rust/crates/ra_hir/src/ty.rs
Florian Diebold 94bbb2418a Add marks
2019-01-26 23:59:11 +01:00

1641 lines
58 KiB
Rust

//! The type system. We currently use this to infer types for completion.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! The central struct here is `Ty`, which represents a type. During inference,
//! it can contain type 'variables' which represent currently unknown types; as
//! we walk through the expressions, we might determine that certain variables
//! need to be equal to each other, or to certain types. To record this, we use
//! the union-find implementation from the `ena` crate, which is extracted from
//! rustc.
mod autoderef;
pub(crate) mod primitive;
#[cfg(test)]
mod tests;
pub(crate) mod method_resolution;
use std::borrow::Cow;
use std::ops::Index;
use std::sync::Arc;
use std::{fmt, mem};
use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError};
use ra_arena::map::ArenaMap;
use join_to_string::join;
use rustc_hash::FxHashMap;
use test_utils::tested_by;
use crate::{
Module, Function, Struct, StructField, Enum, EnumVariant, Path, Name, ImplBlock,
FnSignature, FnScopes, ModuleDef, AdtDef,
db::HirDatabase,
type_ref::{TypeRef, Mutability},
name::KnownName,
expr::{Body, Expr, BindingAnnotation, Literal, ExprId, Pat, PatId, UnaryOp, BinaryOp, Statement, FieldPat},
generics::GenericParams,
path::GenericArg,
adt::VariantDef,
};
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
}
}
/// The kinds of placeholders we need during type inference. There's separate
/// values for general types, and for integer and float variables. The latter
/// two are used for inference of literal values (e.g. `100` could be one of
/// several integer types).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum InferTy {
TypeVar(TypeVarId),
IntVar(TypeVarId),
FloatVar(TypeVarId),
}
impl InferTy {
fn to_inner(self) -> TypeVarId {
match self {
InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty,
}
}
fn fallback_value(self) -> Ty {
match self {
InferTy::TypeVar(..) => Ty::Unknown,
InferTy::IntVar(..) => {
Ty::Int(primitive::UncertainIntTy::Signed(primitive::IntTy::I32))
}
InferTy::FloatVar(..) => {
Ty::Float(primitive::UncertainFloatTy::Known(primitive::FloatTy::F64))
}
}
}
}
/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
struct Expectation {
ty: Ty,
// TODO: In some cases, we need to be aware whether the expectation is that
// the type match exactly what we passed, or whether it just needs to be
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
}
impl Expectation {
/// The expectation that the type of the expression needs to equal the given
/// type.
fn has_type(ty: Ty) -> Self {
Expectation { ty }
}
/// This expresses no expectation on the type.
fn none() -> Self {
Expectation { ty: Ty::Unknown }
}
}
/// A list of substitutions for generic parameters.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Substs(Arc<[Ty]>);
impl Substs {
pub fn empty() -> Substs {
Substs(Arc::new([]))
}
}
/// A type. This is based on the `TyKind` enum in rustc (librustc/ty/sty.rs).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Ty {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive integer type. For example, `i32`.
Int(primitive::UncertainIntTy),
/// A primitive floating-point type. For example, `f64`.
Float(primitive::UncertainFloatTy),
/// Structures, enumerations and unions.
Adt {
/// The DefId of the struct/enum.
def_id: AdtDef,
/// The name, for displaying.
name: Name,
/// Substitutions for the generic parameters of the type.
substs: Substs,
},
/// The pointee of a string slice. Written as `str`.
Str,
/// The pointee of an array slice. Written as `[T]`.
Slice(Arc<Ty>),
// An array with the given length. Written as `[T; n]`.
Array(Arc<Ty>),
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(Arc<Ty>, Mutability),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(Arc<Ty>, Mutability),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr(Arc<FnSig>),
// rustc has a separate type for each function, which just coerces to the
// above function pointer type. Once we implement generics, we will probably
// need this as well.
// A trait, defined with `dyn Trait`.
// Dynamic(),
// The anonymous type of a closure. Used to represent the type of
// `|a| a`.
// Closure(DefId, ClosureSubsts<'tcx>),
// The anonymous type of a generator. Used to represent the type of
// `|a| yield a`.
// Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability),
// A type representing the types stored inside a generator.
// This should only appear in GeneratorInteriors.
// GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
/// The never type `!`.
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple(Arc<[Ty]>),
// The projection of an associated type. For example,
// `<T as Trait<..>>::N`.pub
// Projection(ProjectionTy),
// Opaque (`impl Trait`) type found in a return type.
// Opaque(DefId, Substs),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}
Param {
/// The index of the parameter (starting with parameters from the
/// surrounding impl, then the current function).
idx: u32,
/// The name of the parameter, for displaying.
name: Name,
},
/// A type variable used during type checking. Not to be confused with a
/// type parameter.
Infer(InferTy),
/// A placeholder for a type which could not be computed; this is propagated
/// to avoid useless error messages. Doubles as a placeholder where type
/// variables are inserted before type checking, since we want to try to
/// infer a better type here anyway -- for the IDE use case, we want to try
/// to infer as much as possible even in the presence of type errors.
