7a7ca8238f
implement zeroed and uninitialized with MaybeUninit This is the second attempt of doing such a change (first PR: https://github.com/rust-lang/rust/pull/62150). The last change [got reverted](https://github.com/rust-lang/rust/pull/63343) because it [caused](https://github.com/rust-lang/rust/issues/62825) some [issues](https://github.com/rust-lang/rust/issues/52898#issuecomment-512182438) in [code that incorrectly used these functions](https://github.com/erlepereira/x11-rs/issues/99). Since then, the [problematic code has been fixed](https://github.com/erlepereira/x11-rs/pull/101), and rustc [gained a lint](https://github.com/rust-lang/rust/pull/63346) that is able to detect many misuses of these functions statically and a [dynamic check that panics](https://github.com/rust-lang/rust/pull/66059) instead of causing UB for some incorrect uses. Fixes https://github.com/rust-lang/rust/issues/62825
2134 lines
83 KiB
Rust
2134 lines
83 KiB
Rust
use crate::abi::{Abi, FnAbi, LlvmType, PassMode};
|
||
use crate::builder::Builder;
|
||
use crate::context::CodegenCx;
|
||
use crate::llvm;
|
||
use crate::llvm_util;
|
||
use crate::type_::Type;
|
||
use crate::type_of::LayoutLlvmExt;
|
||
use crate::va_arg::emit_va_arg;
|
||
use crate::value::Value;
|
||
use rustc::ty::layout::{self, FnAbiExt, HasTyCtxt, LayoutOf, Primitive};
|
||
use rustc::ty::{self, Ty};
|
||
use rustc::{bug, span_bug};
|
||
use rustc_ast::ast;
|
||
use rustc_codegen_ssa::base::{compare_simd_types, to_immediate, wants_msvc_seh};
|
||
use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
|
||
use rustc_codegen_ssa::glue;
|
||
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
|
||
use rustc_codegen_ssa::mir::place::PlaceRef;
|
||
use rustc_codegen_ssa::MemFlags;
|
||
use rustc_hir as hir;
|
||
use rustc_target::abi::HasDataLayout;
|
||
|
||
use rustc_codegen_ssa::common::span_invalid_monomorphization_error;
|
||
use rustc_codegen_ssa::traits::*;
|
||
|
||
use rustc_span::Span;
|
||
|
||
use std::cmp::Ordering;
|
||
use std::{i128, iter, u128};
|
||
|
||
fn get_simple_intrinsic(cx: &CodegenCx<'ll, '_>, name: &str) -> Option<&'ll Value> {
|
||
let llvm_name = match name {
|
||
"sqrtf32" => "llvm.sqrt.f32",
|
||
"sqrtf64" => "llvm.sqrt.f64",
|
||
"powif32" => "llvm.powi.f32",
|
||
"powif64" => "llvm.powi.f64",
|
||
"sinf32" => "llvm.sin.f32",
|
||
"sinf64" => "llvm.sin.f64",
|
||
"cosf32" => "llvm.cos.f32",
|
||
"cosf64" => "llvm.cos.f64",
|
||
"powf32" => "llvm.pow.f32",
|
||
"powf64" => "llvm.pow.f64",
|
||
"expf32" => "llvm.exp.f32",
|
||
"expf64" => "llvm.exp.f64",
|
||
"exp2f32" => "llvm.exp2.f32",
|
||
"exp2f64" => "llvm.exp2.f64",
|
||
"logf32" => "llvm.log.f32",
|
||
"logf64" => "llvm.log.f64",
|
||
"log10f32" => "llvm.log10.f32",
|
||
"log10f64" => "llvm.log10.f64",
|
||
"log2f32" => "llvm.log2.f32",
|
||
"log2f64" => "llvm.log2.f64",
|
||
"fmaf32" => "llvm.fma.f32",
|
||
"fmaf64" => "llvm.fma.f64",
|
||
"fabsf32" => "llvm.fabs.f32",
|
||
"fabsf64" => "llvm.fabs.f64",
|
||
"minnumf32" => "llvm.minnum.f32",
|
||
"minnumf64" => "llvm.minnum.f64",
|
||
"maxnumf32" => "llvm.maxnum.f32",
|
||
"maxnumf64" => "llvm.maxnum.f64",
|
||
"copysignf32" => "llvm.copysign.f32",
|
||
"copysignf64" => "llvm.copysign.f64",
|
||
"floorf32" => "llvm.floor.f32",
|
||
"floorf64" => "llvm.floor.f64",
|
||
"ceilf32" => "llvm.ceil.f32",
|
||
"ceilf64" => "llvm.ceil.f64",
|
||
"truncf32" => "llvm.trunc.f32",
|
||
"truncf64" => "llvm.trunc.f64",
|
||
"rintf32" => "llvm.rint.f32",
|
||
"rintf64" => "llvm.rint.f64",
|
||
"nearbyintf32" => "llvm.nearbyint.f32",
|
||
"nearbyintf64" => "llvm.nearbyint.f64",
|
||
"roundf32" => "llvm.round.f32",
|
||
"roundf64" => "llvm.round.f64",
|
||
"assume" => "llvm.assume",
|
||
"abort" => "llvm.trap",
|
||
_ => return None,
|
||
};
|
||
Some(cx.get_intrinsic(&llvm_name))
|
||
}
|
||
|
||
impl IntrinsicCallMethods<'tcx> for Builder<'a, 'll, 'tcx> {
|
||
fn codegen_intrinsic_call(
|
||
&mut self,
|
||
instance: ty::Instance<'tcx>,
|
||
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
|
||
args: &[OperandRef<'tcx, &'ll Value>],
|
||
llresult: &'ll Value,
|
||
span: Span,
|
||
) {
|
||
let tcx = self.tcx;
|
||
let callee_ty = instance.monomorphic_ty(tcx);
|
||
|
||
let (def_id, substs) = match callee_ty.kind {
|
||
ty::FnDef(def_id, substs) => (def_id, substs),
|
||
_ => bug!("expected fn item type, found {}", callee_ty),
|
||
};
|
||
|
||
let sig = callee_ty.fn_sig(tcx);
|
||
let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &sig);
|
||
let arg_tys = sig.inputs();
|
||
let ret_ty = sig.output();
|
||
let name = &*tcx.item_name(def_id).as_str();
|
||
|
||
let llret_ty = self.layout_of(ret_ty).llvm_type(self);
|
||
let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);
|
||
|
||
let simple = get_simple_intrinsic(self, name);
|
||
let llval = match name {
|
||
_ if simple.is_some() => self.call(
|
||
simple.unwrap(),
|
||
&args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
|
||
None,
|
||
),
|
||
"unreachable" => {
|
||
return;
|
||
}
|
||
"likely" => {
|
||
let expect = self.get_intrinsic(&("llvm.expect.i1"));
|
||
self.call(expect, &[args[0].immediate(), self.const_bool(true)], None)
|
||
}
|
||
"unlikely" => {
|
||
let expect = self.get_intrinsic(&("llvm.expect.i1"));
|
||
self.call(expect, &[args[0].immediate(), self.const_bool(false)], None)
|
||
}
|
||
"try" => {
|
||
try_intrinsic(
|
||
self,
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
args[2].immediate(),
|
||
llresult,
|
||
);
|
||
return;
|
||
}
|
||
"breakpoint" => {
|
||
let llfn = self.get_intrinsic(&("llvm.debugtrap"));
|
||
self.call(llfn, &[], None)
|
||
}
|
||
"va_start" => self.va_start(args[0].immediate()),
|
||
"va_end" => self.va_end(args[0].immediate()),
|
||
"va_copy" => {
|
||
let intrinsic = self.cx().get_intrinsic(&("llvm.va_copy"));
|
||
self.call(intrinsic, &[args[0].immediate(), args[1].immediate()], None)
|
||
}
|
||
"va_arg" => {
|
||
match fn_abi.ret.layout.abi {
|
||
layout::Abi::Scalar(ref scalar) => {
|
||
match scalar.value {
|
||
Primitive::Int(..) => {
|
||
if self.cx().size_of(ret_ty).bytes() < 4 {
|
||
// `va_arg` should not be called on a integer type
|
||
// less than 4 bytes in length. If it is, promote
|
||
// the integer to a `i32` and truncate the result
|
||
// back to the smaller type.
|
||
let promoted_result = emit_va_arg(self, args[0], tcx.types.i32);
|
||
self.trunc(promoted_result, llret_ty)
|
||
} else {
|
||
emit_va_arg(self, args[0], ret_ty)
|
||
}
|
||
}
|
||
Primitive::F64 | Primitive::Pointer => {
|
||
emit_va_arg(self, args[0], ret_ty)
|
||
}
|
||
// `va_arg` should never be used with the return type f32.
