:00

1188 lines
38 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::*;
use driver::session;
use middle::ty;
use middle::pat_util;
use util::ppaux::{ty_to_str};
use core::char;
use core::cmp;
use core::hashmap::HashMap;
use core::i16;
use core::i32;
use core::i64;
use core::i8;
use core::str;
use core::u16;
use core::u32;
use core::u64;
use core::u8;
use core::vec;
use extra::smallintmap::SmallIntMap;
use syntax::attr;
use syntax::codemap::span;
use syntax::codemap;
use syntax::{ast, visit, ast_util};
/**
* A 'lint' check is a kind of miscellaneous constraint that a user _might_
* want to enforce, but might reasonably want to permit as well, on a
* module-by-module basis. They contrast with static constraints enforced by
* other phases of the compiler, which are generally required to hold in order
* to compile the program at all.
*
* The lint checking is all consolidated into one pass which runs just before
* translation to LLVM bytecode. Throughout compilation, lint warnings can be
* added via the `add_lint` method on the Session structure. This requires a
* span and an id of the node that the lint is being added to. The lint isn't
* actually emitted at that time because it is unknown what the actual lint
* level at that location is.
*
* To actually emit lint warnings/errors, a separate pass is used just before
* translation. A context keeps track of the current state of all lint levels.
* Upon entering a node of the ast which can modify the lint settings, the
* previous lint state is pushed onto a stack and the ast is then recursed upon.
* As the ast is traversed, this keeps track of the current lint level for all
* lint attributes.
*
* At each node of the ast which can modify lint attributes, all known lint
* passes are also applied. Each lint pass is a visit::vt<()> structure. These
* visitors are constructed via the lint_*() functions below. There are also
* some lint checks which operate directly on ast nodes (such as @ast::item),
* and those are organized as check_item_*(). Each visitor added to the lint
* context is modified to stop once it reaches a node which could alter the lint
* levels. This means that everything is looked at once and only once by every
* lint pass.
*
* With this all in place, to add a new lint warning, all you need to do is to
* either invoke `add_lint` on the session at the appropriate time, or write a
* lint pass in this module which is just an ast visitor. The context used when
* traversing the ast has a `span_lint` method which only needs the span of the
* item that's being warned about.
*/
#[deriving(Eq)]
pub enum lint {
ctypes,
unused_imports,
while_true,
path_statement,
implicit_copies,
unrecognized_lint,
non_implicitly_copyable_typarams,
deprecated_pattern,
non_camel_case_types,
type_limits,
default_methods,
unused_unsafe,
managed_heap_memory,
owned_heap_memory,
heap_memory,
unused_variable,
dead_assignment,
unused_mut,
unnecessary_allocation,
missing_doc,
unreachable_code,
}
pub fn level_to_str(lv: level) -> &'static str {
match lv {
allow => "allow",
warn => "warn",
deny => "deny",
forbid => "forbid"
}
}
#[deriving(Eq)]
pub enum level {
allow, warn, deny, forbid
}
struct LintSpec {
lint: lint,
desc: &'static str,
default: level
}
pub type LintDict = HashMap<~str, LintSpec>;
enum AttributedNode<'self> {
Item(@ast::item),
Method(&'self ast::method),
Crate(@ast::crate),
}
#[deriving(Eq)]
enum LintSource {
Node(span),
Default,
CommandLine
}
static lint_table: &'static [(&'static str, LintSpec)] = &[
("ctypes",
LintSpec {
lint: ctypes,
desc: "proper use of core::libc types in foreign modules",
default: warn
}),
("unused_imports",
LintSpec {
lint: unused_imports,
desc: "imports that are never used",
default: warn
}),
("while_true",
LintSpec {
lint: while_true,
desc: "suggest using loop { } instead of while(true) { }",
default: warn
}),
("path_statement",
LintSpec {
lint: path_statement,
desc: "path statements with no effect",
default: warn
}),
("unrecognized_lint",
LintSpec {
lint: unrecognized_lint,
