8114d0e950
You can still initialize multiple variables at once with "let (x, y) = (1, 2)".
894 lines
32 KiB
Rust
894 lines
32 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use core::prelude::*;
|
|
|
|
use middle::const_eval::{compare_const_vals, lookup_const_by_id};
|
|
use middle::const_eval::{eval_const_expr, const_val, const_bool};
|
|
use middle::pat_util::*;
|
|
use middle::ty::*;
|
|
use middle::ty;
|
|
use middle::typeck::method_map;
|
|
use middle::moves;
|
|
use util::ppaux::ty_to_str;
|
|
|
|
use core::uint;
|
|
use core::vec;
|
|
use extra::sort;
|
|
use syntax::ast::*;
|
|
use syntax::ast_util::{unguarded_pat, walk_pat};
|
|
use syntax::codemap::{span, dummy_sp, spanned};
|
|
use syntax::visit;
|
|
|
|
pub struct MatchCheckCtxt {
|
|
tcx: ty::ctxt,
|
|
method_map: method_map,
|
|
moves_map: moves::MovesMap
|
|
}
|
|
|
|
pub fn check_crate(tcx: ty::ctxt,
|
|
method_map: method_map,
|
|
moves_map: moves::MovesMap,
|
|
crate: @crate) {
|
|
let cx = @MatchCheckCtxt {tcx: tcx,
|
|
method_map: method_map,
|
|
moves_map: moves_map};
|
|
visit::visit_crate(crate, (), visit::mk_vt(@visit::Visitor {
|
|
visit_expr: |a,b,c| check_expr(cx, a, b, c),
|
|
visit_local: |a,b,c| check_local(cx, a, b, c),
|
|
visit_fn: |kind, decl, body, sp, id, e, v|
|
|
check_fn(cx, kind, decl, body, sp, id, e, v),
|
|
.. *visit::default_visitor::<()>()
|
|
}));
|
|
tcx.sess.abort_if_errors();
|
|
}
|
|
|
|
pub fn expr_is_non_moving_lvalue(cx: @MatchCheckCtxt, expr: @expr) -> bool {
|
|
if !ty::expr_is_lval(cx.tcx, cx.method_map, expr) {
|
|
return false;
|
|
}
|
|
|
|
!cx.moves_map.contains(&expr.id)
|
|
}
|
|
|
|
pub fn check_expr(cx: @MatchCheckCtxt, ex: @expr, s: (), v: visit::vt<()>) {
|
|
visit::visit_expr(ex, s, v);
|
|
match ex.node {
|
|
expr_match(scrut, ref arms) => {
|
|
// First, check legality of move bindings.
|
|
let is_non_moving_lvalue = expr_is_non_moving_lvalue(cx, ex);
|
|
for arms.each |arm| {
|
|
check_legality_of_move_bindings(cx,
|
|
is_non_moving_lvalue,
|
|
arm.guard.is_some(),
|
|
arm.pats);
|
|
}
|
|
|
|
check_arms(cx, *arms);
|
|
/* Check for exhaustiveness */
|
|
// Check for empty enum, because is_useful only works on inhabited
|
|
// types.