Unknown,
}
/// A function signature.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct FnSig {
input: Vec<Ty>,
output: Ty,
}
impl Ty {
pub(crate) fn from_hir(
db: &impl HirDatabase,
// TODO: the next three parameters basically describe the scope for name
// resolution; this should be refactored into something like a general
// resolver architecture
module: &Module,
impl_block: Option<&ImplBlock>,
generics: &GenericParams,
type_ref: &TypeRef,
) -> Self {
match type_ref {
TypeRef::Never => Ty::Never,
TypeRef::Tuple(inner) => {
let inner_tys = inner
.iter()
.map(|tr| Ty::from_hir(db, module, impl_block, generics, tr))
.collect::<Vec<_>>();
Ty::Tuple(inner_tys.into())
}
TypeRef::Path(path) => Ty::from_hir_path(db, module, impl_block, generics, path),
TypeRef::RawPtr(inner, mutability) => {
let inner_ty = Ty::from_hir(db, module, impl_block, generics, inner);
Ty::RawPtr(Arc::new(inner_ty), *mutability)
}
TypeRef::Array(inner) => {
let inner_ty = Ty::from_hir(db, module, impl_block, generics, inner);
Ty::Array(Arc::new(inner_ty))
}
TypeRef::Slice(inner) => {
let inner_ty = Ty::from_hir(db, module, impl_block, generics, inner);
Ty::Slice(Arc::new(inner_ty))
}
TypeRef::Reference(inner, mutability) => {
let inner_ty = Ty::from_hir(db, module, impl_block, generics, inner);
Ty::Ref(Arc::new(inner_ty), *mutability)
}
TypeRef::Placeholder => Ty::Unknown,
TypeRef::Fn(params) => {
let mut inner_tys = params
.iter()
.map(|tr| Ty::from_hir(db, module, impl_block, generics, tr))
.collect::<Vec<_>>();
let return_ty = inner_tys
.pop()
.expect("TypeRef::Fn should always have at least return type");
let sig = FnSig {
input: inner_tys,
output: return_ty,
};
Ty::FnPtr(Arc::new(sig))
}
TypeRef::Error => Ty::Unknown,
}
}
pub(crate) fn from_hir_opt(
db: &impl HirDatabase,
module: &Module,
impl_block: Option<&ImplBlock>,
generics: &GenericParams,
type_ref: Option<&TypeRef>,
) -> Self {
type_ref.map_or(Ty::Unknown, |t| {
Ty::from_hir(db, module, impl_block, generics, t)
})
}
pub(crate) fn from_hir_path(
db: &impl HirDatabase,
module: &Module,
impl_block: Option<&ImplBlock>,
generics: &GenericParams,
path: &Path,
) -> Self {
if let Some(name) = path.as_ident() {
if let Some(int_ty) = primitive::UncertainIntTy::from_name(name) {
return Ty::Int(int_ty);
} else if let Some(float_ty) = primitive::UncertainFloatTy::from_name(name) {
return Ty::Float(float_ty);
} else if name.as_known_name() == Some(KnownName::SelfType) {
// TODO pass the impl block's generics?
let generics = &GenericParams::default();
return Ty::from_hir_opt(
db,
module,
None,
generics,
impl_block.map(|i| i.target_type()),
);
} else if let Some(known) = name.as_known_name() {
match known {
KnownName::Bool => return Ty::Bool,
KnownName::Char => return Ty::Char,
KnownName::Str => return Ty::Str,
_ => {}
}
} else if let Some(generic_param) = generics.find_by_name(&name) {
return Ty::Param {
idx: generic_param.idx,
name: generic_param.name.clone(),
};
}
}
// Resolve in module (in type namespace)
let typable: TypableDef = match module
.resolve_path(db, path)
.take_types()
.and_then(|it| it.into())
{
None => return Ty::Unknown,
Some(it) => it,
};
let ty = db.type_for_def(typable);
let substs = Ty::substs_from_path(db, module, impl_block, generics, path, typable);
ty.apply_substs(substs)
}
/// Collect generic arguments from a path into a `Substs`. See also
/// `create_substs_for_ast_path` and `def_to_ty` in rustc.
fn substs_from_path(
db: &impl HirDatabase,
// the scope of the segment...
module: &Module,
impl_block: Option<&ImplBlock>,
outer_generics: &GenericParams,
path: &Path,
resolved: TypableDef,
) -> Substs {
let mut substs = Vec::new();
let last = path
.segments
.last()
.expect("path should have at least one segment");
let (def_generics, segment) = match resolved {
TypableDef::Function(func) => (func.generic_params(db), last),
TypableDef::Struct(s) => (s.generic_params(db), last),
TypableDef::Enum(e) => (e.generic_params(db), last),
TypableDef::EnumVariant(var) => {
// the generic args for an enum variant may be either specified
// on the segment referring to the enum, or on the segment
// referring to the variant. So `Option::<T>::None` and
// `Option::None::<T>` are both allowed (though the former is
// preferred). See also `def_ids_for_path_segments` in rustc.