desc: "unrecognized lint attribute",
default: warn
}),
("non_implicitly_copyable_typarams",
LintSpec {
lint: non_implicitly_copyable_typarams,
desc: "passing non implicitly copyable types as copy type params",
default: warn
}),
("implicit_copies",
LintSpec {
lint: implicit_copies,
desc: "implicit copies of non implicitly copyable data",
default: warn
}),
("deprecated_pattern",
LintSpec {
lint: deprecated_pattern,
desc: "warn about deprecated uses of pattern bindings",
default: allow
}),
("non_camel_case_types",
LintSpec {
lint: non_camel_case_types,
desc: "types, variants and traits should have camel case names",
default: allow
}),
("managed_heap_memory",
LintSpec {
lint: managed_heap_memory,
desc: "use of managed (@ type) heap memory",
default: allow
}),
("owned_heap_memory",
LintSpec {
lint: owned_heap_memory,
desc: "use of owned (~ type) heap memory",
default: allow
}),
("heap_memory",
LintSpec {
lint: heap_memory,
desc: "use of any (~ type or @ type) heap memory",
default: allow
}),
("type_limits",
LintSpec {
lint: type_limits,
desc: "comparisons made useless by limits of the types involved",
default: warn
}),
("default_methods",
LintSpec {
lint: default_methods,
desc: "allow default methods",
default: deny
}),
("unused_unsafe",
LintSpec {
lint: unused_unsafe,
desc: "unnecessary use of an `unsafe` block",
default: warn
}),
("unused_variable",
LintSpec {
lint: unused_variable,
desc: "detect variables which are not used in any way",
default: warn
}),
("dead_assignment",
LintSpec {
lint: dead_assignment,
desc: "detect assignments that will never be read",
default: warn
}),
("unused_mut",
LintSpec {
lint: unused_mut,
desc: "detect mut variables which don't need to be mutable",
default: warn
}),
("unnecessary_allocation",
LintSpec {
lint: unnecessary_allocation,
desc: "detects unnecessary allocations that can be eliminated",
default: warn
}),
("missing_doc",
LintSpec {
lint: missing_doc,
desc: "detects missing documentation for public members",
default: allow
}),
("unreachable_code",
LintSpec {
lint: unreachable_code,
desc: "detects unreachable code",
default: warn
}),
];
/*
Pass names should not contain a '-', as the compiler normalizes
'-' to '_' in command-line flags
*/
pub fn get_lint_dict() -> LintDict {
let mut map = HashMap::new();
for lint_table.each|&(k, v)| {
map.insert(k.to_str(), v);
}
return map;
}
struct Context {
// All known lint modes (string versions)
dict: @LintDict,
// Current levels of each lint warning
curr: SmallIntMap<(level, LintSource)>,
// context we're checking in (used to access fields like sess)
tcx: ty::ctxt,
// Just a simple flag if we're currently recursing into a trait
// implementation. This is only used by the lint_missing_doc() pass
in_trait_impl: bool,
// Another flag for doc lint emissions. Does some parent of the current node
// have the doc(hidden) attribute? Treating this as allow(missing_doc) would
// play badly with forbid(missing_doc) when it shouldn't.
doc_hidden: bool,
// When recursing into an attributed node of the ast which modifies lint
// levels, this stack keeps track of the previous lint levels of whatever
// was modified.
lint_stack: ~[(lint, level, LintSource)],
// Each of these visitors represents a lint pass. A number of the lint
// attributes are registered by adding a visitor to iterate over the ast.
// Others operate directly on @ast::item structures (or similar). Finally,
// others still are added to the Session object via `add_lint`, and these
// are all passed with the lint_session visitor.
//
// This is a pair so every visitor can visit every node. When a lint pass is
// registered, another visitor is created which stops at all items which can
// alter the attributes of the ast. This "item stopping visitor" is the
// second element of the pair, while the original visitor is the first
// element. This means that when visiting a node, the original recursive
// call can used the original visitor's method, although the recursing
// visitor supplied to the method is the item stopping visitor.