|
|
let pat_ty = node_id_to_type(cx.tcx, scrut.id);
|
|
if (*arms).is_empty() {
|
|
if !type_is_empty(cx.tcx, pat_ty) {
|
|
// We know the type is inhabited, so this must be wrong
|
|
cx.tcx.sess.span_err(ex.span, fmt!("non-exhaustive patterns: \
|
|
type %s is non-empty",
|
|
ty_to_str(cx.tcx, pat_ty)));
|
|
}
|
|
// If the type *is* empty, it's vacuously exhaustive
|
|
return;
|
|
}
|
|
match ty::get(pat_ty).sty {
|
|
ty_enum(did, _) => {
|
|
if (*enum_variants(cx.tcx, did)).is_empty() &&
|
|
(*arms).is_empty() {
|
|
|
|
return;
|
|
}
|
|
}
|
|
_ => { /* We assume only enum types can be uninhabited */ }
|
|
}
|
|
let arms = vec::concat(arms.filter_mapped(unguarded_pat));
|
|
if arms.is_empty() {
|
|
cx.tcx.sess.span_err(ex.span, "non-exhaustive patterns");
|
|
} else {
|
|
check_exhaustive(cx, ex.span, arms);
|
|
}
|
|
}
|
|
_ => ()
|
|
}
|
|
}
|
|
|
|
// Check for unreachable patterns
|
|
pub fn check_arms(cx: @MatchCheckCtxt, arms: &[arm]) {
|
|
let mut seen = ~[];
|
|
for arms.each |arm| {
|
|
for arm.pats.each |pat| {
|
|
let v = ~[*pat];
|
|
match is_useful(cx, &seen, v) {
|
|
not_useful => {
|
|
cx.tcx.sess.span_err(pat.span, "unreachable pattern");
|
|
}
|
|
_ => ()
|
|
}
|
|
if arm.guard.is_none() { seen.push(v); }
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn raw_pat(p: @pat) -> @pat {
|
|
match p.node {
|
|
pat_ident(_, _, Some(s)) => { raw_pat(s) }
|
|
_ => { p }
|
|
}
|
|
}
|
|
|
|
pub fn check_exhaustive(cx: @MatchCheckCtxt, sp: span, pats: ~[@pat]) {
|
|
assert!((!pats.is_empty()));
|
|
let ext = match is_useful(cx, &pats.map(|p| ~[*p]), [wild()]) {
|
|
not_useful => {
|
|
// This is good, wildcard pattern isn't reachable
|
|
return;
|
|
}
|
|
useful_ => None,
|
|
useful(ty, ref ctor) => {
|
|
match ty::get(ty).sty {
|
|
ty::ty_bool => {
|
|
match (*ctor) {
|
|
val(const_bool(true)) => Some(@~"true"),
|
|
val(const_bool(false)) => Some(@~"false"),
|
|
_ => None
|
|
}
|
|
}
|
|
ty::ty_enum(id, _) => {
|
|
let vid = match *ctor {
|
|
variant(id) => id,
|
|
_ => fail!("check_exhaustive: non-variant ctor"),
|
|
};
|
|
let variants = ty::enum_variants(cx.tcx, id);
|
|
|
|
match variants.find(|v| v.id == vid) {
|
|
Some(v) => Some(cx.tcx.sess.str_of(v.name)),
|
|
None => {
|
|
fail!("check_exhaustive: bad variant in ctor")
|
|
}
|
|
}
|
|
}
|
|
ty::ty_unboxed_vec(*) | ty::ty_evec(*) => {
|
|
match *ctor {
|
|
vec(n) => Some(@fmt!("vectors of length %u", n)),
|
|
_ => None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
};
|
|
let msg = ~"non-exhaustive patterns" + match ext {
|
|
Some(ref s) => ~": " + **s + " not covered",
|
|
None => ~""
|
|
};
|
|
cx.tcx.sess.span_err(sp, msg);
|
|
}
|
|
|
|
pub type matrix = ~[~[@pat]];
|
|
|
|
pub enum useful { useful(ty::t, ctor), useful_, not_useful }
|
|
|
|
#[deriving(Eq)]
|
|
pub enum ctor {
|
|
single,
|
|
variant(def_id),
|
|
val(const_val),
|
|
range(const_val, const_val),
|
|
vec(uint)
|
|
}
|
|
|
|
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
|
|
//
|
|
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
|
|
// vectors `m` is defined as there being a set of inputs that will match `v`
|
|
// but not any of the sets in `m`.
|
|
//
|
|
// This is used both for reachability checking (if a pattern isn't useful in
|
|
// relation to preceding patterns, it is not reachable) and exhaustiveness
|
|
// checking (if a wildcard pattern is useful in relation to a matrix, the
|
|
// matrix isn't exhaustive).
|
|
|
|
// Note: is_useful doesn't work on empty types, as the paper notes.
|
|
// So it assumes that v is non-empty.