let len = path.segments.len();
let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
// Option::<T>::None
&path.segments[len - 2]
} else {
// Option::None::<T>
last
};
(var.parent_enum(db).generic_params(db), segment)
}
};
// substs_from_path
if let Some(generic_args) = &segment.args_and_bindings {
// if args are provided, it should be all of them, but we can't rely on that
let param_count = def_generics.params.len();
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = Ty::from_hir(db, module, impl_block, outer_generics, type_ref);
substs.push(ty);
}
}
}
}
// add placeholders for args that were not provided
// TODO: handle defaults
for _ in segment
.args_and_bindings
.as_ref()
.map(|ga| ga.args.len())
.unwrap_or(0)..def_generics.params.len()
{
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), def_generics.params.len());
Substs(substs.into())
}
pub fn unit() -> Self {
Ty::Tuple(Arc::new([]))
}
fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
f(self);
match self {
Ty::Slice(t) | Ty::Array(t) => Arc::make_mut(t).walk_mut(f),
Ty::RawPtr(t, _) => Arc::make_mut(t).walk_mut(f),
Ty::Ref(t, _) => Arc::make_mut(t).walk_mut(f),
Ty::Tuple(ts) => {
// Without an Arc::make_mut_slice, we can't avoid the clone here:
let mut v: Vec<_> = ts.iter().cloned().collect();
for t in &mut v {
t.walk_mut(f);
}
*ts = v.into();
}
Ty::FnPtr(sig) => {
let sig_mut = Arc::make_mut(sig);
for input in &mut sig_mut.input {
input.walk_mut(f);
}
sig_mut.output.walk_mut(f);
}
Ty::Adt { substs, .. } => {
// Without an Arc::make_mut_slice, we can't avoid the clone here:
let mut v: Vec<_> = substs.0.iter().cloned().collect();
for t in &mut v {
t.walk_mut(f);
}
substs.0 = v.into();
}
_ => {}
}
}
fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty {
self.walk_mut(&mut |ty_mut| {
let ty = mem::replace(ty_mut, Ty::Unknown);
*ty_mut = f(ty);
});
self
}
fn builtin_deref(&self) -> Option<Ty> {
match self {
Ty::Ref(t, _) => Some(Ty::clone(t)),
Ty::RawPtr(t, _) => Some(Ty::clone(t)),
_ => None,
}
}
/// If this is a type with type parameters (an ADT or function), replaces
/// the `Substs` for these type parameters with the given ones. (So e.g. if
/// `self` is `Option<_>` and the substs contain `u32`, we'll have
/// `Option<u32>` afterwards.)
pub fn apply_substs(self, substs: Substs) -> Ty {
match self {
Ty::Adt { def_id, name, .. } => Ty::Adt {
def_id,
name,
substs,
},
_ => self,
}
}
/// Replaces type parameters in this type using the given `Substs`. (So e.g.
/// if `self` is `&[T]`, where type parameter T has index 0, and the
/// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.)
pub fn subst(self, substs: &Substs) -> Ty {
self.fold(&mut |ty| match ty {
Ty::Param { idx, name } => {
if (idx as usize) < substs.0.len() {
substs.0[idx as usize].clone()
} else {
// TODO: does this indicate a bug? i.e. should we always
// have substs for all type params? (they might contain the
// params themselves again...)
Ty::Param { idx, name }
}
}
ty => ty,
})
}
/// Returns the type parameters of this type if it has some (i.e. is an ADT
/// or function); so if `self` is `Option<u32>`, this returns the `u32`.
fn substs(&self) -> Option<Substs> {
match self {
Ty::Adt { substs, .. } => Some(substs.clone()),
_ => None,
}
}
}
impl fmt::Display for Ty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Ty::Bool => write!(f, "bool"),
Ty::Char => write!(f, "char"),
Ty::Int(t) => write!(f, "{}", t.ty_to_string()),
Ty::Float(t) => write!(f, "{}", t.ty_to_string()),
Ty::Str => write!(f, "str"),
Ty::Slice(t) | Ty::Array(t) => write!(f, "[{}]", t),
Ty::RawPtr(t, m) => write!(f, "*{}{}", m.as_keyword_for_ptr(), t),
Ty::Ref(t, m) => write!(f, "&{}{}", m.as_keyword_for_ref(), t),
Ty::Never => write!(f, "!"),
Ty::Tuple(ts) => {
if ts.len() == 1 {
write!(f, "({},)", ts[0])
} else {
join(ts.iter())
.surround_with("(", ")")
.separator(", ")
.to_fmt(f)
}
}
Ty::FnPtr(sig) => {
join(sig.input.iter())
.surround_with("fn(", ")")
.separator(", ")
.to_fmt(f)?;
write!(f, " -> {}", sig.output)
}
Ty::Adt { name, substs, .. } => {
write!(f, "{}", name)?;
if substs.0.len() > 0 {
join(substs.0.iter())
.surround_with("<", ">")
.separator(", ")
.to_fmt(f)?;
}
Ok(())
}
Ty::Param { name, .. } => write!(f, "{}", name),
Ty::Unknown => write!(f, "[unknown]"),
Ty::Infer(..) => write!(f, "_"),
}
}
}
// Functions returning declared types for items
/// Compute the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &impl HirDatabase, f: Function) -> Ty {
let signature = f.signature(db);
let module = f.module(db);
let impl_block = f.impl_block(db);
let generics = f.generic_params(db);
let input = signature