visitors: ~[(visit::vt<@mut Context>, visit::vt<@mut Context>)],
}
impl Context {
fn get_level(&self, lint: lint) -> level {
match self.curr.find(&(lint as uint)) {
Some(&(lvl, _)) => lvl,
None => allow
}
}
fn get_source(&self, lint: lint) -> LintSource {
match self.curr.find(&(lint as uint)) {
Some(&(_, src)) => src,
None => Default
}
}
fn set_level(&mut self, lint: lint, level: level, src: LintSource) {
if level == allow {
self.curr.remove(&(lint as uint));
} else {
self.curr.insert(lint as uint, (level, src));
}
}
fn lint_to_str(&self, lint: lint) -> ~str {
for self.dict.each |k, v| {
if v.lint == lint {
return copy *k;
}
}
fail!("unregistered lint %?", lint);
}
fn span_lint(&self, lint: lint, span: span, msg: &str) {
let (level, src) = match self.curr.find(&(lint as uint)) {
Some(&pair) => pair,
None => { return; }
};
if level == allow { return; }
let mut note = None;
let msg = match src {
Default | CommandLine => {
fmt!("%s [-%c %s%s]", msg, match level {
warn => 'W', deny => 'D', forbid => 'F',
allow => fail!()
}, str::replace(self.lint_to_str(lint), "_", "-"),
if src == Default { " (default)" } else { "" })
},
Node(src) => {
note = Some(src);
msg.to_str()
}
};
match level {
warn => { self.tcx.sess.span_warn(span, msg); }
deny | forbid => { self.tcx.sess.span_err(span, msg); }
allow => fail!(),
}
for note.each |&span| {
self.tcx.sess.span_note(span, "lint level defined here");
}
}
/**
* Merge the lints specified by any lint attributes into the
* current lint context, call the provided function, then reset the
* lints in effect to their previous state.
*/
fn with_lint_attrs(@mut self, attrs: &[ast::attribute], f: &fn()) {
// Parse all of the lint attributes, and then add them all to the
// current dictionary of lint information. Along the way, keep a history
// of what we changed so we can roll everything back after invoking the
// specified closure
let mut pushed = 0u;
for each_lint(self.tcx.sess, attrs) |meta, level, lintname| {
let lint = match self.dict.find(lintname) {
None => {
self.span_lint(
unrecognized_lint,
meta.span,
fmt!("unknown `%s` attribute: `%s`",
level_to_str(level), *lintname));
loop
}
Some(lint) => { lint.lint }
};
let now = self.get_level(lint);
if now == forbid && level != forbid {
self.tcx.sess.span_err(meta.span,
fmt!("%s(%s) overruled by outer forbid(%s)",
level_to_str(level),
*lintname, *lintname));
loop;
}
if now != level {
let src = self.get_source(lint);
self.lint_stack.push((lint, now, src));
pushed += 1;
self.set_level(lint, level, Node(meta.span));
}
}
// detect doc(hidden)
let mut doc_hidden = false;
for attr::find_attrs_by_name(attrs, "doc").each |attr| {
match attr::get_meta_item_list(attr.node.value) {
Some(s) => {
if attr::find_meta_items_by_name(s, "hidden").len() > 0 {
doc_hidden = true;
}
}
None => {}
}
}
if doc_hidden && !self.doc_hidden {
self.doc_hidden = true;
} else {
doc_hidden = false;
}
f();
// rollback
if doc_hidden && self.doc_hidden {
self.doc_hidden = false;
}
for pushed.times {
let (lint, lvl, src) = self.lint_stack.pop();
self.set_level(lint, lvl, src);
}
}
fn add_lint(&mut self, v: visit::vt<@mut Context>) {
self.visitors.push((v, item_stopping_visitor(v)));
}
fn process(@mut self, n: AttributedNode) {
// see comment of the `visitors` field in the struct for why there's a
// pair instead of just one visitor.
match n {
Item(it) => {
for self.visitors.each |&(orig, stopping)| {
(orig.visit_item)(it, self, stopping);
}
}
Crate(c) => {
for self.visitors.each |&(_, stopping)| {
visit::visit_crate(c, self, stopping);
}
}
// Can't use visit::visit_method_helper because the
// item_stopping_visitor has overridden visit_fn(&fk_method(... ))
// to be a no-op, so manually invoke visit_fn.