|
||
Primitive::F32 => bug!("the va_arg intrinsic does not work with `f32`"),
|
||
}
|
||
}
|
||
_ => bug!("the va_arg intrinsic does not work with non-scalar types"),
|
||
}
|
||
}
|
||
"size_of_val" => {
|
||
let tp_ty = substs.type_at(0);
|
||
if let OperandValue::Pair(_, meta) = args[0].val {
|
||
let (llsize, _) = glue::size_and_align_of_dst(self, tp_ty, Some(meta));
|
||
llsize
|
||
} else {
|
||
self.const_usize(self.size_of(tp_ty).bytes())
|
||
}
|
||
}
|
||
"min_align_of_val" => {
|
||
let tp_ty = substs.type_at(0);
|
||
if let OperandValue::Pair(_, meta) = args[0].val {
|
||
let (_, llalign) = glue::size_and_align_of_dst(self, tp_ty, Some(meta));
|
||
llalign
|
||
} else {
|
||
self.const_usize(self.align_of(tp_ty).bytes())
|
||
}
|
||
}
|
||
"size_of" | "pref_align_of" | "min_align_of" | "needs_drop" | "type_id"
|
||
| "type_name" => {
|
||
let ty_name = self
|
||
.tcx
|
||
.const_eval_instance(ty::ParamEnv::reveal_all(), instance, None)
|
||
.unwrap();
|
||
OperandRef::from_const(self, ty_name, ret_ty).immediate_or_packed_pair(self)
|
||
}
|
||
// Effectively no-op
|
||
"forget" => {
|
||
return;
|
||
}
|
||
"offset" => {
|
||
let ptr = args[0].immediate();
|
||
let offset = args[1].immediate();
|
||
self.inbounds_gep(ptr, &[offset])
|
||
}
|
||
"arith_offset" => {
|
||
let ptr = args[0].immediate();
|
||
let offset = args[1].immediate();
|
||
self.gep(ptr, &[offset])
|
||
}
|
||
|
||
"copy_nonoverlapping" => {
|
||
copy_intrinsic(
|
||
self,
|
||
false,
|
||
false,
|
||
substs.type_at(0),
|
||
args[1].immediate(),
|
||
args[0].immediate(),
|
||
args[2].immediate(),
|
||
);
|
||
return;
|
||
}
|
||
"copy" => {
|
||
copy_intrinsic(
|
||
self,
|
||
true,
|
||
false,
|
||
substs.type_at(0),
|
||
args[1].immediate(),
|
||
args[0].immediate(),
|
||
args[2].immediate(),
|
||
);
|
||
return;
|
||
}
|
||
"write_bytes" => {
|
||
memset_intrinsic(
|
||
self,
|
||
false,
|
||
substs.type_at(0),
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
args[2].immediate(),
|
||
);
|
||
return;
|
||
}
|
||
|
||
"volatile_copy_nonoverlapping_memory" => {
|
||
copy_intrinsic(
|
||
self,
|
||
false,
|
||
true,
|
||
substs.type_at(0),
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
args[2].immediate(),
|
||
);
|
||
return;
|
||
}
|
||
"volatile_copy_memory" => {
|
||
copy_intrinsic(
|
||
self,
|
||
true,
|
||
true,
|
||
substs.type_at(0),
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
args[2].immediate(),
|
||
);
|
||
return;
|
||
}
|
||
"volatile_set_memory" => {
|
||
memset_intrinsic(
|
||
self,
|
||
true,
|
||
substs.type_at(0),
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
args[2].immediate(),
|
||
);
|
||
return;
|
||
}
|
||
"volatile_load" | "unaligned_volatile_load" => {
|
||
let tp_ty = substs.type_at(0);
|
||
let mut ptr = args[0].immediate();
|
||
if let PassMode::Cast(ty) = fn_abi.ret.mode {
|
||
ptr = self.pointercast(ptr, self.type_ptr_to(ty.llvm_type(self)));
|
||
}
|
||
let load = self.volatile_load(ptr);
|
||
let align = if name == "unaligned_volatile_load" {
|
||
1
|
||
} else {
|
||
self.align_of(tp_ty).bytes() as u32
|
||
};
|
||
unsafe {
|
||
llvm::LLVMSetAlignment(load, align);
|
||
}
|
||
to_immediate(self, load, self.layout_of(tp_ty))
|
||
}
|
||
"volatile_store" => {
|
||
let dst = args[0].deref(self.cx());
|
||
args[1].val.volatile_store(self, dst);
|
||
return;
|
||
}
|
||
"unaligned_volatile_store" => {
|
||
let dst = args[0].deref(self.cx());
|
||
args[1].val.unaligned_volatile_store(self, dst);
|
||
return;
|
||
}
|
||
"prefetch_read_data"
|
||
| "prefetch_write_data"
|
||
| "prefetch_read_instruction"
|
||
| "prefetch_write_instruction" => {
|
||
let expect = self.get_intrinsic(&("llvm.prefetch"));
|
||
let (rw, cache_type) = match name {
|
||
"prefetch_read_data" => (0, 1),
|
||
"prefetch_write_data" => (1, 1),
|
||
"prefetch_read_instruction" => (0, 0),
|
||
"prefetch_write_instruction" => (1, 0),
|
||
_ => bug!(),
|
||
};
|
||
self.call(
|
||
expect,
|
||
&[
|
||
args[0].immediate(),
|
||
self.const_i32(rw),
|
||
args[1].immediate(),
|
||
self.const_i32(cache_type),
|
||
],
|
||
None,
|
||
)
|
||
}
|
||
"ctlz" | "ctlz_nonzero" | "cttz" | "cttz_nonzero" | "ctpop" | "bswap"
|
||
| "bitreverse" | "add_with_overflow" | "sub_with_overflow" | "mul_with_overflow"
|
||
| "wrapping_add" | "wrapping_sub" | "wrapping_mul" | "unchecked_div"
|
||
| "unchecked_rem" | "unchecked_shl" | "unchecked_shr" | "unchecked_add"
|
||
| "unchecked_sub" | "unchecked_mul" | "exact_div" | "rotate_left" | "rotate_right"
|
||
| "saturating_add" | "saturating_sub" => {
|
||
let ty = arg_tys[0];
|
||
match int_type_width_signed(ty, self) {
|
||
Some((width, signed)) => match name {
|
||
"ctlz" | "cttz" => {
|
||
let y = self.const_bool(false);
|
||
let llfn = self.get_intrinsic(&format!("llvm.{}.i{}", name, width));
|
||
self.call(llfn, &[args[0].immediate(), y], None)
|
||
}
|
||
"ctlz_nonzero" | "cttz_nonzero" => {
|
||
let y = self.const_bool(true);
|
||
let llvm_name = &format!("llvm.{}.i{}", &name[..4], width);
|
||
let llfn = self.get_intrinsic(llvm_name);
|
||
self.call(llfn, &[args[0].immediate(), y], None)
|
||
}
|
||
"ctpop" => self.call(
|
||
self.get_intrinsic(&format!("llvm.ctpop.i{}", width)),
|
||
&[args[0].immediate()],
|
||
None,
|
||
),
|
||
"bswap" => {
|
||
if width == 8 {
|
||
args[0].immediate() // byte swap a u8/i8 is just a no-op
|
||
} else {
|
||
self.call(
|
||
self.get_intrinsic(&format!("llvm.bswap.i{}", width)),
|
||
&[args[0].immediate()],
|
||
None,
|
||
)
|
||
}
|
||
}
|
||
"bitreverse" => self.call(
|
||
self.get_intrinsic(&format!("llvm.bitreverse.i{}", width)),
|
||
&[args[0].immediate()],
|
||
None,
|
||
),
|
||
"add_with_overflow" | "sub_with_overflow" | "mul_with_overflow" => {
|
||
let intrinsic = format!(
|
||
"llvm.{}{}.with.overflow.i{}",
|
||
if signed { 's' } else { 'u' },
|
||
&name[..3],
|
||
width
|
||
);
|
||
let llfn = self.get_intrinsic(&intrinsic);
|
||
|
||
// Convert `i1` to a `bool`, and write it to the out parameter
|
||
let pair =
|
||
self.call(llfn, &[args[0].immediate(), args[1].immediate()], None);
|
||
let val = self.extract_value(pair, 0);
|
||
let overflow = self.extract_value(pair, 1);
|
||
let overflow = self.zext(overflow, self.type_bool());
|
||
|
||
let dest = result.project_field(self, 0);
|
||
self.store(val, dest.llval, dest.align);
|
||
let dest = result.project_field(self, 1);
|
||
self.store(overflow, dest.llval, dest.align);
|
||
|
||
return;
|
||
}
|
||
"wrapping_add" => self.add(args[0].immediate(), args[1].immediate()),
|
||
"wrapping_sub" => self.sub(args[0].immediate(), args[1].immediate()),
|
||
"wrapping_mul" => self.mul(args[0].immediate(), args[1].immediate()),
|
||
"exact_div" => {
|
||
if signed {
|
||
self.exactsdiv(args[0].immediate(), args[1].immediate())
|
||
} else {
|
||
self.exactudiv(args[0].immediate(), args[1].immediate())
|
||
}
|
||
}
|
||
"unchecked_div" => {
|
||
if signed {
|
||
self.sdiv(args[0].immediate(), args[1].immediate())
|
||
} else {
|
||
self.udiv(args[0].immediate(), args[1].immediate())
|
||
}
|
||
}
|
||
"unchecked_rem" => {
|
||
if signed {
|
||
self.srem(args[0].immediate(), args[1].immediate())
|
||
} else {
|
||
self.urem(args[0].immediate(), args[1].immediate())
|
||
}
|
||
}
|
||
"unchecked_shl" => self.shl(args[0].immediate(), args[1].immediate()),
|
||
"unchecked_shr" => {
|
||
if signed {
|
||
self.ashr(args[0].immediate(), args[1].immediate())
|
||
} else {
|
||
self.lshr(args[0].immediate(), args[1].immediate())
|
||
}
|
||
}
|
||
"unchecked_add" => {
|
||
if signed {
|
||
self.unchecked_sadd(args[0].immediate(), args[1].immediate())
|
||
} else {
|
||
self.unchecked_uadd(args[0].immediate(), args[1].immediate())
|
||
}
|
||
}
|
||
"unchecked_sub" => {
|
||
if signed {
|
||
self.unchecked_ssub(args[0].immediate(), args[1].immediate())
|
||
} else {
|
||
self.unchecked_usub(args[0].immediate(), args[1].immediate())
|
||
}
|
||
}
|
||
"unchecked_mul" => {
|
||
if signed {
|
||
self.unchecked_smul(args[0].immediate(), args[1].immediate())
|
||
} else {
|
||
self.unchecked_umul(args[0].immediate(), args[1].immediate())
|
||
}
|
||
}
|
||
"rotate_left" | "rotate_right" => {
|
||
let is_left = name == "rotate_left";
|
||
let val = args[0].immediate();
|
||
let raw_shift = args[1].immediate();
|
||
// rotate = funnel shift with first two args the same
|
||
let llvm_name =
|
||
&format!("llvm.fsh{}.i{}", if is_left { 'l' } else { 'r' }, width);
|
||
