rust/src/libstd/thread.rs
2015-02-24 12:08:00 +05:30

976 lines
32 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Native threads
//!
//! ## The threading model
//!
//! An executing Rust program consists of a collection of native OS threads,
//! each with their own stack and local state.
//!
//! Communication between threads can be done through
//! [channels](../../std/sync/mpsc/index.html), Rust's message-passing
//! types, along with [other forms of thread
//! synchronization](../../std/sync/index.html) and shared-memory data
//! structures. In particular, types that are guaranteed to be
//! threadsafe are easily shared between threads using the
//! atomically-reference-counted container,
//! [`Arc`](../../std/sync/struct.Arc.html).
//!
//! Fatal logic errors in Rust cause *thread panic*, during which
//! a thread will unwind the stack, running destructors and freeing
//! owned resources. Thread panic is unrecoverable from within
//! the panicking thread (i.e. there is no 'try/catch' in Rust), but
//! panic may optionally be detected from a different thread. If
//! the main thread panics the application will exit with a non-zero
//! exit code.
//!
//! When the main thread of a Rust program terminates, the entire program shuts
//! down, even if other threads are still running. However, this module provides
//! convenient facilities for automatically waiting for the termination of a
//! child thread (i.e., join), described below.
//!
//! ## The `Thread` type
//!
//! Already-running threads are represented via the `Thread` type, which you can
//! get in one of two ways:
//!
//! * By spawning a new thread, e.g. using the `thread::spawn` constructor;
//! * By requesting the current thread, using the `thread::current` function.
//!
//! Threads can be named, and provide some built-in support for low-level
//! synchronization described below.
//!
//! The `thread::current()` function is available even for threads not spawned
//! by the APIs of this module.
//!
//! ## Spawning a thread
//!
//! A new thread can be spawned using the `thread::spawn` function:
//!
//! ```rust
//! use std::thread;
//!
//! thread::spawn(move || {
//! println!("Hello, World!");
//! // some computation here
//! });
//! ```
//!
//! In this example, the spawned thread is "detached" from the current
//! thread, meaning that it can outlive the thread that spawned
//! it. (Note, however, that when the main thread terminates all
//! detached threads are terminated as well.)
//!
//! ## Scoped threads
//!
//! Often a parent thread uses a child thread to perform some particular task,
//! and at some point must wait for the child to complete before continuing.
//! For this scenario, use the `scoped` constructor:
//!
//! ```rust
//! use std::thread;
//!
//! let guard = thread::scoped(move || {
//! println!("Hello, World!");
//! // some computation here
//! });
//! // do some other work in the meantime
//! let output = guard.join();
//! ```
//!
//! The `scoped` function doesn't return a `Thread` directly; instead,
//! it returns a *join guard*. The join guard is an RAII-style guard
//! that will automatically join the child thread (block until it
//! terminates) when it is dropped. You can join the child thread in
//! advance by calling the `join` method on the guard, which will also
//! return the result produced by the thread. A handle to the thread
//! itself is available via the `thread` method on the join guard.
//!
//! (Note: eventually, the `scoped` constructor will allow the parent and child
//! threads to data that lives on the parent thread's stack, but some language
//! changes are needed before this is possible.)
//!
//! ## Configuring threads
//!
//! A new thread can be configured before it is spawned via the `Builder` type,
//! which currently allows you to set the name, stack size, and writers for
//! `println!` and `panic!` for the child thread:
//!
//! ```rust
//! use std::thread;
//!
//! thread::Builder::new().name("child1".to_string()).spawn(move || {
//! println!("Hello, world!")
//! });
//! ```
//!
//! ## Blocking support: park and unpark
//!
//! Every thread is equipped with some basic low-level blocking support, via the
//! `park` and `unpark` functions.
//!
//! Conceptually, each `Thread` handle has an associated token, which is
//! initially not present:
//!
//! * The `thread::park()` function blocks the current thread unless or until
//! the token is available for its thread handle, at which point It atomically
//! consumes the token. It may also return *spuriously*, without consuming the
//! token. `thread::park_timeout()` does the same, but allows specifying a
//! maximum time to block the thread for.
//!
//! * The `unpark()` method on a `Thread` atomically makes the token available
//! if it wasn't already.
//!
//! In other words, each `Thread` acts a bit like a semaphore with initial count
//! 0, except that the semaphore is *saturating* (the count cannot go above 1),
//! and can return spuriously.
//!
//! The API is typically used by acquiring a handle to the current thread,
//! placing that handle in a shared data structure so that other threads can
//! find it, and then `park`ing. When some desired condition is met, another
//! thread calls `unpark` on the handle.
//!
//! The motivation for this design is twofold:
//!
//! * It avoids the need to allocate mutexes and condvars when building new
//! synchronization primitives; the threads already provide basic blocking/signaling.
//!
//! * It can be implemented highly efficiently on many platforms.