Method(m) => {
let fk = visit::fk_method(copy m.ident, &m.generics, m);
for self.visitors.each |&(orig, stopping)| {
(orig.visit_fn)(&fk, &m.decl, &m.body, m.span, m.id,
self, stopping);
}
}
}
}
}
pub fn each_lint(sess: session::Session,
attrs: &[ast::attribute],
f: &fn(@ast::meta_item, level, &~str) -> bool) -> bool
{
for [allow, warn, deny, forbid].each |&level| {
let level_name = level_to_str(level);
let attrs = attr::find_attrs_by_name(attrs, level_name);
for attrs.each |attr| {
let meta = attr.node.value;
let metas = match meta.node {
ast::meta_list(_, ref metas) => metas,
_ => {
sess.span_err(meta.span, "malformed lint attribute");
loop;
}
};
for metas.each |meta| {
match meta.node {
ast::meta_word(lintname) => {
if !f(*meta, level, lintname) {
return false;
}
}
_ => {
sess.span_err(meta.span, "malformed lint attribute");
}
}
}
}
}
return true;
}
// Take a visitor, and modify it so that it will not proceed past subitems.
// This is used to make the simple visitors used for the lint passes
// not traverse into subitems, since that is handled by the outer
// lint visitor.
fn item_stopping_visitor<E: Copy>(outer: visit::vt<E>) -> visit::vt<E> {
visit::mk_vt(@visit::Visitor {
visit_item: |_i, _e, _v| { },
visit_fn: |fk, fd, b, s, id, e, v| {
match *fk {
visit::fk_method(*) => {}
_ => (outer.visit_fn)(fk, fd, b, s, id, e, v)
}
},
.. **(ty_stopping_visitor(outer))})
}
fn ty_stopping_visitor<E>(v: visit::vt<E>) -> visit::vt<E> {
visit::mk_vt(@visit::Visitor {visit_ty: |_t, _e, _v| { },.. **v})
}
fn lint_while_true() -> visit::vt<@mut Context> {
visit::mk_vt(@visit::Visitor {
visit_expr: |e, cx: @mut Context, vt| {
match e.node {
ast::expr_while(cond, _) => {
match cond.node {
ast::expr_lit(@codemap::spanned {
node: ast::lit_bool(true), _}) =>
{
cx.span_lint(while_true, e.span,
"denote infinite loops with \
loop { ... }");
}
_ => ()
}
}
_ => ()
}
visit::visit_expr(e, cx, vt);
},
.. *visit::default_visitor()
})
}
fn lint_type_limits() -> visit::vt<@mut Context> {
fn is_valid<T:cmp::Ord>(binop: ast::binop, v: T,
min: T, max: T) -> bool {
match binop {
ast::lt => v <= max,
ast::le => v < max,
ast::gt => v >= min,
ast::ge => v > min,
ast::eq | ast::ne => v >= min && v <= max,
_ => fail!()
}
}
fn rev_binop(binop: ast::binop) -> ast::binop {
match binop {
ast::lt => ast::gt,
ast::le => ast::ge,
ast::gt => ast::lt,
ast::ge => ast::le,
_ => binop
}
}
// for int & uint, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms
fn int_ty_range(int_ty: ast::int_ty) -> (i64, i64) {
match int_ty {
ast::ty_i => (i64::min_value, i64::max_value),
ast::ty_char => (u32::min_value as i64, u32::max_value as i64),
ast::ty_i8 => (i8::min_value as i64, i8::max_value as i64),
ast::ty_i16 => (i16::min_value as i64, i16::max_value as i64),
ast::ty_i32 => (i32::min_value as i64, i32::max_value as i64),
ast::ty_i64 => (i64::min_value, i64::max_value)
}
}
fn uint_ty_range(uint_ty: ast::uint_ty) -> (u64, u64) {
match uint_ty {
ast::ty_u => (u64::min_value, u64::max_value),