.params()
.iter()
.map(|tr| Ty::from_hir(db, &module, impl_block.as_ref(), &generics, tr))
.collect::<Vec<_>>();
let output = Ty::from_hir(
db,
&module,
impl_block.as_ref(),
&generics,
signature.ret_type(),
);
let sig = FnSig { input, output };
Ty::FnPtr(Arc::new(sig))
}
fn make_substs(generics: &GenericParams) -> Substs {
Substs(
generics
.params
.iter()
.map(|_p| Ty::Unknown)
.collect::<Vec<_>>()
.into(),
)
}
fn type_for_struct(db: &impl HirDatabase, s: Struct) -> Ty {
let generics = s.generic_params(db);
Ty::Adt {
def_id: s.into(),
name: s.name(db).unwrap_or_else(Name::missing),
substs: make_substs(&generics),
}
}
pub(crate) fn type_for_enum(db: &impl HirDatabase, s: Enum) -> Ty {
let generics = s.generic_params(db);
Ty::Adt {
def_id: s.into(),
name: s.name(db).unwrap_or_else(Name::missing),
substs: make_substs(&generics),
}
}
pub(crate) fn type_for_enum_variant(db: &impl HirDatabase, ev: EnumVariant) -> Ty {
let enum_parent = ev.parent_enum(db);
type_for_enum(db, enum_parent)
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum TypableDef {
Function(Function),
Struct(Struct),
Enum(Enum),
EnumVariant(EnumVariant),
}
impl_froms!(TypableDef: Function, Struct, Enum, EnumVariant);
impl From<ModuleDef> for Option<TypableDef> {
fn from(def: ModuleDef) -> Option<TypableDef> {
let res = match def {
ModuleDef::Function(f) => f.into(),
ModuleDef::Struct(s) => s.into(),
ModuleDef::Enum(e) => e.into(),
ModuleDef::EnumVariant(v) => v.into(),
ModuleDef::Const(_)
| ModuleDef::Static(_)
| ModuleDef::Module(_)
| ModuleDef::Trait(_)
| ModuleDef::Type(_) => return None,
};
Some(res)
}
}
pub(super) fn type_for_def(db: &impl HirDatabase, def: TypableDef) -> Ty {
match def {
TypableDef::Function(f) => type_for_fn(db, f),
TypableDef::Struct(s) => type_for_struct(db, s),
TypableDef::Enum(e) => type_for_enum(db, e),
TypableDef::EnumVariant(v) => type_for_enum_variant(db, v),
}
}
pub(super) fn type_for_field(db: &impl HirDatabase, field: StructField) -> Ty {
let parent_def = field.parent_def(db);
let (generics, module) = match parent_def {
VariantDef::Struct(it) => (it.generic_params(db), it.module(db)),
VariantDef::EnumVariant(it) => (it.parent_enum(db).generic_params(db), it.module(db)),
};
let var_data = parent_def.variant_data(db);
let type_ref = &var_data.fields().unwrap()[field.id].type_ref;
Ty::from_hir(db, &module, None, &generics, type_ref)
}
/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct InferenceResult {
/// For each method call expr, records the function it resolves to.
method_resolutions: FxHashMap<ExprId, Function>,
/// For each field access expr, records the field it resolves to.
field_resolutions: FxHashMap<ExprId, StructField>,
type_of_expr: ArenaMap<ExprId, Ty>,
type_of_pat: ArenaMap<PatId, Ty>,
}
impl InferenceResult {
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
self.method_resolutions.get(&expr).map(|it| *it)
}
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
self.field_resolutions.get(&expr).map(|it| *it)
}
}
impl Index<ExprId> for InferenceResult {
type Output = Ty;
fn index(&self, expr: ExprId) -> &Ty {
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
}
}
impl Index<PatId> for InferenceResult {
type Output = Ty;
fn index(&self, pat: PatId) -> &Ty {
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
}
}
/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a, D: HirDatabase> {
db: &'a D,
body: Arc<Body>,
scopes: Arc<FnScopes>,
module: Module,
impl_block: Option<ImplBlock>,
var_unification_table: InPlaceUnificationTable<TypeVarId>,
method_resolutions: FxHashMap<ExprId, Function>,
field_resolutions: FxHashMap<ExprId, StructField>,
type_of_expr: ArenaMap<ExprId, Ty>,
type_of_pat: ArenaMap<PatId, Ty>,
/// The return type of the function being inferred.
return_ty: Ty,
}
fn binary_op_return_ty(op: BinaryOp, rhs_ty: Ty) -> Ty {
match op {
BinaryOp::BooleanOr
| BinaryOp::BooleanAnd
| BinaryOp::EqualityTest
| BinaryOp::LesserEqualTest
| BinaryOp::GreaterEqualTest
| BinaryOp::LesserTest
| BinaryOp::GreaterTest => Ty::Bool,
BinaryOp::Assignment
| BinaryOp::AddAssign
| BinaryOp::SubAssign
| BinaryOp::DivAssign
| BinaryOp::MulAssign
| BinaryOp::RemAssign
| BinaryOp::ShrAssign
| BinaryOp::ShlAssign
| BinaryOp::BitAndAssign
| BinaryOp::BitOrAssign
| BinaryOp::BitXorAssign => Ty::unit(),
BinaryOp::Addition
| BinaryOp::Subtraction
| BinaryOp::Multiplication
| BinaryOp::Division
| BinaryOp::Remainder
| BinaryOp::LeftShift
| BinaryOp::RightShift
| BinaryOp::BitwiseAnd
| BinaryOp::BitwiseOr
| BinaryOp::BitwiseXor => match rhs_ty {
Ty::Int(..)
| Ty::Float(..)
| Ty::Infer(InferTy::IntVar(..))