|
|
pub fn is_useful(cx: @MatchCheckCtxt, m: &matrix, v: &[@pat]) -> useful {
|
|
if m.len() == 0u { return useful_; }
|
|
if m[0].len() == 0u { return not_useful; }
|
|
let real_pat = match m.find(|r| r[0].id != 0) {
|
|
Some(r) => r[0], None => v[0]
|
|
};
|
|
let left_ty = if real_pat.id == 0 { ty::mk_nil() }
|
|
else { ty::node_id_to_type(cx.tcx, real_pat.id) };
|
|
|
|
match pat_ctor_id(cx, v[0]) {
|
|
None => {
|
|
match missing_ctor(cx, m, left_ty) {
|
|
None => {
|
|
match ty::get(left_ty).sty {
|
|
ty::ty_bool => {
|
|
match is_useful_specialized(cx, m, v,
|
|
val(const_bool(true)),
|
|
0u, left_ty){
|
|
not_useful => {
|
|
is_useful_specialized(cx, m, v,
|
|
val(const_bool(false)),
|
|
0u, left_ty)
|
|
}
|
|
ref u => (/*bad*/copy *u)
|
|
}
|
|
}
|
|
ty::ty_enum(eid, _) => {
|
|
for (*ty::enum_variants(cx.tcx, eid)).each |va| {
|
|
match is_useful_specialized(cx, m, v, variant(va.id),
|
|
va.args.len(), left_ty) {
|
|
not_useful => (),
|
|
ref u => return (/*bad*/copy *u)
|
|
}
|
|
}
|
|
not_useful
|
|
}
|
|
ty::ty_unboxed_vec(*) | ty::ty_evec(*) => {
|
|
let max_len = do m.foldr(0) |r, max_len| {
|
|
match r[0].node {
|
|
pat_vec(ref before, _, ref after) => {
|
|
uint::max(before.len() + after.len(), max_len)
|
|
}
|
|
_ => max_len
|
|
}
|
|
};
|
|
for uint::range(0, max_len + 1) |n| {
|
|
match is_useful_specialized(cx, m, v, vec(n), n, left_ty) {
|
|
not_useful => (),
|
|
ref u => return (/*bad*/copy *u)
|
|
}
|
|
}
|
|
not_useful
|
|
}
|
|
_ => {
|
|
let arity = ctor_arity(cx, &single, left_ty);
|
|
is_useful_specialized(cx, m, v, single, arity, left_ty)
|
|
}
|
|
}
|
|
}
|
|
Some(ref ctor) => {
|
|
match is_useful(cx,
|
|
&m.filter_mapped(|r| default(cx, *r)),
|
|
v.tail()) {
|
|
useful_ => useful(left_ty, /*bad*/copy *ctor),
|
|
ref u => (/*bad*/copy *u)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(ref v0_ctor) => {
|
|
let arity = ctor_arity(cx, v0_ctor, left_ty);
|
|
is_useful_specialized(cx, m, v, /*bad*/copy *v0_ctor, arity, left_ty)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_useful_specialized(cx: @MatchCheckCtxt,
|
|
m: &matrix,
|
|
v: &[@pat],
|
|
ctor: ctor,
|
|
arity: uint,
|
|
lty: ty::t)
|
|
-> useful {
|
|
let ms = m.filter_mapped(|r| specialize(cx, *r, &ctor, arity, lty));
|
|
let could_be_useful = is_useful(
|
|
cx, &ms, specialize(cx, v, &ctor, arity, lty).get());
|
|
match could_be_useful {
|
|
useful_ => useful(lty, ctor),
|
|
ref u => (/*bad*/copy *u)
|
|
}
|
|
}
|
|
|
|
pub fn pat_ctor_id(cx: @MatchCheckCtxt, p: @pat) -> Option<ctor> {
|
|
let pat = raw_pat(p);
|
|
match pat.node {
|
|
pat_wild => { None }
|
|
pat_ident(_, _, _) | pat_enum(_, _) => {
|
|
match cx.tcx.def_map.find(&pat.id) {
|
|
Some(&def_variant(_, id)) => Some(variant(id)),
|
|
Some(&def_const(did)) => {
|
|
let const_expr = lookup_const_by_id(cx.tcx, did).get();
|
|
Some(val(eval_const_expr(cx.tcx, const_expr)))
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
pat_lit(expr) => { Some(val(eval_const_expr(cx.tcx, expr))) }
|
|
pat_range(lo, hi) => {
|
|
Some(range(eval_const_expr(cx.tcx, lo), eval_const_expr(cx.tcx, hi)))
|
|
}
|
|