ast::ty_u8 => (u8::min_value as u64, u8::max_value as u64),
ast::ty_u16 => (u16::min_value as u64, u16::max_value as u64),
ast::ty_u32 => (u32::min_value as u64, u32::max_value as u64),
ast::ty_u64 => (u64::min_value, u64::max_value)
}
}
fn check_limits(cx: &Context, binop: ast::binop, l: &ast::expr,
r: &ast::expr) -> bool {
let (lit, expr, swap) = match (&l.node, &r.node) {
(&ast::expr_lit(_), _) => (l, r, true),
(_, &ast::expr_lit(_)) => (r, l, false),
_ => return true
};
// Normalize the binop so that the literal is always on the RHS in
// the comparison
let norm_binop = if swap {
rev_binop(binop)
} else {
binop
};
match ty::get(ty::expr_ty(cx.tcx, @/*bad*/copy *expr)).sty {
ty::ty_int(int_ty) => {
let (min, max) = int_ty_range(int_ty);
let lit_val: i64 = match lit.node {
ast::expr_lit(@li) => match li.node {
ast::lit_int(v, _) => v,
ast::lit_uint(v, _) => v as i64,
ast::lit_int_unsuffixed(v) => v,
_ => return true
},
_ => fail!()
};
is_valid(norm_binop, lit_val, min, max)
}
ty::ty_uint(uint_ty) => {
let (min, max): (u64, u64) = uint_ty_range(uint_ty);
let lit_val: u64 = match lit.node {
ast::expr_lit(@li) => match li.node {
ast::lit_int(v, _) => v as u64,
ast::lit_uint(v, _) => v,
ast::lit_int_unsuffixed(v) => v as u64,
_ => return true
},
_ => fail!()
};
is_valid(norm_binop, lit_val, min, max)
}
_ => true
}
}
fn is_comparison(binop: ast::binop) -> bool {
match binop {
ast::eq | ast::lt | ast::le |
ast::ne | ast::ge | ast::gt => true,
_ => false
}
}
visit::mk_vt(@visit::Visitor {
visit_expr: |e, cx: @mut Context, vt| {
match e.node {
ast::expr_binary(_, ref binop, @ref l, @ref r) => {
if is_comparison(*binop)
&& !check_limits(cx, *binop, l, r) {
cx.span_lint(type_limits, e.span,
"comparison is useless due to type limits");
}
}
_ => ()
}
visit::visit_expr(e, cx, vt);
},
.. *visit::default_visitor()
})
}
fn check_item_default_methods(cx: &Context, item: @ast::item) {
match item.node {
ast::item_trait(_, _, ref methods) => {
for methods.each |method| {
match *method {
ast::required(*) => {}
ast::provided(*) => {
cx.span_lint(default_methods, item.span,
"default methods are experimental");
}
}
}
}
_ => {}
}
}
fn check_item_ctypes(cx: &Context, it: @ast::item) {
fn check_foreign_fn(cx: &Context, decl: &ast::fn_decl) {
let tys = vec::map(decl.inputs, |a| a.ty );
for vec::each(vec::append_one(tys, decl.output)) |ty| {
match ty.node {
ast::ty_path(_, id) => {
match cx.tcx.def_map.get_copy(&id) {
ast::def_prim_ty(ast::ty_int(ast::ty_i)) => {
cx.span_lint(ctypes, ty.span,
"found rust type `int` in foreign module, while \
libc::c_int or libc::c_long should be used");
}
ast::def_prim_ty(ast::ty_uint(ast::ty_u)) => {
cx.span_lint(ctypes, ty.span,
"found rust type `uint` in foreign module, while \
libc::c_uint or libc::c_ulong should be used");
}
_ => ()
}
}
_ => ()
}
}
}
match it.node {
ast::item_foreign_mod(ref nmod) if !nmod.abis.is_intrinsic() => {
for nmod.items.each |ni| {
match ni.node {
ast::foreign_item_fn(ref decl, _, _) => {
check_foreign_fn(cx, decl);
}
// FIXME #4622: Not implemented.