| Ty::Infer(InferTy::FloatVar(..)) => rhs_ty,
_ => Ty::Unknown,
},
BinaryOp::RangeRightOpen | BinaryOp::RangeRightClosed => Ty::Unknown,
}
}
fn binary_op_rhs_expectation(op: BinaryOp, lhs_ty: Ty) -> Ty {
match op {
BinaryOp::BooleanAnd | BinaryOp::BooleanOr => Ty::Bool,
BinaryOp::Assignment | BinaryOp::EqualityTest => match lhs_ty {
Ty::Int(..) | Ty::Float(..) | Ty::Str | Ty::Char | Ty::Bool => lhs_ty,
_ => Ty::Unknown,
},
BinaryOp::LesserEqualTest
| BinaryOp::GreaterEqualTest
| BinaryOp::LesserTest
| BinaryOp::GreaterTest
| BinaryOp::AddAssign
| BinaryOp::SubAssign
| BinaryOp::DivAssign
| BinaryOp::MulAssign
| BinaryOp::RemAssign
| BinaryOp::ShrAssign
| BinaryOp::ShlAssign
| BinaryOp::BitAndAssign
| BinaryOp::BitOrAssign
| BinaryOp::BitXorAssign
| BinaryOp::Addition
| BinaryOp::Subtraction
| BinaryOp::Multiplication
| BinaryOp::Division
| BinaryOp::Remainder
| BinaryOp::LeftShift
| BinaryOp::RightShift
| BinaryOp::BitwiseAnd
| BinaryOp::BitwiseOr
| BinaryOp::BitwiseXor => match lhs_ty {
Ty::Int(..) | Ty::Float(..) => lhs_ty,
_ => Ty::Unknown,
},
_ => Ty::Unknown,
}
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
fn new(
db: &'a D,
body: Arc<Body>,
scopes: Arc<FnScopes>,
module: Module,
impl_block: Option<ImplBlock>,
) -> Self {
InferenceContext {
method_resolutions: FxHashMap::default(),
field_resolutions: FxHashMap::default(),
type_of_expr: ArenaMap::default(),
type_of_pat: ArenaMap::default(),
var_unification_table: InPlaceUnificationTable::new(),
return_ty: Ty::Unknown, // set in collect_fn_signature
db,
body,
scopes,
module,
impl_block,
}
}
fn resolve_all(mut self) -> InferenceResult {
let mut tv_stack = Vec::new();
let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default());
for ty in expr_types.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default());
for ty in pat_types.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
InferenceResult {
method_resolutions: mem::replace(&mut self.method_resolutions, Default::default()),
field_resolutions: mem::replace(&mut self.field_resolutions, Default::default()),
type_of_expr: expr_types,
type_of_pat: pat_types,
}
}
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
self.type_of_expr.insert(expr, ty);
}
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
self.method_resolutions.insert(expr, func);
}
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
self.field_resolutions.insert(expr, field);
}
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
self.type_of_pat.insert(pat, ty);
}
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
// TODO provide generics of function
let generics = GenericParams::default();
let ty = Ty::from_hir(
self.db,
&self.module,
self.impl_block.as_ref(),
&generics,
type_ref,
);
let ty = self.insert_type_vars(ty);
ty
}
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs) -> bool {
substs1
.0
.iter()
.zip(substs2.0.iter())
.all(|(t1, t2)| self.unify(t1, t2))
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
match (&*ty1, &*ty2) {
(Ty::Unknown, ..) => true,
(.., Ty::Unknown) => true,
(Ty::Int(t1), Ty::Int(t2)) => match (t1, t2) {
(primitive::UncertainIntTy::Unknown, _)
| (_, primitive::UncertainIntTy::Unknown) => true,
_ => t1 == t2,
},
(Ty::Float(t1), Ty::Float(t2)) => match (t1, t2) {
(primitive::UncertainFloatTy::Unknown, _)
| (_, primitive::UncertainFloatTy::Unknown) => true,
_ => t1 == t2,
},
(Ty::Bool, _) | (Ty::Str, _) | (Ty::Never, _) | (Ty::Char, _) => ty1 == ty2,
(
Ty::Adt {
def_id: def_id1,
substs: substs1,
..
},
Ty::Adt {
def_id: def_id2,
substs: substs2,
..