pat_struct(*) => {
|
|
match cx.tcx.def_map.find(&pat.id) {
|
|
Some(&def_variant(_, id)) => Some(variant(id)),
|
|
_ => Some(single)
|
|
}
|
|
}
|
|
pat_box(_) | pat_uniq(_) | pat_tup(_) | pat_region(*) => {
|
|
Some(single)
|
|
}
|
|
pat_vec(ref before, slice, ref after) => {
|
|
match slice {
|
|
Some(_) => None,
|
|
None => Some(vec(before.len() + after.len()))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_wild(cx: @MatchCheckCtxt, p: @pat) -> bool {
|
|
let pat = raw_pat(p);
|
|
match pat.node {
|
|
pat_wild => { true }
|
|
pat_ident(_, _, _) => {
|
|
match cx.tcx.def_map.find(&pat.id) {
|
|
Some(&def_variant(_, _)) | Some(&def_const(*)) => { false }
|
|
_ => { true }
|
|
}
|
|
}
|
|
_ => { false }
|
|
}
|
|
}
|
|
|
|
pub fn missing_ctor(cx: @MatchCheckCtxt,
|
|
m: &matrix,
|
|
left_ty: ty::t)
|
|
-> Option<ctor> {
|
|
match ty::get(left_ty).sty {
|
|
ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(*) | ty::ty_tup(_) |
|
|
ty::ty_struct(*) => {
|
|
for m.each |r| {
|
|
if !is_wild(cx, r[0]) { return None; }
|
|
}
|
|
return Some(single);
|
|
}
|
|
ty::ty_enum(eid, _) => {
|
|
let mut found = ~[];
|
|
for m.each |r| {
|
|
for pat_ctor_id(cx, r[0]).each |id| {
|
|
if !vec::contains(found, id) {
|
|
found.push(/*bad*/copy *id);
|
|
}
|
|
}
|
|
}
|
|
let variants = ty::enum_variants(cx.tcx, eid);
|
|
if found.len() != (*variants).len() {
|
|
for (*variants).each |v| {
|
|
if !found.contains(&(variant(v.id))) {
|
|
return Some(variant(v.id));
|
|
}
|
|
}
|
|
fail!();
|
|
} else { None }
|
|
}
|
|
ty::ty_nil => None,
|
|
ty::ty_bool => {
|
|
let mut true_found = false;
|
|
let mut false_found = false;
|
|
for m.each |r| {
|
|
match pat_ctor_id(cx, r[0]) {
|
|
None => (),
|
|
Some(val(const_bool(true))) => true_found = true,
|
|
Some(val(const_bool(false))) => false_found = true,
|
|
_ => fail!("impossible case")
|
|
}
|
|
}
|
|
if true_found && false_found { None }
|
|
else if true_found { Some(val(const_bool(false))) }
|
|
else { Some(val(const_bool(true))) }
|
|
}
|
|
ty::ty_unboxed_vec(*) | ty::ty_evec(*) => {
|
|
|
|
// Find the lengths and slices of all vector patterns.
|
|
let vec_pat_lens = do m.filter_mapped |r| {
|
|
match r[0].node {
|
|
pat_vec(ref before, ref slice, ref after) => {
|
|
Some((before.len() + after.len(), slice.is_some()))
|
|
}
|
|
_ => None
|
|
}
|
|
};
|
|
|
|
// Sort them by length such that for patterns of the same length,
|
|
// those with a destructured slice come first.
|
|
let mut sorted_vec_lens = sort::merge_sort(vec_pat_lens,
|
|
|&(len1, slice1), &(len2, slice2)| {
|
|
if len1 == len2 {
|
|
slice1 > slice2
|
|
} else {
|
|
len1 <= len2
|
|
}
|
|
}
|
|
);
|
|
vec::dedup(&mut sorted_vec_lens);
|
|
|
|
let mut found_slice = false;
|
|
let mut next = 0;
|
|
let mut missing = None;
|
|
for sorted_vec_lens.each |&(length, slice)| {
|
|
if length != next {
|
|
missing = Some(next);
|
|
break;
|
|
}
|
|
if slice {
|
|
found_slice = true;
|
|
break;
|
|
}
|
|
next += 1;
|
|
}
|
|
|
|
// We found patterns of all lengths within <0, next), yet there was no
|
|
// pattern with a slice - therefore, we report vec(next) as missing.