ast::foreign_item_const(*) => {}
}
}
}
_ => {/* nothing to do */ }
}
}
fn check_type_for_lint(cx: &Context, lint: lint, span: span, ty: ty::t) {
if cx.get_level(lint) == allow { return }
let mut n_box = 0;
let mut n_uniq = 0;
ty::fold_ty(cx.tcx, ty, |t| {
match ty::get(t).sty {
ty::ty_box(_) => n_box += 1,
ty::ty_uniq(_) => n_uniq += 1,
_ => ()
};
t
});
if n_uniq > 0 && lint != managed_heap_memory {
let s = ty_to_str(cx.tcx, ty);
let m = ~"type uses owned (~ type) pointers: " + s;
cx.span_lint(lint, span, m);
}
if n_box > 0 && lint != owned_heap_memory {
let s = ty_to_str(cx.tcx, ty);
let m = ~"type uses managed (@ type) pointers: " + s;
cx.span_lint(lint, span, m);
}
}
fn check_type(cx: &Context, span: span, ty: ty::t) {
for [managed_heap_memory, owned_heap_memory, heap_memory].each |lint| {
check_type_for_lint(cx, *lint, span, ty);
}
}
fn check_item_heap(cx: &Context, it: @ast::item) {
match it.node {
ast::item_fn(*) |
ast::item_ty(*) |
ast::item_enum(*) |
ast::item_struct(*) => check_type(cx, it.span,
ty::node_id_to_type(cx.tcx,
it.id)),
_ => ()
}
// If it's a struct, we also have to check the fields' types
match it.node {
ast::item_struct(struct_def, _) => {
for struct_def.fields.each |struct_field| {
check_type(cx, struct_field.span,
ty::node_id_to_type(cx.tcx,
struct_field.node.id));
}
}
_ => ()
}
}
fn lint_heap() -> visit::vt<@mut Context> {
visit::mk_vt(@visit::Visitor {
visit_expr: |e, cx: @mut Context, vt| {
let ty = ty::expr_ty(cx.tcx, e);
check_type(cx, e.span, ty);
visit::visit_expr(e, cx, vt);
},
.. *visit::default_visitor()
})
}
fn lint_path_statement() -> visit::vt<@mut Context> {
visit::mk_vt(@visit::Visitor {
visit_stmt: |s, cx: @mut Context, vt| {
match s.node {
ast::stmt_semi(
@ast::expr { node: ast::expr_path(_), _ },
_
) => {
cx.span_lint(path_statement, s.span,
"path statement with no effect");
}
_ => ()
}
visit::visit_stmt(s, cx, vt);
},
.. *visit::default_visitor()
})
}
fn check_item_non_camel_case_types(cx: &Context, it: @ast::item) {
fn is_camel_case(cx: ty::ctxt, ident: ast::ident) -> bool {
let ident = cx.sess.str_of(ident);
assert!(!ident.is_empty());
let ident = ident_without_trailing_underscores(*ident);
let ident = ident_without_leading_underscores(ident);
char::is_uppercase(str::char_at(ident, 0)) &&
!ident.contains_char('_')
}
fn ident_without_trailing_underscores<'r>(ident: &'r str) -> &'r str {
match str::rfind(ident, |c| c != '_') {
Some(idx) => str::slice(ident, 0, idx + 1),
None => ident, // all underscores
}
}
fn ident_without_leading_underscores<'r>(ident: &'r str) -> &'r str {
match str::find(ident, |c| c != '_') {
Some(idx) => str::slice(ident, idx, ident.len()),
None => ident // all underscores
}
}
fn check_case(cx: &Context, ident: ast::ident, span: span) {
if !is_camel_case(cx.tcx, ident) {
cx.span_lint(non_camel_case_types, span,
"type, variant, or trait should have \
a camel case identifier");
}
}
match it.node {
ast::item_ty(*) | ast::item_struct(*) |
ast::item_trait(*) => {
check_case(cx, it.ident, it.span)
}
ast::item_enum(ref enum_definition, _) => {
check_case(cx, it.ident, it.span);
for enum_definition.variants.each |variant| {
check_case(cx, variant.node.name, variant.span);
}
}
_ => ()
}
}
fn lint_unused_unsafe() -> visit::vt<@mut Context> {
visit::mk_vt(@visit::Visitor {
visit_expr: |e, cx: @mut Context, vt| {
match e.node {
ast::expr_block(ref blk) if blk.node.rules == ast::unsafe_blk => {
if !cx.tcx.used_unsafe.contains(&blk.node.id) {
cx.span_lint(unused_unsafe, blk.span,
"unnecessary `unsafe` block");