},
) if def_id1 == def_id2 => self.unify_substs(substs1, substs2),
(Ty::Slice(t1), Ty::Slice(t2)) => self.unify(t1, t2),
(Ty::RawPtr(t1, m1), Ty::RawPtr(t2, m2)) if m1 == m2 => self.unify(t1, t2),
(Ty::Ref(t1, m1), Ty::Ref(t2, m2)) if m1 == m2 => self.unify(t1, t2),
(Ty::FnPtr(sig1), Ty::FnPtr(sig2)) if sig1 == sig2 => true,
(Ty::Tuple(ts1), Ty::Tuple(ts2)) if ts1.len() == ts2.len() => ts1
.iter()
.zip(ts2.iter())
.all(|(t1, t2)| self.unify(t1, t2)),
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => {
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(*tv1, *tv2);
true
}
(Ty::Infer(InferTy::TypeVar(tv)), other)
| (other, Ty::Infer(InferTy::TypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other)
| (other, Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other)
| (other, Ty::Infer(InferTy::FloatVar(tv))) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table
.union_value(*tv, TypeVarValue::Known(other.clone()));
true
}
_ => false,
}
}
fn new_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::TypeVar(
self.var_unification_table.new_key(TypeVarValue::Unknown),
))
}
fn new_integer_var(&mut self) -> Ty {
Ty::Infer(InferTy::IntVar(
self.var_unification_table.new_key(TypeVarValue::Unknown),
))
}
fn new_float_var(&mut self) -> Ty {
Ty::Infer(InferTy::FloatVar(
self.var_unification_table.new_key(TypeVarValue::Unknown),
))
}
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty {
Ty::Unknown => self.new_type_var(),
Ty::Int(primitive::UncertainIntTy::Unknown) => self.new_integer_var(),
Ty::Float(primitive::UncertainFloatTy::Unknown) => self.new_float_var(),
_ => ty,
}
}
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_as_possible);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
})
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
match self.var_unification_table.probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
Cow::Owned(known_ty.clone())
}
_ => Cow::Borrowed(ty),
}
}
_ => Cow::Borrowed(ty),
}
}
/// Resolves the type completely; type variables without known type are
/// replaced by Ty::Unknown.
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_completely);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
tv.fallback_value()
}
}
_ => ty,
})
}
fn infer_path_expr(&mut self, expr: ExprId, path: &Path) -> Option<Ty> {
if path.is_ident() || path.is_self() {
// resolve locally
let name = path.as_ident().cloned().unwrap_or_else(Name::self_param);
if let Some(scope_entry) = self.scopes.resolve_local_name(expr, name) {
let ty = self.type_of_pat.get(scope_entry.pat())?;
let ty = self.resolve_ty_as_possible(&mut vec![], ty.clone());
return Some(ty);
};
};
// resolve in module
let typable: Option<TypableDef> = self
.module
.resolve_path(self.db, &path)
.take_values()?
.into();
let typable = typable?;
let ty = self.db.type_for_def(typable);
let ty = self.insert_type_vars(ty);
Some(ty)
}
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
let path = match path {
Some(path) => path,
None => return (Ty::Unknown, None),
};
let typable: Option<TypableDef> = self
.module
.resolve_path(self.db, &path)
.take_types()
.and_then(|it| it.into());
let def = match typable {
None => return (Ty::Unknown, None),
Some(it) => it,
};
// TODO remove the duplication between here and `Ty::from_path`?
// TODO provide generics of function
let generics = GenericParams::default();
let substs = Ty::substs_from_path(
self.db,
&self.module,
self.impl_block.as_ref(),
&generics,
path,
def,
);
match def {
TypableDef::Struct(s) => {
let ty = type_for_struct(self.db, s);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(s.into()))
}
TypableDef::EnumVariant(var) => {
let ty = type_for_enum_variant(self.db, var);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(var.into()))
}
TypableDef::Enum(_) | TypableDef::Function(_) => (Ty::Unknown, None),
}
}
fn infer_tuple_struct_pat(
&mut self,
path: Option<&Path>,
subpats: &[PatId],
expected: &Ty,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for (i, &subpat) in subpats.iter().enumerate() {
let expected_ty = def
.and_then(|d| d.field(self.db, &Name::tuple_field_name(i)))
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_pat(subpat, &expected_ty);
}
ty
}
fn infer_struct_pat(&mut self, path: Option<&Path>, subpats: &[FieldPat], expected: &Ty) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for subpat in subpats {
let matching_field = def.and_then(|it| it.field(self.db, &subpat.name));
let expected_ty = matching_field
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_pat(subpat.pat, &expected_ty);
}
ty
}
fn infer_pat(&mut self, pat: PatId, expected: &Ty) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[pat] {
Pat::Tuple(ref args) => {
let expectations = match *expected {
Ty::Tuple(ref tuple_args) => &**tuple_args,
_ => &[],
};
let expectations_iter = expectations
.into_iter()
.chain(std::iter::repeat(&Ty::Unknown));
let inner_tys = args
.iter()
.zip(expectations_iter)
.map(|(&pat, ty)| self.infer_pat(pat, ty))
.collect::<Vec<_>>()
.into();
Ty::Tuple(inner_tys)
}
Pat::Ref { pat, mutability } => {
let expectation = match *expected {
Ty::Ref(ref sub_ty, exp_mut) => {
if *mutability != exp_mut {
// TODO: emit type error?