|
|
if !found_slice {
|
|
missing = Some(next);
|
|
}
|
|
match missing {
|
|
Some(k) => Some(vec(k)),
|
|
None => None
|
|
}
|
|
}
|
|
_ => Some(single)
|
|
}
|
|
}
|
|
|
|
pub fn ctor_arity(cx: @MatchCheckCtxt, ctor: &ctor, ty: ty::t) -> uint {
|
|
match ty::get(ty).sty {
|
|
ty::ty_tup(ref fs) => fs.len(),
|
|
ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_rptr(*) => 1u,
|
|
ty::ty_enum(eid, _) => {
|
|
let id = match *ctor { variant(id) => id,
|
|
_ => fail!("impossible case") };
|
|
match vec::find(*ty::enum_variants(cx.tcx, eid), |v| v.id == id ) {
|
|
Some(v) => v.args.len(),
|
|
None => fail!("impossible case")
|
|
}
|
|
}
|
|
ty::ty_struct(cid, _) => ty::lookup_struct_fields(cx.tcx, cid).len(),
|
|
ty::ty_unboxed_vec(*) | ty::ty_evec(*) => {
|
|
match *ctor {
|
|
vec(n) => n,
|
|
_ => 0u
|
|
}
|
|
}
|
|
_ => 0u
|
|
}
|
|
}
|
|
|
|
pub fn wild() -> @pat {
|
|
@pat {id: 0, node: pat_wild, span: dummy_sp()}
|
|
}
|
|
|
|
pub fn specialize(cx: @MatchCheckCtxt,
|
|
r: &[@pat],
|
|
ctor_id: &ctor,
|
|
arity: uint,
|
|
left_ty: ty::t)
|
|
-> Option<~[@pat]> {
|
|
// Sad, but I can't get rid of this easily
|
|
let r0 = copy *raw_pat(r[0]);
|
|
match r0 {
|
|
pat{id: pat_id, node: n, span: pat_span} =>
|
|
match n {
|
|
pat_wild => {
|
|
Some(vec::append(vec::from_elem(arity, wild()), r.tail()))
|
|
}
|
|
pat_ident(_, _, _) => {
|
|
match cx.tcx.def_map.find(&pat_id) {
|
|
Some(&def_variant(_, id)) => {
|
|
if variant(id) == *ctor_id {
|
|
Some(vec::to_owned(r.tail()))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
Some(&def_const(did)) => {
|
|
let const_expr =
|
|
lookup_const_by_id(cx.tcx, did).get();
|
|
let e_v = eval_const_expr(cx.tcx, const_expr);
|
|
let match_ = match *ctor_id {
|
|
val(ref v) => {
|
|
match compare_const_vals(&e_v, v) {
|
|
Some(val1) => (val1 == 0),
|
|
None => {
|
|
cx.tcx.sess.span_err(pat_span,
|
|
"mismatched types between arms");
|
|
false
|
|
}
|
|
}
|
|
},
|
|
range(ref c_lo, ref c_hi) => {
|
|
let m1 = compare_const_vals(c_lo, &e_v);
|
|
let m2 = compare_const_vals(c_hi, &e_v);
|
|
match (m1, m2) {
|
|
(Some(val1), Some(val2)) => {
|
|
(val1 >= 0 && val2 <= 0)
|
|
}
|
|
_ => {
|
|
cx.tcx.sess.span_err(pat_span,
|
|
"mismatched types between ranges");
|
|
false
|
|
}
|
|
}
|
|
}
|
|
single => true,
|
|
_ => fail!("type error")
|
|
};
|
|
if match_ {
|
|
Some(vec::to_owned(r.tail()))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
_ => {
|
|
Some(
|
|
vec::append(
|
|
vec::from_elem(arity, wild()),
|
|
r.tail()
|
|
)
|
|
)
|
|
}
|
|
}
|
|
}
|
|
pat_enum(_, args) => {
|
|