let llfn = self.get_intrinsic(llvm_name);
|
||
self.call(llfn, &[val, val, raw_shift], None)
|
||
}
|
||
"saturating_add" | "saturating_sub" => {
|
||
let is_add = name == "saturating_add";
|
||
let lhs = args[0].immediate();
|
||
let rhs = args[1].immediate();
|
||
if llvm_util::get_major_version() >= 8 {
|
||
let llvm_name = &format!(
|
||
"llvm.{}{}.sat.i{}",
|
||
if signed { 's' } else { 'u' },
|
||
if is_add { "add" } else { "sub" },
|
||
width
|
||
);
|
||
let llfn = self.get_intrinsic(llvm_name);
|
||
self.call(llfn, &[lhs, rhs], None)
|
||
} else {
|
||
let llvm_name = &format!(
|
||
"llvm.{}{}.with.overflow.i{}",
|
||
if signed { 's' } else { 'u' },
|
||
if is_add { "add" } else { "sub" },
|
||
width
|
||
);
|
||
let llfn = self.get_intrinsic(llvm_name);
|
||
let pair = self.call(llfn, &[lhs, rhs], None);
|
||
let val = self.extract_value(pair, 0);
|
||
let overflow = self.extract_value(pair, 1);
|
||
let llty = self.type_ix(width);
|
||
|
||
let limit = if signed {
|
||
let limit_lo = self
|
||
.const_uint_big(llty, (i128::MIN >> (128 - width)) as u128);
|
||
let limit_hi = self
|
||
.const_uint_big(llty, (i128::MAX >> (128 - width)) as u128);
|
||
let neg = self.icmp(
|
||
IntPredicate::IntSLT,
|
||
val,
|
||
self.const_uint(llty, 0),
|
||
);
|
||
self.select(neg, limit_hi, limit_lo)
|
||
} else if is_add {
|
||
self.const_uint_big(llty, u128::MAX >> (128 - width))
|
||
} else {
|
||
self.const_uint(llty, 0)
|
||
};
|
||
self.select(overflow, limit, val)
|
||
}
|
||
}
|
||
_ => bug!(),
|
||
},
|
||
None => {
|
||
span_invalid_monomorphization_error(
|
||
tcx.sess,
|
||
span,
|
||
&format!(
|
||
"invalid monomorphization of `{}` intrinsic: \
|
||
expected basic integer type, found `{}`",
|
||
name, ty
|
||
),
|
||
);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
"fadd_fast" | "fsub_fast" | "fmul_fast" | "fdiv_fast" | "frem_fast" => {
|
||
match float_type_width(arg_tys[0]) {
|
||
Some(_width) => match name {
|
||
"fadd_fast" => self.fadd_fast(args[0].immediate(), args[1].immediate()),
|
||
"fsub_fast" => self.fsub_fast(args[0].immediate(), args[1].immediate()),
|
||
"fmul_fast" => self.fmul_fast(args[0].immediate(), args[1].immediate()),
|
||
"fdiv_fast" => self.fdiv_fast(args[0].immediate(), args[1].immediate()),
|
||
"frem_fast" => self.frem_fast(args[0].immediate(), args[1].immediate()),
|
||
_ => bug!(),
|
||
},
|
||
None => {
|
||
span_invalid_monomorphization_error(
|
||
tcx.sess,
|
||
span,
|
||
&format!(
|
||
"invalid monomorphization of `{}` intrinsic: \
|
||
expected basic float type, found `{}`",
|
||
name, arg_tys[0]
|
||
),
|
||
);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
"float_to_int_approx_unchecked" => {
|
||
if float_type_width(arg_tys[0]).is_none() {
|
||
span_invalid_monomorphization_error(
|
||
tcx.sess,
|
||
span,
|
||
&format!(
|
||
"invalid monomorphization of `float_to_int_approx_unchecked` \
|
||
intrinsic: expected basic float type, \
|
||
found `{}`",
|
||
arg_tys[0]
|
||
),
|
||
);
|
||
return;
|
||
}
|
||
match int_type_width_signed(ret_ty, self.cx) {
|
||
Some((width, signed)) => {
|
||
if signed {
|
||
self.fptosi(args[0].immediate(), self.cx.type_ix(width))
|
||
} else {
|
||
self.fptoui(args[0].immediate(), self.cx.type_ix(width))
|
||
}
|
||
}
|
||
None => {
|
||
span_invalid_monomorphization_error(
|
||
tcx.sess,
|
||
span,
|
||
&format!(
|
||
"invalid monomorphization of `float_to_int_approx_unchecked` \
|
||
intrinsic: expected basic integer type, \
|
||
found `{}`",
|
||
ret_ty
|
||
),
|
||
);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
"discriminant_value" => args[0].deref(self.cx()).codegen_get_discr(self, ret_ty),
|
||
|
||
name if name.starts_with("simd_") => {
|
||
match generic_simd_intrinsic(self, name, callee_ty, args, ret_ty, llret_ty, span) {
|
||
Ok(llval) => llval,
|
||
Err(()) => return,
|
||
}
|
||
}
|
||
// This requires that atomic intrinsics follow a specific naming pattern:
|
||
// "atomic_<operation>[_<ordering>]", and no ordering means SeqCst
|
||
name if name.starts_with("atomic_") => {
|
||
use rustc_codegen_ssa::common::AtomicOrdering::*;
|
||
use rustc_codegen_ssa::common::{AtomicRmwBinOp, SynchronizationScope};
|
||
|
||
let split: Vec<&str> = name.split('_').collect();
|
||
|
||
let is_cxchg = split[1] == "cxchg" || split[1] == "cxchgweak";
|
||
let (order, failorder) = match split.len() {
|
||
2 => (SequentiallyConsistent, SequentiallyConsistent),
|
||
3 => match split[2] {
|
||
"unordered" => (Unordered, Unordered),
|
||
"relaxed" => (Monotonic, Monotonic),
|
||
"acq" => (Acquire, Acquire),
|
||
"rel" => (Release, Monotonic),
|
||
"acqrel" => (AcquireRelease, Acquire),
|
||
"failrelaxed" if is_cxchg => (SequentiallyConsistent, Monotonic),
|
||
"failacq" if is_cxchg => (SequentiallyConsistent, Acquire),
|
||
_ => self.sess().fatal("unknown ordering in atomic intrinsic"),
|
||
},
|
||
4 => match (split[2], split[3]) {
|
||
("acq", "failrelaxed") if is_cxchg => (Acquire, Monotonic),
|
||
("acqrel", "failrelaxed") if is_cxchg => (AcquireRelease, Monotonic),
|
||
_ => self.sess().fatal("unknown ordering in atomic intrinsic"),
|
||
},
|
||
_ => self.sess().fatal("Atomic intrinsic not in correct format"),
|
||
};
|
||
|
||
let invalid_monomorphization = |ty| {
|
||
span_invalid_monomorphization_error(
|
||
tcx.sess,
|
||
span,
|
||
&format!(
|
||
"invalid monomorphization of `{}` intrinsic: \
|
||
expected basic integer type, found `{}`",
|
||
name, ty
|
||
),
|
||
);
|
||
};
|
||
|
||
match split[1] {
|
||
"cxchg" | "cxchgweak" => {
|
||
let ty = substs.type_at(0);
|
||
if int_type_width_signed(ty, self).is_some() {
|
||
let weak = split[1] == "cxchgweak";
|
||
let pair = self.atomic_cmpxchg(
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
args[2].immediate(),
|
||
order,
|
||
failorder,
|
||
weak,
|
||
);
|
||
let val = self.extract_value(pair, 0);
|
||
let success = self.extract_value(pair, 1);
|
||
let success = self.zext(success, self.type_bool());
|
||
|
||
let dest = result.project_field(self, 0);
|
||
self.store(val, dest.llval, dest.align);
|
||
let dest = result.project_field(self, 1);
|
||
self.store(success, dest.llval, dest.align);
|
||
return;
|
||
} else {
|
||
return invalid_monomorphization(ty);
|
||
}
|
||
}
|
||
|
||
"load" => {
|
||
let ty = substs.type_at(0);
|
||
if int_type_width_signed(ty, self).is_some() {
|
||
let size = self.size_of(ty);
|
||
self.atomic_load(args[0].immediate(), order, size)
|
||
} else {
|
||
return invalid_monomorphization(ty);
|
||
}
|
||
}
|
||
|
||
"store" => {
|
||
let ty = substs.type_at(0);
|
||
if int_type_width_signed(ty, self).is_some() {
|
||
let size = self.size_of(ty);
|
||
self.atomic_store(
|
||
args[1].immediate(),
|
||
args[0].immediate(),
|
||
order,
|
||
size,
|
||
);
|
||
return;
|
||
} else {
|
||
return invalid_monomorphization(ty);
|
||
}
|
||
}
|
||
|
||
"fence" => {
|
||
self.atomic_fence(order, SynchronizationScope::CrossThread);
|
||
return;
|
||
}
|
||
|
||
"singlethreadfence" => {
|
||
self.atomic_fence(order, SynchronizationScope::SingleThread);
|
||
return;
|
||
}
|
||
|
||
// These are all AtomicRMW ops
|
||
op => {
|
||
let atom_op = match op {
|
||
"xchg" => AtomicRmwBinOp::AtomicXchg,
|
||
"xadd" => AtomicRmwBinOp::AtomicAdd,
|
||
"xsub" => AtomicRmwBinOp::AtomicSub,
|
||
"and" => AtomicRmwBinOp::AtomicAnd,
|
||
"nand" => AtomicRmwBinOp::AtomicNand,
|
||
"or" => AtomicRmwBinOp::AtomicOr,
|
||
"xor" => AtomicRmwBinOp::AtomicXor,
|
||
"max" => AtomicRmwBinOp::AtomicMax,
|
||
"min" => AtomicRmwBinOp::AtomicMin,
|
||
"umax" => AtomicRmwBinOp::AtomicUMax,
|
||
"umin" => AtomicRmwBinOp::AtomicUMin,
|
||
_ => self.sess().fatal("unknown atomic operation"),
|
||
};
|
||
|
||
let ty = substs.type_at(0);
|
||
if int_type_width_signed(ty, self).is_some() {
|
||
self.atomic_rmw(
|
||
atom_op,
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
order,
|
||
)
|
||
} else {
|
||
return invalid_monomorphization(ty);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
"nontemporal_store" => {
|
||
let dst = args[0].deref(self.cx());
|
||
args[1].val.nontemporal_store(self, dst);
|
||
return;
|
||
}
|
||
|
||
"ptr_offset_from" => {
|
||
let ty = substs.type_at(0);
|
||
let pointee_size = self.size_of(ty);
|
||
|
||
// This is the same sequence that Clang emits for pointer subtraction.
|
||
// It can be neither `nsw` nor `nuw` because the input is treated as
|
||
// unsigned but then the output is treated as signed, so neither works.