}
&**sub_ty
}
_ => &Ty::Unknown,
};
let subty = self.infer_pat(*pat, expectation);
Ty::Ref(subty.into(), *mutability)
}
Pat::TupleStruct {
path: ref p,
args: ref subpats,
} => self.infer_tuple_struct_pat(p.as_ref(), subpats, expected),
Pat::Struct {
path: ref p,
args: ref fields,
} => self.infer_struct_pat(p.as_ref(), fields, expected),
Pat::Path(path) => self
.module
.resolve_path(self.db, &path)
.take_values()
.and_then(|module_def| module_def.into())
.map_or(Ty::Unknown, |resolved| self.db.type_for_def(resolved)),
Pat::Bind {
mode,
name: _name,
subpat,
} => {
let subty = if let Some(subpat) = subpat {
self.infer_pat(*subpat, expected)
} else {
expected.clone()
};
match mode {
BindingAnnotation::Ref => Ty::Ref(subty.into(), Mutability::Shared),
BindingAnnotation::RefMut => Ty::Ref(subty.into(), Mutability::Mut),
BindingAnnotation::Mutable | BindingAnnotation::Unannotated => subty,
}
}
_ => Ty::Unknown,
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, expected);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_pat_ty(pat, ty.clone());
ty
}
fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[tgt_expr] {
Expr::Missing => Ty::Unknown,
Expr::If {
condition,
then_branch,
else_branch,
} => {
// if let is desugared to match, so this is always simple if
self.infer_expr(*condition, &Expectation::has_type(Ty::Bool));
let then_ty = self.infer_expr(*then_branch, expected);
match else_branch {
Some(else_branch) => {
self.infer_expr(*else_branch, expected);
}
None => {
// no else branch -> unit
self.unify(&then_ty, &Ty::unit()); // actually coerce
}
};
then_ty
}
Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
Expr::Loop { body } => {
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
// TODO handle break with value
Ty::Never
}
Expr::While { condition, body } => {
// while let is desugared to a match loop, so this is always simple while
self.infer_expr(*condition, &Expectation::has_type(Ty::Bool));
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::For {
iterable,
body,
pat,
} => {
let _iterable_ty = self.infer_expr(*iterable, &Expectation::none());
self.infer_pat(*pat, &Ty::Unknown);
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::Lambda {
body,
args,
arg_types,
} => {
assert_eq!(args.len(), arg_types.len());
for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
let expected = if let Some(type_ref) = arg_type {
let ty = self.make_ty(type_ref);
ty
} else {
Ty::Unknown
};
self.infer_pat(*arg_pat, &expected);
}
// TODO: infer lambda type etc.
let _body_ty = self.infer_expr(*body, &Expectation::none());
Ty::Unknown
}
Expr::Call { callee, args } => {
let callee_ty = self.infer_expr(*callee, &Expectation::none());
let (param_tys, ret_ty) = match &callee_ty {
Ty::FnPtr(sig) => (&sig.input[..], sig.output.clone()),
_ => {
// not callable
// TODO report an error?
(&[][..], Ty::Unknown)
}
};
for (i, arg) in args.iter().enumerate() {
self.infer_expr(
*arg,
&Expectation::has_type(param_tys.get(i).cloned().unwrap_or(Ty::Unknown)),
);
}
ret_ty
}
Expr::MethodCall {
receiver,
args,
method_name,
} => {
let receiver_ty = self.infer_expr(*receiver, &Expectation::none());
let resolved = receiver_ty.clone().lookup_method(self.db, method_name);
let method_ty = match resolved {
Some(func) => {
self.write_method_resolution(tgt_expr, func);
self.db.type_for_def(func.into())
}
None => Ty::Unknown,
};
let method_ty = self.insert_type_vars(method_ty);
let (expected_receiver_ty, param_tys, ret_ty) = match &method_ty {
Ty::FnPtr(sig) => {
if sig.input.len() > 0 {
(&sig.input[0], &sig.input[1..], sig.output.clone())
} else {
(&Ty::Unknown, &[][..], sig.output.clone())
}
}
_ => (&Ty::Unknown, &[][..], Ty::Unknown),
};
// TODO we would have to apply the autoderef/autoref steps here
// to get the correct receiver type to unify...
self.unify(expected_receiver_ty, &receiver_ty);
for (i, arg) in args.iter().enumerate() {
self.infer_expr(
*arg,
&Expectation::has_type(param_tys.get(i).cloned().unwrap_or(Ty::Unknown)),
);
}
ret_ty
}
Expr::Match { expr, arms } => {
let expected = if expected.ty == Ty::Unknown {
Expectation::has_type(self.new_type_var())
} else {
expected.clone()
};
let input_ty = self.infer_expr(*expr, &Expectation::none());
for arm in arms {
for &pat in &arm.pats {
let _pat_ty = self.infer_pat(pat, &input_ty);
}
// TODO type the guard
self.infer_expr(arm.expr, &expected);
}
expected.ty
}
Expr::Path(p) => self.infer_path_expr(tgt_expr, p).unwrap_or(Ty::Unknown),
Expr::Continue => Ty::Never,
Expr::Break { expr } => {
if let Some(expr) = expr {
// TODO handle break with value
self.infer_expr(*expr, &Expectation::none());
}
Ty::Never
}
Expr::Return { expr } => {
if let Some(expr) = expr {
self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
}
Ty::Never
}
Expr::StructLit {
path,
fields,
spread,
} => {
let (ty, def_id) = self.resolve_variant(path.as_ref());
let substs = ty.substs().unwrap_or_else(Substs::empty);
for field in fields {
let field_ty = def_id
.and_then(|it| it.field(self.db, &field.name))
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_expr(field.expr, &Expectation::has_type(field_ty));
}
if let Some(expr) = spread {
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
}
ty
}
Expr::Field { expr, name } => {
let receiver_ty = self.infer_expr(*expr, &Expectation::none());
let ty = receiver_ty
.autoderef(self.db)
.find_map(|derefed_ty| match derefed_ty {
Ty::Tuple(fields) => {
let i = name.to_string().parse::<usize>().ok();
i.and_then(|i| fields.get(i).cloned())
}
Ty::Adt {
def_id: AdtDef::Struct(s),
ref substs,
..