match cx.tcx.def_map.get_copy(&pat_id) {
|
|
def_const(did) => {
|
|
let const_expr =
|
|
lookup_const_by_id(cx.tcx, did).get();
|
|
let e_v = eval_const_expr(cx.tcx, const_expr);
|
|
let match_ = match *ctor_id {
|
|
val(ref v) =>
|
|
match compare_const_vals(&e_v, v) {
|
|
Some(val1) => (val1 == 0),
|
|
None => {
|
|
cx.tcx.sess.span_err(pat_span,
|
|
"mismatched types between arms");
|
|
false
|
|
}
|
|
},
|
|
range(ref c_lo, ref c_hi) => {
|
|
let m1 = compare_const_vals(c_lo, &e_v);
|
|
let m2 = compare_const_vals(c_hi, &e_v);
|
|
match (m1, m2) {
|
|
(Some(val1), Some(val2)) => (val1 >= 0 && val2 <= 0),
|
|
_ => {
|
|
cx.tcx.sess.span_err(pat_span,
|
|
"mismatched types between ranges");
|
|
false
|
|
}
|
|
}
|
|
}
|
|
single => true,
|
|
_ => fail!("type error")
|
|
};
|
|
if match_ {
|
|
Some(vec::to_owned(r.tail()))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
def_variant(_, id) if variant(id) == *ctor_id => {
|
|
let args = match args {
|
|
Some(args) => args,
|
|
None => vec::from_elem(arity, wild())
|
|
};
|
|
Some(vec::append(args, vec::to_owned(r.tail())))
|
|
}
|
|
def_variant(_, _) => None,
|
|
|
|
def_fn(*) |
|
|
def_struct(*) => {
|
|
// FIXME #4731: Is this right? --pcw
|
|
let new_args;
|
|
match args {
|
|
Some(args) => new_args = args,
|
|
None => new_args = vec::from_elem(arity, wild())
|
|
}
|
|
Some(vec::append(new_args, vec::to_owned(r.tail())))
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
pat_struct(_, ref flds, _) => {
|
|
// Is this a struct or an enum variant?
|
|
match cx.tcx.def_map.get_copy(&pat_id) {
|
|
def_variant(_, variant_id) => {
|
|
if variant(variant_id) == *ctor_id {
|
|
// FIXME #4731: Is this right? --pcw
|
|
let args = flds.map(|ty_field| {
|
|
match flds.find(|f|
|
|
f.ident == ty_field.ident) {
|
|
Some(f) => f.pat,
|
|
_ => wild()
|
|
}
|
|
});
|
|
Some(vec::append(args, vec::to_owned(r.tail())))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
_ => {
|
|
// Grab the class data that we care about.
|
|
let class_fields;
|
|
let class_id;
|
|
match ty::get(left_ty).sty {
|
|
ty::ty_struct(cid, _) => {
|
|
class_id = cid;
|
|
class_fields =
|
|
ty::lookup_struct_fields(cx.tcx,
|
|
class_id);
|
|
}
|
|
_ => {
|
|
cx.tcx.sess.span_bug(
|
|
pat_span,
|
|
fmt!("struct pattern resolved to %s, \
|
|
not a struct",
|
|
ty_to_str(cx.tcx, left_ty)));
|
|
}
|
|
}
|
|
let args = vec::map(class_fields, |class_field| {
|
|
match flds.find(|f|
|
|
f.ident == class_field.ident) {
|
|
Some(f) => f.pat,
|
|
_ => wild()
|
|
}
|
|
});
|
|
Some(vec::append(args, vec::to_owned(r.tail())))
|
|
}
|
|
}
|
|