}
}
_ => ()
}
visit::visit_expr(e, cx, vt);
},
.. *visit::default_visitor()
})
}
fn lint_unused_mut() -> visit::vt<@mut Context> {
fn check_pat(cx: &Context, p: @ast::pat) {
let mut used = false;
let mut bindings = 0;
do pat_util::pat_bindings(cx.tcx.def_map, p) |_, id, _, _| {
used = used || cx.tcx.used_mut_nodes.contains(&id);
bindings += 1;
}
if !used {
let msg = if bindings == 1 {
"variable does not need to be mutable"
} else {
"variables do not need to be mutable"
};
cx.span_lint(unused_mut, p.span, msg);
}
}
fn visit_fn_decl(cx: &Context, fd: &ast::fn_decl) {
for fd.inputs.each |arg| {
if arg.is_mutbl {
check_pat(cx, arg.pat);
}
}
}
visit::mk_vt(@visit::Visitor {
visit_local: |l, cx: @mut Context, vt| {
if l.node.is_mutbl {
check_pat(cx, l.node.pat);
}
visit::visit_local(l, cx, vt);
},
visit_fn: |a, fd, b, c, d, cx, vt| {
visit_fn_decl(cx, fd);
visit::visit_fn(a, fd, b, c, d, cx, vt);
},
visit_ty_method: |tm, cx, vt| {
visit_fn_decl(cx, &tm.decl);
visit::visit_ty_method(tm, cx, vt);
},
visit_struct_method: |sm, cx, vt| {
visit_fn_decl(cx, &sm.decl);
visit::visit_struct_method(sm, cx, vt);
},
visit_trait_method: |tm, cx, vt| {
match *tm {
ast::required(ref tm) => visit_fn_decl(cx, &tm.decl),
ast::provided(m) => visit_fn_decl(cx, &m.decl)
}
visit::visit_trait_method(tm, cx, vt);
},
.. *visit::default_visitor()
})
}
fn lint_session() -> visit::vt<@mut Context> {
ast_util::id_visitor(|id, cx: @mut Context| {
match cx.tcx.sess.lints.pop(&id) {
None => {},
Some(l) => {
do vec::consume(l) |_, (lint, span, msg)| {
cx.span_lint(lint, span, msg)
}
}
}
})
}
fn lint_unnecessary_allocations() -> visit::vt<@mut Context> {
// Warn if string and vector literals with sigils are immediately borrowed.
// Those can have the sigil removed.
fn check(cx: &Context, e: @ast::expr) {
match e.node {
ast::expr_vstore(e2, ast::expr_vstore_uniq) |
ast::expr_vstore(e2, ast::expr_vstore_box) => {
match e2.node {
ast::expr_lit(@codemap::spanned{
node: ast::lit_str(*), _}) |
ast::expr_vec(*) => {}
_ => return
}
}
_ => return
}
match cx.tcx.adjustments.find_copy(&e.id) {
Some(@ty::AutoDerefRef(ty::AutoDerefRef {
autoref: Some(ty::AutoBorrowVec(*)), _ })) => {
cx.span_lint(unnecessary_allocation,
e.span, "unnecessary allocation, the sigil can be \
removed");
}
_ => ()
}
}
visit::mk_vt(@visit::Visitor {
visit_expr: |e, cx: @mut Context, vt| {
check(cx, e);
visit::visit_expr(e, cx, vt);
},
.. *visit::default_visitor()
})
}
fn lint_missing_doc() -> visit::vt<@mut Context> {
fn check_attrs(cx: @mut Context, attrs: &[ast::attribute],
sp: span, msg: &str) {
// If we're building a test harness, then warning about documentation is
// probably not really relevant right now
if cx.tcx.sess.opts.test { return }
// If we have doc(hidden), nothing to do
if cx.doc_hidden { return }
// If we're documented, nothing to do
if attrs.any(|a| a.node.is_sugared_doc) { return }
// otherwise, warn!
cx.span_lint(missing_doc, sp, msg);
}
visit::mk_vt(@visit::Visitor {
visit_struct_method: |m, cx, vt| {
if m.vis == ast::public {
check_attrs(cx, m.attrs, m.span,
"missing documentation for a method");
}
visit::visit_struct_method(m, cx, vt);
},
visit_ty_method: |m, cx, vt| {
// All ty_method objects are linted about because they're part of a
// trait (no visibility)
check_attrs(cx, m.attrs, m.span,
"missing documentation for a method");
visit::visit_ty_method(m, cx, vt);
},
visit_fn: |fk, d, b, sp, id, cx, vt| {
// Only warn about explicitly public methods. Soon implicit
// public-ness will hopefully be going away.