|
||
let a = args[0].immediate();
|
||
let b = args[1].immediate();
|
||
let a = self.ptrtoint(a, self.type_isize());
|
||
let b = self.ptrtoint(b, self.type_isize());
|
||
let d = self.sub(a, b);
|
||
let pointee_size = self.const_usize(pointee_size.bytes());
|
||
// this is where the signed magic happens (notice the `s` in `exactsdiv`)
|
||
self.exactsdiv(d, pointee_size)
|
||
}
|
||
|
||
_ => bug!("unknown intrinsic '{}'", name),
|
||
};
|
||
|
||
if !fn_abi.ret.is_ignore() {
|
||
if let PassMode::Cast(ty) = fn_abi.ret.mode {
|
||
let ptr_llty = self.type_ptr_to(ty.llvm_type(self));
|
||
let ptr = self.pointercast(result.llval, ptr_llty);
|
||
self.store(llval, ptr, result.align);
|
||
} else {
|
||
OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
|
||
.val
|
||
.store(self, result);
|
||
}
|
||
}
|
||
}
|
||
|
||
fn abort(&mut self) {
|
||
let fnname = self.get_intrinsic(&("llvm.trap"));
|
||
self.call(fnname, &[], None);
|
||
}
|
||
|
||
fn assume(&mut self, val: Self::Value) {
|
||
let assume_intrinsic = self.get_intrinsic("llvm.assume");
|
||
self.call(assume_intrinsic, &[val], None);
|
||
}
|
||
|
||
fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value {
|
||
let expect = self.get_intrinsic(&"llvm.expect.i1");
|
||
self.call(expect, &[cond, self.const_bool(expected)], None)
|
||
}
|
||
|
||
fn sideeffect(&mut self) {
|
||
if self.tcx.sess.opts.debugging_opts.insert_sideeffect {
|
||
let fnname = self.get_intrinsic(&("llvm.sideeffect"));
|
||
self.call(fnname, &[], None);
|
||
}
|
||
}
|
||
|
||
fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value {
|
||
let intrinsic = self.cx().get_intrinsic("llvm.va_start");
|
||
self.call(intrinsic, &[va_list], None)
|
||
}
|
||
|
||
fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value {
|
||
let intrinsic = self.cx().get_intrinsic("llvm.va_end");
|
||
self.call(intrinsic, &[va_list], None)
|
||
}
|
||
}
|
||
|
||
fn copy_intrinsic(
|
||
bx: &mut Builder<'a, 'll, 'tcx>,
|
||
allow_overlap: bool,
|
||
volatile: bool,
|
||
ty: Ty<'tcx>,
|
||
dst: &'ll Value,
|
||
src: &'ll Value,
|
||
count: &'ll Value,
|
||
) {
|
||
let (size, align) = bx.size_and_align_of(ty);
|
||
let size = bx.mul(bx.const_usize(size.bytes()), count);
|
||
let flags = if volatile { MemFlags::VOLATILE } else { MemFlags::empty() };
|
||
if allow_overlap {
|
||
bx.memmove(dst, align, src, align, size, flags);
|
||
} else {
|
||
bx.memcpy(dst, align, src, align, size, flags);
|
||
}
|
||
}
|
||
|
||
fn memset_intrinsic(
|
||
bx: &mut Builder<'a, 'll, 'tcx>,
|
||
volatile: bool,
|
||
ty: Ty<'tcx>,
|
||
dst: &'ll Value,
|
||
val: &'ll Value,
|
||
count: &'ll Value,
|
||
) {
|
||
let (size, align) = bx.size_and_align_of(ty);
|
||
let size = bx.mul(bx.const_usize(size.bytes()), count);
|
||
let flags = if volatile { MemFlags::VOLATILE } else { MemFlags::empty() };
|
||
bx.memset(dst, val, size, align, flags);
|
||
}
|
||
|
||
fn try_intrinsic(
|
||
bx: &mut Builder<'a, 'll, 'tcx>,
|
||
try_func: &'ll Value,
|
||
data: &'ll Value,
|
||
catch_func: &'ll Value,
|
||
dest: &'ll Value,
|
||
) {
|
||
if bx.sess().no_landing_pads() {
|
||
bx.call(try_func, &[data], None);
|
||
// Return 0 unconditionally from the intrinsic call;
|
||
// we can never unwind.
|
||
let ret_align = bx.tcx().data_layout.i32_align.abi;
|
||
bx.store(bx.const_i32(0), dest, ret_align);
|
||
} else if wants_msvc_seh(bx.sess()) {
|
||
codegen_msvc_try(bx, try_func, data, catch_func, dest);
|
||
} else {
|
||
codegen_gnu_try(bx, try_func, data, catch_func, dest);
|
||
}
|
||
}
|
||
|
||
// MSVC's definition of the `rust_try` function.
|
||
//
|
||
// This implementation uses the new exception handling instructions in LLVM
|
||
// which have support in LLVM for SEH on MSVC targets. Although these
|
||
// instructions are meant to work for all targets, as of the time of this
|
||
// writing, however, LLVM does not recommend the usage of these new instructions
|
||
// as the old ones are still more optimized.
|
||
fn codegen_msvc_try(
|
||
bx: &mut Builder<'a, 'll, 'tcx>,
|
||
try_func: &'ll Value,
|
||
data: &'ll Value,
|
||
catch_func: &'ll Value,
|
||
dest: &'ll Value,
|
||
) {
|
||
let llfn = get_rust_try_fn(bx, &mut |mut bx| {
|
||
bx.set_personality_fn(bx.eh_personality());
|
||
bx.sideeffect();
|
||
|
||
let mut normal = bx.build_sibling_block("normal");
|
||
let mut catchswitch = bx.build_sibling_block("catchswitch");
|
||
let mut catchpad = bx.build_sibling_block("catchpad");
|
||
let mut caught = bx.build_sibling_block("caught");
|
||
|
||
let try_func = llvm::get_param(bx.llfn(), 0);
|
||
let data = llvm::get_param(bx.llfn(), 1);
|
||
let catch_func = llvm::get_param(bx.llfn(), 2);
|
||
|
||
// We're generating an IR snippet that looks like:
|
||
//
|
||
// declare i32 @rust_try(%try_func, %data, %catch_func) {
|
||
// %slot = alloca u8*
|
||
// invoke %try_func(%data) to label %normal unwind label %catchswitch
|
||
//
|
||
// normal:
|
||
// ret i32 0
|
||
//
|
||
// catchswitch:
|
||
// %cs = catchswitch within none [%catchpad] unwind to caller
|
||
//
|
||
// catchpad:
|
||
// %tok = catchpad within %cs [%type_descriptor, 0, %slot]
|
||
// %ptr = load %slot
|
||
// call %catch_func(%data, %ptr)
|
||
// catchret from %tok to label %caught
|
||
//
|
||
// caught:
|
||
// ret i32 1
|
||
// }
|
||
//
|
||
// This structure follows the basic usage of throw/try/catch in LLVM.
|
||
// For example, compile this C++ snippet to see what LLVM generates:
|
||
//
|
||
// #include <stdint.h>
|
||
//
|
||
// struct rust_panic {
|
||
// rust_panic(const rust_panic&);
|
||
// ~rust_panic();
|
||
//
|
||
// uint64_t x[2];
|
||
// };
|
||
//
|
||
// int __rust_try(
|
||
// void (*try_func)(void*),
|
||
// void *data,
|
||
// void (*catch_func)(void*, void*) noexcept
|
||
// ) {
|
||
// try {
|
||
// try_func(data);
|
||
// return 0;
|
||
// } catch(rust_panic& a) {
|
||
// catch_func(data, &a);
|
||
// return 1;
|
||
// }
|
||
// }
|
||
//
|
||
// More information can be found in libstd's seh.rs implementation.
|
||
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
|
||
let slot = bx.alloca(bx.type_i8p(), ptr_align);
|
||
bx.invoke(try_func, &[data], normal.llbb(), catchswitch.llbb(), None);
|
||
|
||
normal.ret(bx.const_i32(0));
|
||
|
||
let cs = catchswitch.catch_switch(None, None, 1);
|
||
catchswitch.add_handler(cs, catchpad.llbb());
|
||
|
||
// We can't use the TypeDescriptor defined in libpanic_unwind because it
|
||
// might be in another DLL and the SEH encoding only supports specifying
|
||
// a TypeDescriptor from the current module.
|
||
//
|
||
// However this isn't an issue since the MSVC runtime uses string
|
||
// comparison on the type name to match TypeDescriptors rather than
|
||
// pointer equality.
|
||
//
|
||
// So instead we generate a new TypeDescriptor in each module that uses
|
||
// `try` and let the linker merge duplicate definitions in the same
|
||
// module.
|
||
//
|
||
// When modifying, make sure that the type_name string exactly matches
|
||
// the one used in src/libpanic_unwind/seh.rs.
|
||
let type_info_vtable = bx.declare_global("??_7type_info@@6B@", bx.type_i8p());
|
||
let type_name = bx.const_bytes(b"rust_panic\0");
|
||
let type_info =
|
||
bx.const_struct(&[type_info_vtable, bx.const_null(bx.type_i8p()), type_name], false);
|
||
let tydesc = bx.declare_global("__rust_panic_type_info", bx.val_ty(type_info));
|
||
unsafe {
|
||
llvm::LLVMRustSetLinkage(tydesc, llvm::Linkage::LinkOnceODRLinkage);
|
||
llvm::SetUniqueComdat(bx.llmod, tydesc);
|
||
llvm::LLVMSetInitializer(tydesc, type_info);
|
||
}
|
||
|
||
// The flag value of 8 indicates that we are catching the exception by
|
||
// reference instead of by value. We can't use catch by value because
|
||
// that requires copying the exception object, which we don't support
|
||
// since our exception object effectively contains a Box.
|
||
//
|
||
// Source: MicrosoftCXXABI::getAddrOfCXXCatchHandlerType in clang
|
||
let flags = bx.const_i32(8);
|
||
let funclet = catchpad.catch_pad(cs, &[tydesc, flags, slot]);
|
||
let ptr = catchpad.load(slot, ptr_align);
|
||
catchpad.call(catch_func, &[data, ptr], Some(&funclet));
|
||
|
||
catchpad.catch_ret(&funclet, caught.llbb());
|
||
|
||
caught.ret(bx.const_i32(1));
|
||
});
|
||
|
||
// Note that no invoke is used here because by definition this function
|
||
// can't panic (that's what it's catching).
|
||
let ret = bx.call(llfn, &[try_func, data, catch_func], None);
|
||
let i32_align = bx.tcx().data_layout.i32_align.abi;
|
||
bx.store(ret, dest, i32_align);
|
||
}
|
||
|
||
// Definition of the standard `try` function for Rust using the GNU-like model
|
||
// of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke`
|
||
// instructions).
|
||
//
|
||
// This codegen is a little surprising because we always call a shim
|
||
// function instead of inlining the call to `invoke` manually here. This is done
|
||
// because in LLVM we're only allowed to have one personality per function
|
||
// definition. The call to the `try` intrinsic is being inlined into the
|
||
// function calling it, and that function may already have other personality
|
||
// functions in play. By calling a shim we're guaranteed that our shim will have
|
||
// the right personality function.
|
||
fn codegen_gnu_try(
|
||
bx: &mut Builder<'a, 'll, 'tcx>,
|
||
try_func: &'ll Value,
|
||
data: &'ll Value,
|
||
catch_func: &'ll Value,
|
||
dest: &'ll Value,
|
||
) {
|
||
let llfn = get_rust_try_fn(bx, &mut |mut bx| {
|
||
// Codegens the shims described above:
|
||
//
|
||
// bx:
|
||
// invoke %try_func(%data) normal %normal unwind %catch
|
||
//
|
||
// normal:
|
||
// ret 0
|
||
//
|
||
// catch:
|
||
// (%ptr, _) = landingpad
|
||
// call %catch_func(%data, %ptr)
|
||
// ret 1
|
||
|
||
bx.sideeffect();
|
||
|
||
let mut then = bx.build_sibling_block("then");
|
||
let mut catch = bx.build_sibling_block("catch");
|
||
|
||
let try_func = llvm::get_param(bx.llfn(), 0);
|
||
let data = llvm::get_param(bx.llfn(), 1);
|
||
let catch_func = llvm::get_param(bx.llfn(), 2);
|
||
bx.invoke(try_func, &[data], then.llbb(), catch.llbb(), None);
|
||
then.ret(bx.const_i32(0));
|
||
|
||
// Type indicator for the exception being thrown.
|
||
//
|
||
// The first value in this tuple is a pointer to the exception object
|
||
// being thrown. The second value is a "selector" indicating which of
|
||
// the landing pad clauses the exception's type had been matched to.