}
|
|
pat_tup(args) => Some(vec::append(args, r.tail())),
|
|
pat_box(a) | pat_uniq(a) | pat_region(a) => {
|
|
Some(vec::append(~[a], r.tail()))
|
|
}
|
|
pat_lit(expr) => {
|
|
let e_v = eval_const_expr(cx.tcx, expr);
|
|
let match_ = match *ctor_id {
|
|
val(ref v) => {
|
|
match compare_const_vals(&e_v, v) {
|
|
Some(val1) => val1 == 0,
|
|
None => {
|
|
cx.tcx.sess.span_err(pat_span,
|
|
"mismatched types between arms");
|
|
false
|
|
}
|
|
}
|
|
},
|
|
range(ref c_lo, ref c_hi) => {
|
|
let m1 = compare_const_vals(c_lo, &e_v);
|
|
let m2 = compare_const_vals(c_hi, &e_v);
|
|
match (m1, m2) {
|
|
(Some(val1), Some(val2)) => (val1 >= 0 && val2 <= 0),
|
|
_ => {
|
|
cx.tcx.sess.span_err(pat_span,
|
|
"mismatched types between ranges");
|
|
false
|
|
}
|
|
}
|
|
}
|
|
single => true,
|
|
_ => fail!("type error")
|
|
};
|
|
if match_ { Some(vec::to_owned(r.tail())) } else { None }
|
|
}
|
|
pat_range(lo, hi) => {
|
|
let (c_lo, c_hi) = match *ctor_id {
|
|
val(ref v) => ((/*bad*/copy *v), (/*bad*/copy *v)),
|
|
range(ref lo, ref hi) =>
|
|
((/*bad*/copy *lo), (/*bad*/copy *hi)),
|
|
single => return Some(vec::to_owned(r.tail())),
|
|
_ => fail!("type error")
|
|
};
|
|
let v_lo = eval_const_expr(cx.tcx, lo);
|
|
let v_hi = eval_const_expr(cx.tcx, hi);
|
|
|
|
let m1 = compare_const_vals(&c_lo, &v_lo);
|
|
let m2 = compare_const_vals(&c_hi, &v_hi);
|
|
match (m1, m2) {
|
|
(Some(val1), Some(val2)) if val1 >= 0 && val2 <= 0 => {
|
|
Some(vec::to_owned(r.tail()))
|
|
},
|
|
(Some(_), Some(_)) => None,
|
|
_ => {
|
|
cx.tcx.sess.span_err(pat_span,
|
|
"mismatched types between ranges");
|
|
None
|
|
}
|
|
}
|
|
}
|
|
pat_vec(before, slice, after) => {
|
|
match *ctor_id {
|
|
vec(_) => {
|
|
let num_elements = before.len() + after.len();
|
|
if num_elements < arity && slice.is_some() {
|
|
Some(vec::append(
|
|
vec::concat(&[
|
|
before,
|
|
vec::from_elem(
|
|
arity - num_elements, wild()),
|
|
after
|
|
]),
|
|
r.tail()
|
|
))
|
|
} else if num_elements == arity {
|
|
Some(vec::append(
|
|
vec::append(before, after),
|
|
r.tail()
|
|
))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn default(cx: @MatchCheckCtxt, r: &[@pat]) -> Option<~[@pat]> {
|
|
if is_wild(cx, r[0]) { Some(vec::to_owned(r.tail())) }
|
|
else { None }
|
|
}
|
|
|
|
pub fn check_local(cx: @MatchCheckCtxt,
|
|
loc: @local,
|
|
s: (),
|
|
v: visit::vt<()>) {
|
|
visit::visit_local(loc, s, v);
|
|
if is_refutable(cx, loc.node.pat) {
|
|
cx.tcx.sess.span_err(loc.node.pat.span,
|
|
"refutable pattern in local binding");
|
|
}
|
|
|
|
// Check legality of move bindings.