match *fk {
visit::fk_method(_, _, m) if m.vis == ast::public => {
// If we're in a trait implementation, no need to duplicate
// documentation
if !cx.in_trait_impl {
check_attrs(cx, m.attrs, sp,
"missing documentation for a method");
}
}
_ => {}
}
visit::visit_fn(fk, d, b, sp, id, cx, vt);
},
visit_item: |it, cx, vt| {
match it.node {
// Go ahead and match the fields here instead of using
// visit_struct_field while we have access to the enclosing
// struct's visibility
ast::item_struct(sdef, _) if it.vis == ast::public => {
check_attrs(cx, it.attrs, it.span,
"missing documentation for a struct");
for sdef.fields.each |field| {
match field.node.kind {
ast::named_field(_, vis) if vis != ast::private => {
check_attrs(cx, field.node.attrs, field.span,
"missing documentation for a field");
}
ast::unnamed_field | ast::named_field(*) => {}
}
}
}
ast::item_trait(*) if it.vis == ast::public => {
check_attrs(cx, it.attrs, it.span,
"missing documentation for a trait");
}
ast::item_fn(*) if it.vis == ast::public => {
check_attrs(cx, it.attrs, it.span,
"missing documentation for a function");
}
_ => {}
};
visit::visit_item(it, cx, vt);
},
.. *visit::default_visitor()
})
}
pub fn check_crate(tcx: ty::ctxt, crate: @ast::crate) {
let cx = @mut Context {
dict: @get_lint_dict(),
curr: SmallIntMap::new(),
tcx: tcx,
lint_stack: ~[],
visitors: ~[],
in_trait_impl: false,
doc_hidden: false,
};
// Install defaults.
for cx.dict.each_value |spec| {
cx.set_level(spec.lint, spec.default, Default);
}
// Install command-line options, overriding defaults.
for tcx.sess.opts.lint_opts.each |&(lint, level)| {
cx.set_level(lint, level, CommandLine);
}
// Register each of the lint passes with the context
cx.add_lint(lint_while_true());
cx.add_lint(lint_path_statement());
cx.add_lint(lint_heap());
cx.add_lint(lint_type_limits());
cx.add_lint(lint_unused_unsafe());
cx.add_lint(lint_unused_mut());
cx.add_lint(lint_session());
cx.add_lint(lint_unnecessary_allocations());
cx.add_lint(lint_missing_doc());
// Actually perform the lint checks (iterating the ast)
do cx.with_lint_attrs(crate.node.attrs) {
cx.process(Crate(crate));
visit::visit_crate(crate, cx, visit::mk_vt(@visit::Visitor {
visit_item: |it, cx: @mut Context, vt| {
do cx.with_lint_attrs(it.attrs) {
match it.node {
ast::item_impl(_, Some(*), _, _) => {
cx.in_trait_impl = true;
}
_ => {}
}
check_item_ctypes(cx, it);
check_item_non_camel_case_types(cx, it);
check_item_default_methods(cx, it);
check_item_heap(cx, it);
cx.process(Item(it));
visit::visit_item(it, cx, vt);
cx.in_trait_impl = false;
}
},
visit_fn: |fk, decl, body, span, id, cx, vt| {
match *fk {
visit::fk_method(_, _, m) => {
do cx.with_lint_attrs(m.attrs) {
cx.process(Method(m));
visit::visit_fn(fk, decl, body, span, id, cx, vt);
}
}
_ => {
visit::visit_fn(fk, decl, body, span, id, cx, vt);
}
}
},
.. *visit::default_visitor()
}));
}
// If we missed any lints added to the session, then there's a bug somewhere
// in the iteration code.
for tcx.sess.lints.each |_, v| {
for v.each |t| {
match *t {
(lint, span, ref msg) =>
tcx.sess.span_bug(span, fmt!("unprocessed lint %?: %s",
lint, *msg))
}
}
}
tcx.sess.abort_if_errors();
}