|
||
// rust_try ignores the selector.
|
||
let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false);
|
||
let vals = catch.landing_pad(lpad_ty, bx.eh_personality(), 1);
|
||
let tydesc = match bx.tcx().lang_items().eh_catch_typeinfo() {
|
||
Some(tydesc) => {
|
||
let tydesc = bx.get_static(tydesc);
|
||
bx.bitcast(tydesc, bx.type_i8p())
|
||
}
|
||
None => bx.const_null(bx.type_i8p()),
|
||
};
|
||
catch.add_clause(vals, tydesc);
|
||
let ptr = catch.extract_value(vals, 0);
|
||
catch.call(catch_func, &[data, ptr], None);
|
||
catch.ret(bx.const_i32(1));
|
||
});
|
||
|
||
// Note that no invoke is used here because by definition this function
|
||
// can't panic (that's what it's catching).
|
||
let ret = bx.call(llfn, &[try_func, data, catch_func], None);
|
||
let i32_align = bx.tcx().data_layout.i32_align.abi;
|
||
bx.store(ret, dest, i32_align);
|
||
}
|
||
|
||
// Helper function to give a Block to a closure to codegen a shim function.
|
||
// This is currently primarily used for the `try` intrinsic functions above.
|
||
fn gen_fn<'ll, 'tcx>(
|
||
cx: &CodegenCx<'ll, 'tcx>,
|
||
name: &str,
|
||
inputs: Vec<Ty<'tcx>>,
|
||
output: Ty<'tcx>,
|
||
codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
|
||
) -> &'ll Value {
|
||
let rust_fn_sig = ty::Binder::bind(cx.tcx.mk_fn_sig(
|
||
inputs.into_iter(),
|
||
output,
|
||
false,
|
||
hir::Unsafety::Unsafe,
|
||
Abi::Rust,
|
||
));
|
||
let fn_abi = FnAbi::of_fn_ptr(cx, rust_fn_sig, &[]);
|
||
let llfn = cx.declare_fn(name, &fn_abi);
|
||
cx.set_frame_pointer_elimination(llfn);
|
||
cx.apply_target_cpu_attr(llfn);
|
||
// FIXME(eddyb) find a nicer way to do this.
|
||
unsafe { llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::InternalLinkage) };
|
||
let bx = Builder::new_block(cx, llfn, "entry-block");
|
||
codegen(bx);
|
||
llfn
|
||
}
|
||
|
||
// Helper function used to get a handle to the `__rust_try` function used to
|
||
// catch exceptions.
|
||
//
|
||
// This function is only generated once and is then cached.
|
||
fn get_rust_try_fn<'ll, 'tcx>(
|
||
cx: &CodegenCx<'ll, 'tcx>,
|
||
codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
|
||
) -> &'ll Value {
|
||
if let Some(llfn) = cx.rust_try_fn.get() {
|
||
return llfn;
|
||
}
|
||
|
||
// Define the type up front for the signature of the rust_try function.
|
||
let tcx = cx.tcx;
|
||
let i8p = tcx.mk_mut_ptr(tcx.types.i8);
|
||
let try_fn_ty = tcx.mk_fn_ptr(ty::Binder::bind(tcx.mk_fn_sig(
|
||
iter::once(i8p),
|
||
tcx.mk_unit(),
|
||
false,
|
||
hir::Unsafety::Unsafe,
|
||
Abi::Rust,
|
||
)));
|
||
let catch_fn_ty = tcx.mk_fn_ptr(ty::Binder::bind(tcx.mk_fn_sig(
|
||
[i8p, i8p].iter().cloned(),
|
||
tcx.mk_unit(),
|
||
false,
|
||
hir::Unsafety::Unsafe,
|
||
Abi::Rust,
|
||
)));
|
||
let output = tcx.types.i32;
|
||
let rust_try = gen_fn(cx, "__rust_try", vec![try_fn_ty, i8p, catch_fn_ty], output, codegen);
|
||
cx.rust_try_fn.set(Some(rust_try));
|
||
rust_try
|
||
}
|
||
|
||
fn generic_simd_intrinsic(
|
||
bx: &mut Builder<'a, 'll, 'tcx>,
|
||
name: &str,
|
||
callee_ty: Ty<'tcx>,
|
||
args: &[OperandRef<'tcx, &'ll Value>],
|
||
ret_ty: Ty<'tcx>,
|
||
llret_ty: &'ll Type,
|
||
span: Span,
|
||
) -> Result<&'ll Value, ()> {
|
||
// macros for error handling:
|
||
macro_rules! emit_error {
|
||
($msg: tt) => {
|
||
emit_error!($msg, )
|
||
};
|
||
($msg: tt, $($fmt: tt)*) => {
|
||
span_invalid_monomorphization_error(
|
||
bx.sess(), span,
|
||
&format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
|
||
name, $($fmt)*));
|
||
}
|
||
}
|
||
|
||
macro_rules! return_error {
|
||
($($fmt: tt)*) => {
|
||
{
|
||
emit_error!($($fmt)*);
|
||
return Err(());
|
||
}
|
||
}
|
||
}
|
||
|
||
macro_rules! require {
|
||
($cond: expr, $($fmt: tt)*) => {
|
||
if !$cond {
|
||
return_error!($($fmt)*);
|
||
}
|
||
};
|
||
}
|
||
|
||
macro_rules! require_simd {
|
||
($ty: expr, $position: expr) => {
|
||
require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty)
|
||
};
|
||
}
|
||
|
||
let tcx = bx.tcx();
|
||
let sig = tcx
|
||
.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &callee_ty.fn_sig(tcx));
|
||
let arg_tys = sig.inputs();
|
||
|
||
if name == "simd_select_bitmask" {
|
||
let in_ty = arg_tys[0];
|
||
let m_len = match in_ty.kind {
|
||
// Note that this `.unwrap()` crashes for isize/usize, that's sort
|
||
// of intentional as there's not currently a use case for that.
|
||
ty::Int(i) => i.bit_width().unwrap() as u64,
|
||
ty::Uint(i) => i.bit_width().unwrap() as u64,
|
||
_ => return_error!("`{}` is not an integral type", in_ty),
|
||
};
|
||
require_simd!(arg_tys[1], "argument");
|
||
let v_len = arg_tys[1].simd_size(tcx);
|
||
require!(
|
||
m_len == v_len,
|
||
"mismatched lengths: mask length `{}` != other vector length `{}`",
|
||
m_len,
|
||
v_len
|
||
);
|
||
let i1 = bx.type_i1();
|
||
let i1xn = bx.type_vector(i1, m_len);
|
||
let m_i1s = bx.bitcast(args[0].immediate(), i1xn);
|
||
return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
|
||
}
|
||
|
||
// every intrinsic below takes a SIMD vector as its first argument
|
||
require_simd!(arg_tys[0], "input");
|
||
let in_ty = arg_tys[0];
|
||
let in_elem = arg_tys[0].simd_type(tcx);
|
||
let in_len = arg_tys[0].simd_size(tcx);
|
||
|
||
let comparison = match name {
|
||
"simd_eq" => Some(hir::BinOpKind::Eq),
|
||
"simd_ne" => Some(hir::BinOpKind::Ne),
|
||
"simd_lt" => Some(hir::BinOpKind::Lt),
|
||
"simd_le" => Some(hir::BinOpKind::Le),
|
||
"simd_gt" => Some(hir::BinOpKind::Gt),
|
||
"simd_ge" => Some(hir::BinOpKind::Ge),
|
||
_ => None,
|
||
};
|
||
|
||
if let Some(cmp_op) = comparison {
|
||
require_simd!(ret_ty, "return");
|
||
|
||
let out_len = ret_ty.simd_size(tcx);
|
||
require!(
|
||
in_len == out_len,
|
||
"expected return type with length {} (same as input type `{}`), \
|
||
found `{}` with length {}",
|
||
in_len,
|
||
in_ty,
|
||
ret_ty,
|
||
out_len
|
||
);
|
||
require!(
|
||
bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
|
||
"expected return type with integer elements, found `{}` with non-integer `{}`",
|
||
ret_ty,
|
||
ret_ty.simd_type(tcx)
|
||
);
|
||
|
||
return Ok(compare_simd_types(
|
||
bx,
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
in_elem,
|
||
llret_ty,
|
||
cmp_op,
|
||
));
|
||
}
|
||
|
||
if name.starts_with("simd_shuffle") {
|
||
let n: u64 = name["simd_shuffle".len()..].parse().unwrap_or_else(|_| {
|
||
span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?")
|
||
});
|
||
|
||
require_simd!(ret_ty, "return");
|
||
|
||
let out_len = ret_ty.simd_size(tcx);
|
||
require!(
|
||
out_len == n,
|
||
"expected return type of length {}, found `{}` with length {}",
|
||
n,
|
||
ret_ty,
|
||
out_len
|
||
);
|
||
require!(
|
||
in_elem == ret_ty.simd_type(tcx),
|
||
"expected return element type `{}` (element of input `{}`), \
|
||
found `{}` with element type `{}`",
|
||
in_elem,
|
||
in_ty,
|
||
ret_ty,
|
||
ret_ty.simd_type(tcx)
|
||
);
|
||
|
||
let total_len = u128::from(in_len) * 2;
|
||
|
||
let vector = args[2].immediate();
|
||
|
||
let indices: Option<Vec<_>> = (0..n)
|
||
.map(|i| {
|
||
let arg_idx = i;
|
||
let val = bx.const_get_elt(vector, i as u64);
|
||
match bx.const_to_opt_u128(val, true) {
|
||
None => {
|
||
emit_error!("shuffle index #{} is not a constant", arg_idx);
|
||
None
|
||
}
|
||
Some(idx) if idx >= total_len => {
|
||
emit_error!(
|
||
"shuffle index #{} is out of bounds (limit {})",
|
||
arg_idx,
|
||
total_len
|
||
);
|
||
None
|
||
}
|
||
Some(idx) => Some(bx.const_i32(idx as i32)),
|
||
}
|
||
})
|
||
.collect();
|
||
let indices = match indices {
|
||
Some(i) => i,
|
||
None => return Ok(bx.const_null(llret_ty)),
|
||
};
|
||
|
||
return Ok(bx.shuffle_vector(
|
||
args[0].immediate(),
|
||
args[1].immediate(),
|
||
bx.const_vector(&indices),
|
||
));
|
||
}
|
||
|
||
if name == "simd_insert" {
|
||
require!(
|
||
in_elem == arg_tys[2],
|
||
"expected inserted type `{}` (element of input `{}`), found `{}`",
|
||
in_elem,
|
||
in_ty,
|
||
arg_tys[2]
|
||
);
|
||
return Ok(bx.insert_element(
|
||
args[0].immediate(),
|
||
args[2].immediate(),
|
||
args[1].immediate(),
|
||
));
|
||
}
|
||
if name == "simd_extract" {
|
||
require!(
|
||
ret_ty == in_elem,
|
||
"expected return type `{}` (element of input `{}`), found `{}`",
|
||
in_elem,
|
||
in_ty,
|
||
ret_ty
|
||
);
|
||
return Ok(bx.extract_element(args[0].immediate(), args[1].immediate()));
|
||
}
|
||
|
||
if name == "simd_select" {
|
||
let m_elem_ty = in_elem;
|
||
let m_len = in_len;
|
||
require_simd!(arg_tys[1], "argument");
|
||
let v_len = arg_tys[1].simd_size(tcx);
|
||
require!(
|
||
m_len == v_len,
|
||
"mismatched lengths: mask length `{}` != other vector length `{}`",
|
||
m_len,
|
||
v_len
|
||
);
|
||
match m_elem_ty.kind {
|
||
ty::Int(_) => {}
|
||
_ => return_error!("mask element type is `{}`, expected `i_`", m_elem_ty),
|
||
}
|
||
// truncate the mask to a vector of i1s
|
||
let i1 = bx.type_i1();
|
||
let i1xn = bx.type_vector(i1, m_len as u64);
|
||
let m_i1s = bx.trunc(args[0].immediate(), i1xn);
|
||
return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
|
||
}
|
||
|
||
if name == "simd_bitmask" {
|
||
// The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a
|
||
// vector mask and returns an unsigned integer containing the most
|
||
// significant bit (MSB) of each lane.