|
|
let is_lvalue = match loc.node.init {
|
|
Some(init) => expr_is_non_moving_lvalue(cx, init),
|
|
None => true
|
|
};
|
|
check_legality_of_move_bindings(cx, is_lvalue, false, [ loc.node.pat ]);
|
|
}
|
|
|
|
pub fn check_fn(cx: @MatchCheckCtxt,
|
|
kind: &visit::fn_kind,
|
|
decl: &fn_decl,
|
|
body: &blk,
|
|
sp: span,
|
|
id: node_id,
|
|
s: (),
|
|
v: visit::vt<()>) {
|
|
visit::visit_fn(kind, decl, body, sp, id, s, v);
|
|
for decl.inputs.each |input| {
|
|
if is_refutable(cx, input.pat) {
|
|
cx.tcx.sess.span_err(input.pat.span,
|
|
"refutable pattern in function argument");
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_refutable(cx: @MatchCheckCtxt, pat: &pat) -> bool {
|
|
match cx.tcx.def_map.find(&pat.id) {
|
|
Some(&def_variant(enum_id, _)) => {
|
|
if vec::len(*ty::enum_variants(cx.tcx, enum_id)) != 1u {
|
|
return true;
|
|
}
|
|
}
|
|
Some(&def_const(*)) => return true,
|
|
_ => ()
|
|
}
|
|
|
|
match pat.node {
|
|
pat_box(sub) | pat_uniq(sub) | pat_region(sub) |
|
|
pat_ident(_, _, Some(sub)) => {
|
|
is_refutable(cx, sub)
|
|
}
|
|
pat_wild | pat_ident(_, _, None) => { false }
|
|
pat_lit(@expr {node: expr_lit(@spanned { node: lit_nil, _}), _}) => {
|
|
// "()"
|
|
false
|
|
}
|
|
pat_lit(_) | pat_range(_, _) => { true }
|
|
pat_struct(_, ref fields, _) => {
|
|
fields.any(|f| is_refutable(cx, f.pat))
|
|
}
|
|
pat_tup(ref elts) => {
|
|
elts.any(|elt| is_refutable(cx, *elt))
|
|
}
|
|
pat_enum(_, Some(ref args)) => {
|
|
args.any(|a| is_refutable(cx, *a))
|
|
}
|
|
pat_enum(_,_) => { false }
|
|
pat_vec(*) => { true }
|
|
}
|
|
}
|
|
|
|
// Legality of move bindings checking
|
|
|
|
pub fn check_legality_of_move_bindings(cx: @MatchCheckCtxt,
|
|
is_lvalue: bool,
|
|
has_guard: bool,
|
|
pats: &[@pat]) {
|
|
let tcx = cx.tcx;
|
|
let def_map = tcx.def_map;
|
|
let mut by_ref_span = None;
|
|
let mut any_by_move = false;
|
|
for pats.each |pat| {
|
|
do pat_bindings(def_map, *pat) |bm, id, span, _path| {
|
|
match bm {
|
|
bind_by_ref(_) => {
|
|
by_ref_span = Some(span);
|
|
}
|
|
bind_infer => {
|
|
if cx.moves_map.contains(&id) {
|
|
any_by_move = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let check_move: &fn(@pat, Option<@pat>) = |p, sub| {
|
|
// check legality of moving out of the enum
|
|
if sub.is_some() {
|
|
tcx.sess.span_err(
|
|
p.span,
|
|
"cannot bind by-move with sub-bindings");
|
|
} else if has_guard {
|
|
tcx.sess.span_err(
|
|
p.span,
|
|
"cannot bind by-move into a pattern guard");
|
|
} else if by_ref_span.is_some() {
|
|
tcx.sess.span_err(
|
|
p.span,
|
|
"cannot bind by-move and by-ref \
|
|
in the same pattern");
|
|
tcx.sess.span_note(
|
|
by_ref_span.get(),
|
|
"by-ref binding occurs here");
|
|
} else if is_lvalue {
|
|
tcx.sess.span_err(
|
|
p.span,
|
|
"cannot bind by-move when \
|
|
matching an lvalue");
|
|
}
|
|
};
|
|
|
|
if !any_by_move { return; } // pointless micro-optimization
|
|
for pats.each |pat| {
|
|
for walk_pat(*pat) |p| {
|
|
if pat_is_binding(def_map, p) {
|
|
match p.node {
|
|
pat_ident(_, _, sub) => {
|
|
if cx.moves_map.contains(&p.id) {
|
|
check_move(p, sub);
|
|
}
|
|
}
|
|
_ => {
|
|
cx.tcx.sess.span_bug(
|
|
p.span,
|
|
fmt!("Binding pattern %d is \
|
|
not an identifier: %?",
|
|
p.id, p.node));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|