} => s.field(self.db, name).map(|field| {
self.write_field_resolution(tgt_expr, field);
field.ty(self.db).subst(substs)
}),
_ => None,
})
.unwrap_or(Ty::Unknown);
self.insert_type_vars(ty)
}
Expr::Try { expr } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
Ty::Unknown
}
Expr::Cast { expr, type_ref } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
let cast_ty = self.make_ty(type_ref);
// TODO check the cast...
cast_ty
}
Expr::Ref { expr, mutability } => {
// TODO pass the expectation down
let inner_ty = self.infer_expr(*expr, &Expectation::none());
// TODO reference coercions etc.
Ty::Ref(Arc::new(inner_ty), *mutability)
}
Expr::UnaryOp { expr, op } => {
let inner_ty = self.infer_expr(*expr, &Expectation::none());
match op {
UnaryOp::Deref => {
if let Some(derefed_ty) = inner_ty.builtin_deref() {
derefed_ty
} else {
// TODO Deref::deref
Ty::Unknown
}
}
UnaryOp::Neg => {
match inner_ty {
Ty::Int(primitive::UncertainIntTy::Unknown)
| Ty::Int(primitive::UncertainIntTy::Signed(..))
| Ty::Infer(InferTy::IntVar(..))
| Ty::Infer(InferTy::FloatVar(..))
| Ty::Float(..) => inner_ty,
// TODO: resolve ops::Neg trait
_ => Ty::Unknown,
}
}
UnaryOp::Not if inner_ty == Ty::Bool => Ty::Bool,
// TODO: resolve ops::Not trait for inner_ty
UnaryOp::Not => Ty::Unknown,
}
}
Expr::BinaryOp { lhs, rhs, op } => match op {
Some(op) => {
let lhs_expectation = match op {
BinaryOp::BooleanAnd | BinaryOp::BooleanOr => {
Expectation::has_type(Ty::Bool)
}
_ => Expectation::none(),
};
let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
// TODO: find implementation of trait corresponding to operation
// symbol and resolve associated `Output` type
let rhs_expectation = binary_op_rhs_expectation(*op, lhs_ty);
let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
// TODO: similar as above, return ty is often associated trait type
binary_op_return_ty(*op, rhs_ty)
}
_ => Ty::Unknown,
},
Expr::Tuple { exprs } => {
let mut ty_vec = Vec::with_capacity(exprs.len());
for arg in exprs.iter() {
ty_vec.push(self.infer_expr(*arg, &Expectation::none()));
}
Ty::Tuple(Arc::from(ty_vec))
}
Expr::Array { exprs } => {
let elem_ty = match &expected.ty {
Ty::Slice(inner) | Ty::Array(inner) => Ty::clone(&inner),
_ => self.new_type_var(),
};
for expr in exprs.iter() {
self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone()));
}
Ty::Array(Arc::new(elem_ty))
}
Expr::Literal(lit) => match lit {
Literal::Bool(..) => Ty::Bool,
Literal::String(..) => Ty::Ref(Arc::new(Ty::Str), Mutability::Shared),
Literal::ByteString(..) => {
let byte_type = Arc::new(Ty::Int(primitive::UncertainIntTy::Unsigned(
primitive::UintTy::U8,
)));
let slice_type = Arc::new(Ty::Slice(byte_type));
Ty::Ref(slice_type, Mutability::Shared)
}
Literal::Char(..) => Ty::Char,
Literal::Int(_v, ty) => Ty::Int(*ty),
Literal::Float(_v, ty) => Ty::Float(*ty),
},
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, &expected.ty);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_expr_ty(tgt_expr, ty.clone());
ty
}
fn infer_block(
&mut self,
statements: &[Statement],
tail: Option<ExprId>,
expected: &Expectation,
) -> Ty {
for stmt in statements {
match stmt {
Statement::Let {
pat,
type_ref,
initializer,
} => {
let decl_ty = type_ref
.as_ref()
.map(|tr| self.make_ty(tr))
.unwrap_or(Ty::Unknown);
let decl_ty = self.insert_type_vars(decl_ty);
let ty = if let Some(expr) = initializer {
let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty));
expr_ty
} else {
decl_ty
};
self.infer_pat(*pat, &ty);
}
Statement::Expr(expr) => {
self.infer_expr(*expr, &Expectation::none());
}
}
}
let ty = if let Some(expr) = tail {
self.infer_expr(expr, expected)
} else {
Ty::unit()
};
ty
}
fn collect_fn_signature(&mut self, signature: &FnSignature) {
let body = Arc::clone(&self.body); // avoid borrow checker problem
for (type_ref, pat) in signature.params().iter().zip(body.params()) {
let ty = self.make_ty(type_ref);
self.infer_pat(*pat, &ty);
}
self.return_ty = {
let ty = self.make_ty(signature.ret_type());
ty
};
}
fn infer_body(&mut self) {
self.infer_expr(
self.body.body_expr(),
&Expectation::has_type(self.return_ty.clone()),
);
}
}
pub fn infer(db: &impl HirDatabase, func: Function) -> Arc<InferenceResult> {
db.check_canceled();
let body = func.body(db);
let scopes = db.fn_scopes(func);
let module = func.module(db);
let impl_block = func.impl_block(db);
let mut ctx = InferenceContext::new(db, body, scopes, module, impl_block);
let signature = func.signature(db);
ctx.collect_fn_signature(&signature);
ctx.infer_body();
Arc::new(ctx.resolve_all())
}