|
||
|
||
// If the vector has less than 8 lanes, an u8 is returned with zeroed
|
||
// trailing bits.
|
||
let expected_int_bits = in_len.max(8);
|
||
match ret_ty.kind {
|
||
ty::Uint(i) if i.bit_width() == Some(expected_int_bits as usize) => (),
|
||
_ => return_error!("bitmask `{}`, expected `u{}`", ret_ty, expected_int_bits),
|
||
}
|
||
|
||
// Integer vector <i{in_bitwidth} x in_len>:
|
||
let (i_xn, in_elem_bitwidth) = match in_elem.kind {
|
||
ty::Int(i) => (
|
||
args[0].immediate(),
|
||
i.bit_width().unwrap_or(bx.data_layout().pointer_size.bits() as _),
|
||
),
|
||
ty::Uint(i) => (
|
||
args[0].immediate(),
|
||
i.bit_width().unwrap_or(bx.data_layout().pointer_size.bits() as _),
|
||
),
|
||
_ => return_error!(
|
||
"vector argument `{}`'s element type `{}`, expected integer element type",
|
||
in_ty,
|
||
in_elem
|
||
),
|
||
};
|
||
|
||
// Shift the MSB to the right by "in_elem_bitwidth - 1" into the first bit position.
|
||
let shift_indices =
|
||
vec![
|
||
bx.cx.const_int(bx.type_ix(in_elem_bitwidth as _), (in_elem_bitwidth - 1) as _);
|
||
in_len as _
|
||
];
|
||
let i_xn_msb = bx.lshr(i_xn, bx.const_vector(shift_indices.as_slice()));
|
||
// Truncate vector to an <i1 x N>
|
||
let i1xn = bx.trunc(i_xn_msb, bx.type_vector(bx.type_i1(), in_len as _));
|
||
// Bitcast <i1 x N> to iN:
|
||
let i_ = bx.bitcast(i1xn, bx.type_ix(in_len as _));
|
||
// Zero-extend iN to the bitmask type:
|
||
return Ok(bx.zext(i_, bx.type_ix(expected_int_bits as _)));
|
||
}
|
||
|
||
fn simd_simple_float_intrinsic(
|
||
name: &str,
|
||
in_elem: &::rustc::ty::TyS<'_>,
|
||
in_ty: &::rustc::ty::TyS<'_>,
|
||
in_len: u64,
|
||
bx: &mut Builder<'a, 'll, 'tcx>,
|
||
span: Span,
|
||
args: &[OperandRef<'tcx, &'ll Value>],
|
||
) -> Result<&'ll Value, ()> {
|
||
macro_rules! emit_error {
|
||
($msg: tt) => {
|
||
emit_error!($msg, )
|
||
};
|
||
($msg: tt, $($fmt: tt)*) => {
|
||
span_invalid_monomorphization_error(
|
||
bx.sess(), span,
|
||
&format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
|
||
name, $($fmt)*));
|
||
}
|
||
}
|
||
macro_rules! return_error {
|
||
($($fmt: tt)*) => {
|
||
{
|
||
emit_error!($($fmt)*);
|
||
return Err(());
|
||
}
|
||
}
|
||
}
|
||
let ety = match in_elem.kind {
|
||
ty::Float(f) if f.bit_width() == 32 => {
|
||
if in_len < 2 || in_len > 16 {
|
||
return_error!(
|
||
"unsupported floating-point vector `{}` with length `{}` \
|
||
out-of-range [2, 16]",
|
||
in_ty,
|
||
in_len
|
||
);
|
||
}
|
||
"f32"
|
||
}
|
||
ty::Float(f) if f.bit_width() == 64 => {
|
||
if in_len < 2 || in_len > 8 {
|
||
return_error!(
|
||
"unsupported floating-point vector `{}` with length `{}` \
|
||
out-of-range [2, 8]",
|
||
in_ty,
|
||
in_len
|
||
);
|
||
}
|
||
"f64"
|
||
}
|
||
ty::Float(f) => {
|
||
return_error!(
|
||
"unsupported element type `{}` of floating-point vector `{}`",
|
||
f.name_str(),
|
||
in_ty
|
||
);
|
||
}
|
||
_ => {
|
||
return_error!("`{}` is not a floating-point type", in_ty);
|
||
}
|
||
};
|
||
|
||
let llvm_name = &format!("llvm.{0}.v{1}{2}", name, in_len, ety);
|
||
let intrinsic = bx.get_intrinsic(&llvm_name);
|
||
let c =
|
||
bx.call(intrinsic, &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), None);
|
||
unsafe { llvm::LLVMRustSetHasUnsafeAlgebra(c) };
|
||
Ok(c)
|
||
}
|
||
|
||
match name {
|
||
"simd_fsqrt" => {
|
||
return simd_simple_float_intrinsic("sqrt", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_fsin" => {
|
||
return simd_simple_float_intrinsic("sin", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_fcos" => {
|
||
return simd_simple_float_intrinsic("cos", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_fabs" => {
|
||
return simd_simple_float_intrinsic("fabs", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_floor" => {
|
||
return simd_simple_float_intrinsic("floor", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_ceil" => {
|
||
return simd_simple_float_intrinsic("ceil", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_fexp" => {
|
||
return simd_simple_float_intrinsic("exp", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_fexp2" => {
|
||
return simd_simple_float_intrinsic("exp2", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_flog10" => {
|
||
return simd_simple_float_intrinsic("log10", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_flog2" => {
|
||
return simd_simple_float_intrinsic("log2", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_flog" => {
|
||
return simd_simple_float_intrinsic("log", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_fpowi" => {
|
||
return simd_simple_float_intrinsic("powi", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_fpow" => {
|
||
return simd_simple_float_intrinsic("pow", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
"simd_fma" => {
|
||
return simd_simple_float_intrinsic("fma", in_elem, in_ty, in_len, bx, span, args);
|
||
}
|
||
_ => { /* fallthrough */ }
|
||
}
|
||
|
||
// FIXME: use:
|
||
// https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Function.h#L182
|
||
// https://github.com/llvm-mirror/llvm/blob/master/include/llvm/IR/Intrinsics.h#L81
|
||
fn llvm_vector_str(elem_ty: Ty<'_>, vec_len: u64, no_pointers: usize) -> String {
|
||
let p0s: String = "p0".repeat(no_pointers);
|
||
match elem_ty.kind {
|
||
ty::Int(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()),
|
||
ty::Uint(v) => format!("v{}{}i{}", vec_len, p0s, v.bit_width().unwrap()),
|
||
ty::Float(v) => format!("v{}{}f{}", vec_len, p0s, v.bit_width()),
|
||
_ => unreachable!(),
|
||
}
|
||
}
|
||
|
||
fn llvm_vector_ty(
|
||
cx: &CodegenCx<'ll, '_>,
|
||
elem_ty: Ty<'_>,
|
||
vec_len: u64,
|
||
mut no_pointers: usize,
|
||
) -> &'ll Type {
|
||
// FIXME: use cx.layout_of(ty).llvm_type() ?
|
||
let mut elem_ty = match elem_ty.kind {
|
||
ty::Int(v) => cx.type_int_from_ty(v),
|
||
ty::Uint(v) => cx.type_uint_from_ty(v),
|
||
ty::Float(v) => cx.type_float_from_ty(v),
|
||
_ => unreachable!(),
|
||
};
|
||
while no_pointers > 0 {
|
||
elem_ty = cx.type_ptr_to(elem_ty);
|
||
no_pointers -= 1;
|
||
}
|
||
cx.type_vector(elem_ty, vec_len)
|
||
}
|
||
|
||
if name == "simd_gather" {
|
||
// simd_gather(values: <N x T>, pointers: <N x *_ T>,
|
||
// mask: <N x i{M}>) -> <N x T>
|
||
// * N: number of elements in the input vectors
|
||
// * T: type of the element to load
|
||
// * M: any integer width is supported, will be truncated to i1
|
||
|
||
// All types must be simd vector types
|
||
require_simd!(in_ty, "first");
|
||
require_simd!(arg_tys[1], "second");
|
||
require_simd!(arg_tys[2], "third");
|
||
require_simd!(ret_ty, "return");
|
||
|
||
// Of the same length:
|
||
require!(
|
||
in_len == arg_tys[1].simd_size(tcx),
|
||
"expected {} argument with length {} (same as input type `{}`), \
|
||
found `{}` with length {}",
|
||
"second",
|
||
in_len,
|
||
in_ty,
|
||
arg_tys[1],
|
||
arg_tys[1].simd_size(tcx)
|
||
);
|
||
require!(
|
||
in_len == arg_tys[2].simd_size(tcx),
|
||
"expected {} argument with length {} (same as input type `{}`), \
|
||
found `{}` with length {}",
|
||
"third",
|
||
in_len,
|
||
in_ty,
|
||
arg_tys[2],
|
||
arg_tys[2].simd_size(tcx)
|
||
);
|
||
|
||
// The return type must match the first argument type
|
||
require!(ret_ty == in_ty, "expected return type `{}`, found `{}`", in_ty, ret_ty);
|
||
|
||
// This counts how many pointers
|
||
fn ptr_count(t: Ty<'_>) -> usize {
|
||
match t.kind {
|
||
ty::RawPtr(p) => 1 + ptr_count(p.ty),
|
||
_ => 0,
|
||
}
|
||
}
|
||
|
||
// Non-ptr type
|
||
fn non_ptr(t: Ty<'_>) -> Ty<'_> {
|
||
match t.kind {
|
||
ty::RawPtr(p) => non_ptr(p.ty),
|
||
_ => t,
|
||
}
|
||
}
|
||
|
||
// The second argument must be a simd vector with an element type that's a pointer
|
||
// to the element type of the first argument
|
||
let (pointer_count, underlying_ty) = match arg_tys[1].simd_type(tcx).kind {
|
||
ty::RawPtr(p) if p.ty == in_elem => {
|
||
(ptr_count(arg_tys[1].simd_type(tcx)), non_ptr(arg_tys[1].simd_type(tcx)))
|
||
}
|
||
_ => {
|
||
require!(
|
||
false,
|
||
"expected element type `{}` of second argument `{}` \
|
||
to be a pointer to the element type `{}` of the first \
|
||
argument `{}`, found `{}` != `*_ {}`",
|
||
arg_tys[1].simd_type(tcx),
|
||
arg_tys[1],
|
||
in_elem,
|
||
in_ty,
|
||
arg_tys[1].simd_type(tcx),
|
||
in_elem
|
||
);
|
||
unreachable!();
|
||
}
|
||
};
|
||
assert!(pointer_count > 0);
|
||
assert_eq!(pointer_count - 1, ptr_count(arg_tys[0].simd_type(tcx)));
|
||
assert_eq!(underlying_ty, non_ptr(arg_tys[0].simd_type(tcx)));
|
||
|
||
// The element type of the third argument must be a signed integer type of any width:
|
||
match arg_tys[2].simd_type(tcx).kind {
|
||
ty::Int(_) => (),
|
||
_ => {
|
||
require!(
|
||
false,
|
||
"expected element type `{}` of third argument `{}` \
|
||
to be a signed integer type",
|
||
arg_tys[2].simd_type(tcx),
|
||
arg_tys[2]
|
||
);
|
||
}
|
||
}
|
||
|
||
// Alignment of T, must be a constant integer value:
|
||
let alignment_ty = bx.type_i32();
|
||
let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
|
||
|
||
// Truncate the mask vector to a vector of i1s:
|
||
let (mask, mask_ty) = {
|
||
let i1 = bx.type_i1();
|
||
let i1xn = bx.type_vector(i1, in_len);
|
||
(bx.trunc(args[2].immediate(), i1xn), i1xn)
|
||
};
|
||
|
||
// Type of the vector of pointers:
|
||
let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count);
|
||
let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count);
|
||
|
||
// Type of the vector of elements:
|
||
let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
|
||
let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1);
|
||
|
||
let llvm_intrinsic =
|
||
format!("llvm.masked.gather.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str);
|
||
let f = bx.declare_cfn(
|
||
&llvm_intrinsic,
|
||
bx.type_func(
|
||
&[llvm_pointer_vec_ty, alignment_ty, mask_ty, llvm_elem_vec_ty],
|
||
llvm_elem_vec_ty,
|
||
),
|
||
);
|
||
llvm::SetUnnamedAddr(f, false);
|
||
let v = bx.call(f, &[args[1].immediate(), alignment, mask, args[0].immediate()], None);
|
||
return Ok(v);
|
||
}
|
||
|
||
if name == "simd_scatter" {
|
||
// simd_scatter(values: <N x T>, pointers: <N x *mut T>,
|
||
// mask: <N x i{M}>) -> ()
|
||
// * N: number of elements in the input vectors
|
||
// * T: type of the element to load
|
||
// * M: any integer width is supported, will be truncated to i1
|
||
|
||
// All types must be simd vector types
|
||
require_simd!(in_ty, "first");
|
||
require_simd!(arg_tys[1], "second");
|
||
require_simd!(arg_tys[2], "third");
|
||
|
||
// Of the same length:
|
||
require!(
|
||
in_len == arg_tys[1].simd_size(tcx),
|
||
"expected {} argument with length {} (same as input type `{}`), \
|
||
found `{}` with length {}",
|
||
"second",
|
||
in_len,
|
||
in_ty,
|
||
arg_tys[1],
|
||
arg_tys[1].simd_size(tcx)
|
||
);
|
||
require!(
|
||
in_len == arg_tys[2].simd_size(tcx),
|
||
"expected {} argument with length {} (same as input type `{}`), \
|
||
found `{}` with length {}",
|
||
"third",
|
||
in_len,
|
||
in_ty,
|
||
arg_tys[2],
|
||
arg_tys[2].simd_size(tcx)
|
||
);
|
||
|
||
// This counts how many pointers
|
||
fn ptr_count(t: Ty<'_>) -> usize {
|
||
match t.kind {
|
||
ty::RawPtr(p) => 1 + ptr_count(p.ty),
|
||
_ => 0,
|
||
}
|
||
}
|
||
|
||
// Non-ptr type
|
||
fn non_ptr(t: Ty<'_>) -> Ty<'_> {
|
||
match t.kind {
|
||
ty::RawPtr(p) => non_ptr(p.ty),
|
||
_ => t,
|
||
}
|
||
}
|
||
|
||
// The second argument must be a simd vector with an element type that's a pointer
|
||
// to the element type of the first argument
|
||
let (pointer_count, underlying_ty) = match arg_tys[1].simd_type(tcx).kind {
|
||
ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::Mutability::Mut => {
|
||
(ptr_count(arg_tys[1].simd_type(tcx)), non_ptr(arg_tys[1].simd_type(tcx)))
|
||
}
|
||
_ => {
|
||
require!(
|
||
false,
|
||
"expected element type `{}` of second argument `{}` \
|
||
to be a pointer to the element type `{}` of the first \
|
||
argument `{}`, found `{}` != `*mut {}`",
|
||
arg_tys[1].simd_type(tcx),
|
||
arg_tys[1],
|
||
in_elem,
|
||
in_ty,
|
||
arg_tys[1].simd_type(tcx),
|
||
in_elem
|
||
);
|
||
unreachable!();
|
||
}
|
||
};
|
||
assert!(pointer_count > 0);
|
||
assert_eq!(pointer_count - 1, ptr_count(arg_tys[0].simd_type(tcx)));
|
||
assert_eq!(underlying_ty, non_ptr(arg_tys[0].simd_type(tcx)));
|
||
|
||
// The element type of the third argument must be a signed integer type of any width:
|
||
match arg_tys[2].simd_type(tcx).kind {
|
||
ty::Int(_) => (),
|
||
_ => {
|
||
require!(
|
||
false,
|
||
"expected element type `{}` of third argument `{}` \
|
||
to be a signed integer type",
|
||
arg_tys[2].simd_type(tcx),
|
||
arg_tys[2]
|
||
);
|
||
}
|
||
}
|
||
|
||
// Alignment of T, must be a constant integer value:
|
||
let alignment_ty = bx.type_i32();
|
||
let alignment = bx.const_i32(bx.align_of(in_elem).bytes() as i32);
|
||
|
||
// Truncate the mask vector to a vector of i1s:
|
||
let (mask, mask_ty) = {
|
||
let i1 = bx.type_i1();
|
||
let i1xn = bx.type_vector(i1, in_len);
|
||
(bx.trunc(args[2].immediate(), i1xn), i1xn)
|
||
};
|
||
|
||
let ret_t = bx.type_void();
|
||
|
||
// Type of the vector of pointers:
|
||
let llvm_pointer_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count);
|
||
let llvm_pointer_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count);
|
||
|
||
// Type of the vector of elements:
|
||
let llvm_elem_vec_ty = llvm_vector_ty(bx, underlying_ty, in_len, pointer_count - 1);
|
||
let llvm_elem_vec_str = llvm_vector_str(underlying_ty, in_len, pointer_count - 1);
|
||
|
||
let llvm_intrinsic =
|
||
format!("llvm.masked.scatter.{}.{}", llvm_elem_vec_str, llvm_pointer_vec_str);
|
||
let f = bx.declare_cfn(
|
||
&llvm_intrinsic,
|
||
bx.type_func(&[llvm_elem_vec_ty, llvm_pointer_vec_ty, alignment_ty, mask_ty], ret_t),
|
||
);
|
||
llvm::SetUnnamedAddr(f, false);
|
||
let v = bx.call(f, &[args[0].immediate(), args[1].immediate(), alignment, mask], None);
|
||
return Ok(v);
|
||
}
|
||
|
||
macro_rules! arith_red {
|
||
($name:tt : $integer_reduce:ident, $float_reduce:ident, $ordered:expr) => {
|
||
if name == $name {
|
||
require!(
|
||
ret_ty == in_elem,
|
||
"expected return type `{}` (element of input `{}`), found `{}`",
|
||
in_elem,
|
||
in_ty,
|
||
ret_ty
|
||
);
|
||
return match in_elem.kind {
|
||
ty::Int(_) | ty::Uint(_) => {
|
||
let r = bx.$integer_reduce(args[0].immediate());
|
||
if $ordered {
|
||
// if overflow occurs, the result is the
|
||
// mathematical result modulo 2^n:
|
||
if name.contains("mul") {
|
||
Ok(bx.mul(args[1].immediate(), r))
|
||
} else {
|
||
Ok(bx.add(args[1].immediate(), r))
|
||
}
|
||
} else {
|
||
Ok(bx.$integer_reduce(args[0].immediate()))
|
||
}
|
||
}
|
||
ty::Float(f) => {
|
||
let acc = if $ordered {
|
||
// ordered arithmetic reductions take an accumulator
|
||
args[1].immediate()
|
||
} else {
|
||
// unordered arithmetic reductions use the identity accumulator
|
||
let identity_acc = if $name.contains("mul") { 1.0 } else { 0.0 };
|
||
match f.bit_width() {
|
||
32 => bx.const_real(bx.type_f32(), identity_acc),
|
||
64 => bx.const_real(bx.type_f64(), identity_acc),
|
||
v => return_error!(
|
||
r#"
|
||
unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#,
|
||
$name,
|
||
in_ty,
|
||
in_elem,
|
||
v,
|
||
ret_ty
|
||
),
|
||
}
|
||
};
|
||
Ok(bx.$float_reduce(acc, args[0].immediate()))
|
||
}
|
||
_ => return_error!(
|
||
"unsupported {} from `{}` with element `{}` to `{}`",
|
||
$name,
|
||
in_ty,
|
||
in_elem,
|
||
ret_ty
|
||
),
|
||
};
|
||
}
|
||
};
|
||
}
|
||
|
||
arith_red!("simd_reduce_add_ordered": vector_reduce_add, vector_reduce_fadd, true);
|
||
arith_red!("simd_reduce_mul_ordered": vector_reduce_mul, vector_reduce_fmul, true);
|
||
arith_red!("simd_reduce_add_unordered": vector_reduce_add, vector_reduce_fadd_fast, false);
|
||
arith_red!("simd_reduce_mul_unordered": vector_reduce_mul, vector_reduce_fmul_fast, false);
|
||
|
||
macro_rules! minmax_red {
|
||
($name:tt: $int_red:ident, $float_red:ident) => {
|
||
if name == $name {
|
||
require!(
|
||
ret_ty == in_elem,
|
||
"expected return type `{}` (element of input `{}`), found `{}`",
|
||
in_elem,
|
||
in_ty,
|
||
ret_ty
|
||
);
|
||
return match in_elem.kind {
|
||
ty::Int(_i) => Ok(bx.$int_red(args[0].immediate(), true)),
|
||
ty::Uint(_u) => Ok(bx.$int_red(args[0].immediate(), false)),
|
||
ty::Float(_f) => Ok(bx.$float_red(args[0].immediate())),
|
||
_ => return_error!(
|
||
"unsupported {} from `{}` with element `{}` to `{}`",
|
||
$name,
|
||
in_ty,
|
||
in_elem,
|
||
ret_ty
|
||
),
|
||
};
|
||
}
|
||
};
|
||
}
|
||
|
||
minmax_red!("simd_reduce_min": vector_reduce_min, vector_reduce_fmin);
|
||
minmax_red!("simd_reduce_max": vector_reduce_max, vector_reduce_fmax);
|
||
|
||
minmax_red!("simd_reduce_min_nanless": vector_reduce_min, vector_reduce_fmin_fast);
|
||
minmax_red!("simd_reduce_max_nanless": vector_reduce_max, vector_reduce_fmax_fast);
|
||
|
||
macro_rules! bitwise_red {
|
||
($name:tt : $red:ident, $boolean:expr) => {
|
||
if name == $name {
|
||
let input = if !$boolean {
|
||
require!(
|
||
ret_ty == in_elem,
|
||
"expected return type `{}` (element of input `{}`), found `{}`",
|
||
in_elem,
|
||
in_ty,
|
||
ret_ty
|
||
);
|
||
args[0].immediate()
|
||
} else {
|
||
match in_elem.kind {
|
||
ty::Int(_) | ty::Uint(_) => {}
|
||
_ => return_error!(
|
||
"unsupported {} from `{}` with element `{}` to `{}`",
|
||
$name,
|
||
in_ty,
|
||
in_elem,
|
||
ret_ty
|
||
),
|
||
}
|
||
|
||
// boolean reductions operate on vectors of i1s:
|
||
let i1 = bx.type_i1();
|
||
let i1xn = bx.type_vector(i1, in_len as u64);
|
||
bx.trunc(args[0].immediate(), i1xn)
|
||
};
|
||
return match in_elem.kind {
|
||
ty::Int(_) | ty::Uint(_) => {
|
||
let r = bx.$red(input);
|
||
Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) })
|
||
}
|
||
_ => return_error!(
|
||
"unsupported {} from `{}` with element `{}` to `{}`",
|
||
$name,
|
||
in_ty,
|
||
in_elem,
|
||
ret_ty
|
||
),
|
||
};
|
||
}
|
||
};
|
||
}
|
||
|
||
bitwise_red!("simd_reduce_and": vector_reduce_and, false);
|
||
bitwise_red!("simd_reduce_or": vector_reduce_or, false);
|
||
bitwise_red!("simd_reduce_xor": vector_reduce_xor, false);
|
||
bitwise_red!("simd_reduce_all": vector_reduce_and, true);
|
||
bitwise_red!("simd_reduce_any": vector_reduce_or, true);
|
||
|
||
if name == "simd_cast" {
|
||
require_simd!(ret_ty, "return");
|
||
let out_len = ret_ty.simd_size(tcx);
|
||
require!(
|
||
in_len == out_len,
|
||
"expected return type with length {} (same as input type `{}`), \
|
||
found `{}` with length {}",
|
||
in_len,
|
||
in_ty,
|
||
ret_ty,
|
||
out_len
|
||
);
|
||
// casting cares about nominal type, not just structural type
|
||
let out_elem = ret_ty.simd_type(tcx);
|
||
|
||
if in_elem == out_elem {
|
||
return Ok(args[0].immediate());
|
||
}
|
||
|
||
enum Style {
|
||
Float,
|
||
Int(/* is signed? */ bool),
|
||
Unsupported,
|
||
}
|
||
|
||
let (in_style, in_width) = match in_elem.kind {
|
||
// vectors of pointer-sized integers should've been
|
||
// disallowed before here, so this unwrap is safe.
|
||
ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()),
|
||
ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()),
|
||
ty::Float(f) => (Style::Float, f.bit_width()),
|
||
_ => (Style::Unsupported, 0),
|
||
};
|
||
let (out_style, out_width) = match out_elem.kind {
|
||
ty::Int(i) => (Style::Int(true), i.bit_width().unwrap()),
|
||
ty::Uint(u) => (Style::Int(false), u.bit_width().unwrap()),
|
||
ty::Float(f) => (Style::Float, f.bit_width()),
|
||
_ => (Style::Unsupported, 0),
|
||
};
|
||
|
||
match (in_style, out_style) {
|
||
(Style::Int(in_is_signed), Style::Int(_)) => {
|
||
return Ok(match in_width.cmp(&out_width) {
|
||
Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
|
||
Ordering::Equal => args[0].immediate(),
|
||
Ordering::Less => {
|
||
if in_is_signed {
|
||
bx.sext(args[0].immediate(), llret_ty)
|
||
} else {
|
||
bx.zext(args[0].immediate(), llret_ty)
|
||
}
|
||
}
|
||
});
|
||
}
|
||
(Style::Int(in_is_signed), Style::Float) => {
|
||
return Ok(if in_is_signed {
|
||
bx.sitofp(args[0].immediate(), llret_ty)
|
||
} else {
|
||
bx.uitofp(args[0].immediate(), llret_ty)
|
||
});
|
||
}
|
||
(Style::Float, Style::Int(out_is_signed)) => {
|
||
return Ok(if out_is_signed {
|
||
bx.fptosi(args[0].immediate(), llret_ty)
|
||
} else {
|
||
bx.fptoui(args[0].immediate(), llret_ty)
|
||
});
|
||
}
|
||
(Style::Float, Style::Float) => {
|
||
return Ok(match in_width.cmp(&out_width) {
|
||
Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty),
|
||
Ordering::Equal => args[0].immediate(),
|
||
Ordering::Less => bx.fpext(args[0].immediate(), llret_ty),
|
||
});
|
||
}
|
||
_ => { /* Unsupported. Fallthrough. */ }
|
||
}
|
||
require!(
|
||
false,
|
||
"unsupported cast from `{}` with element `{}` to `{}` with element `{}`",
|
||
in_ty,
|
||
in_elem,
|
||
ret_ty,
|
||
out_elem
|
||
);
|
||
}
|
||
macro_rules! arith {
|
||
($($name: ident: $($($p: ident),* => $call: ident),*;)*) => {
|
||
$(if name == stringify!($name) {
|
||
match in_elem.kind {
|
||
$($(ty::$p(_))|* => {
|
||
return Ok(bx.$call(args[0].immediate(), args[1].immediate()))
|
||
})*
|
||
_ => {},
|
||
}
|
||
require!(false,
|
||
"unsupported operation on `{}` with element `{}`",
|
||
in_ty,
|
||
in_elem)
|
||
})*
|
||
}
|
||
}
|
||
arith! {
|
||
simd_add: Uint, Int => add, Float => fadd;
|
||
simd_sub: Uint, Int => sub, Float => fsub;
|
||
simd_mul: Uint, Int => mul, Float => fmul;
|
||
simd_div: Uint => udiv, Int => sdiv, Float => fdiv;
|
||
simd_rem: Uint => urem, Int => srem, Float => frem;
|
||
simd_shl: Uint, Int => shl;
|
||
simd_shr: Uint => lshr, Int => ashr;
|
||
simd_and: Uint, Int => and;
|
||
simd_or: Uint, Int => or;
|
||
simd_xor: Uint, Int => xor;
|
||
simd_fmax: Float => maxnum;
|
||
simd_fmin: Float => minnum;
|
||
|
||
}
|
||
|
||
if name == "simd_saturating_add" || name == "simd_saturating_sub" {
|
||
let lhs = args[0].immediate();
|
||
let rhs = args[1].immediate();
|
||
let is_add = name == "simd_saturating_add";
|
||
let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
|
||
let (signed, elem_width, elem_ty) = match in_elem.kind {
|
||
ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)),
|
||
ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)),
|
||
_ => {
|
||
return_error!(
|
||
"expected element type `{}` of vector type `{}` \
|
||
to be a signed or unsigned integer type",
|
||
arg_tys[0].simd_type(tcx),
|
||
arg_tys[0]
|
||
);
|
||
}
|
||
};
|
||
let llvm_intrinsic = &format!(
|
||
"llvm.{}{}.sat.v{}i{}",
|
||
if signed { 's' } else { 'u' },
|
||
if is_add { "add" } else { "sub" },
|
||
in_len,
|
||
elem_width
|
||
);
|
||
let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
|
||
|
||
let f = bx.declare_cfn(&llvm_intrinsic, bx.type_func(&[vec_ty, vec_ty], vec_ty));
|
||
llvm::SetUnnamedAddr(f, false);
|
||
let v = bx.call(f, &[lhs, rhs], None);
|
||
return Ok(v);
|
||
}
|
||
|
||
span_bug!(span, "unknown SIMD intrinsic");
|
||
}
|
||
|
||
// Returns the width of an int Ty, and if it's signed or not
|
||
// Returns None if the type is not an integer
|
||
// FIXME: there’s multiple of this functions, investigate using some of the already existing
|
||
// stuffs.
|
||
fn int_type_width_signed(ty: Ty<'_>, cx: &CodegenCx<'_, '_>) -> Option<(u64, bool)> {
|
||
match ty.kind {
|
||
ty::Int(t) => Some((
|
||
match t {
|
||
ast::IntTy::Isize => cx.tcx.sess.target.ptr_width as u64,
|
||
ast::IntTy::I8 => 8,
|
||
ast::IntTy::I16 => 16,
|
||
ast::IntTy::I32 => 32,
|
||
ast::IntTy::I64 => 64,
|
||
ast::IntTy::I128 => 128,
|
||
},
|
||
true,
|
||
)),
|
||
ty::Uint(t) => Some((
|
||
match t {
|
||
ast::UintTy::Usize => cx.tcx.sess.target.ptr_width as u64,
|
||
ast::UintTy::U8 => 8,
|
||
ast::UintTy::U16 => 16,
|
||
ast::UintTy::U32 => 32,
|
||
ast::UintTy::U64 => 64,
|
||
ast::UintTy::U128 => 128,
|
||
},
|
||
false,
|
||
)),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
// Returns the width of a float Ty
|
||
// Returns None if the type is not a float
|
||
fn float_type_width(ty: Ty<'_>) -> Option<u64> {
|
||
match ty.kind {
|
||
ty::Float(t) => Some(t.bit_width() as u64),
|
||
_ => None,
|
||
}
|
||
}
|