#![stable(feature = "rust1", since = "1.0.0")]
use prelude::v1::*;
use any::Any;
use cell::UnsafeCell;
use fmt;
use io;
use marker::PhantomData;
use old_io::stdio;
use rt::{self, unwind};
use sync::{Mutex, Condvar, Arc};
use thunk::Thunk;
use time::Duration;
use sys::thread as imp;
use sys_common::{stack, thread_info};
/// Thread configuration. Provides detailed control over the properties
/// and behavior of new threads.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Builder {
// A name for the thread-to-be, for identification in panic messages
name: Option<String>,
// The size of the stack for the spawned thread
stack_size: Option<uint>,
// Thread-local stdout
stdout: Option<Box<Writer + Send + 'static>>,
// Thread-local stderr
stderr: Option<Box<Writer + Send + 'static>>,
}
impl Builder {
/// Generate the base configuration for spawning a thread, from which
/// configuration methods can be chained.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> Builder {
Builder {
name: None,
stack_size: None,
stdout: None,
stderr: None,
}
}
/// Name the thread-to-be. Currently the name is used for identification
/// only in panic messages.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn name(mut self, name: String) -> Builder {
self.name = Some(name);
self
}
/// Set the size of the stack for the new thread.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn stack_size(mut self, size: uint) -> Builder {
self.stack_size = Some(size);
self
}
/// Redirect thread-local stdout.
#[unstable(feature = "std_misc",
reason = "Will likely go away after proc removal")]
pub fn stdout(mut self, stdout: Box<Writer + Send + 'static>) -> Builder {
self.stdout = Some(stdout);
self
}
/// Redirect thread-local stderr.
#[unstable(feature = "std_misc",
reason = "Will likely go away after proc removal")]
pub fn stderr(mut self, stderr: Box<Writer + Send + 'static>) -> Builder {
self.stderr = Some(stderr);
self
}
/// Spawn a new thread, and return a join handle for it.
///
/// The child thread may outlive the parent (unless the parent thread
/// is the main thread; the whole process is terminated when the main
/// thread finishes.) The join handle can be used to block on
/// termination of the child thread, including recovering its panics.
///
/// # Errors
///
/// Unlike the `spawn` free function, this method yields an
/// `io::Result` to capture any failure to create the thread at
/// the OS level.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn spawn<F>(self, f: F) -> io::Result<JoinHandle> where
F: FnOnce(), F: Send + 'static
{
self.spawn_inner(Thunk::new(f)).map(|i| JoinHandle(i))
}
/// Spawn a new child thread that must be joined within a given
/// scope, and return a `JoinGuard`.
///
/// The join guard can be used to explicitly join the child thread (via
/// `join`), returning `Result<T>`, or it will implicitly join the child
/// upon being dropped. Because the child thread may refer to data on the
/// current thread's stack (hence the "scoped" name), it cannot be detached;
/// it *must* be joined before the relevant stack frame is popped. See the
/// module documentation for additional details.
///
/// # Errors
///
/// Unlike the `scoped` free function, this method yields an
/// `io::Result` to capture any failure to create the thread at
/// the OS level.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn scoped<'a, T, F>(self, f: F) -> io::Result<JoinGuard<'a, T>> where
T: Send + 'a, F: FnOnce() -> T, F: Send + 'a
{
self.spawn_inner(Thunk::new(f)).map(|inner| {
JoinGuard { inner: inner, _marker: PhantomData }
})
}
fn spawn_inner<T: Send>(self, f: Thunk<(), T>) -> io::Result<JoinInner<T>> {
let Builder { name, stack_size, stdout, stderr } = self;
let stack_size = stack_size.unwrap_or(rt::min_stack());
let my_thread = Thread::new(name);
let their_thread = my_thread.clone();
let my_packet = Packet(Arc::new(UnsafeCell::new(None)));
let their_packet = Packet(my_packet.0.clone());
// Spawning a new OS thread guarantees that __morestack will never get
// triggered, but we must manually set up the actual stack bounds once
// this function starts executing. This raises the lower limit by a bit
// because by the time that this function is executing we've already
// consumed at least a little bit of stack (we don't know the exact byte
// address at which our stack started).
let main = move || {
let something_around_the_top_of_the_stack = 1;
let addr = &something_around_the_top_of_the_stack as *const int;
let my_stack_top = addr as uint;
let my_stack_bottom = my_stack_top - stack_size + 1024;
unsafe {
stack::record_os_managed_stack_bounds(my_stack_bottom, my_stack_top);
}
match their_thread.name() {
Some(name) => unsafe { imp::set_name(name.as_slice()); },
None => {}
}
thread_info::set(
(my_stack_bottom, my_stack_top),
unsafe { imp::guard::current() },
their_thread
);
let mut output = None;
let f: Thunk<(), T> = if stdout.is_some() || stderr.is_some() {
Thunk::new(move || {
let _ = stdout.map(stdio::set_stdout);
let _ = stderr.map(stdio::set_stderr);
f.invoke(())
})
} else {
f
};
let try_result = {
let ptr = &mut output;
// There are two primary reasons that general try/catch is
// unsafe. The first is that we do not support nested
// try/catch. The fact that this is happening in a newly-spawned
// thread suffices. The second is that unwinding while unwinding
// is not defined. We take care of that by having an
// 'unwinding' flag in the thread itself. For these reasons,
// this unsafety should be ok.
unsafe {
unwind::try(move || *ptr = Some(f.invoke(())))
}
};
unsafe {
*their_packet.0.get() = Some(match (output, try_result) {
(Some(data), Ok(_)) => Ok(data),
(None, Err(cause)) => Err(cause),
_ => unreachable!()
});
}
};
Ok(JoinInner {
native: try!(unsafe { imp::create(stack_size, Thunk::new(main)) }),
thread: my_thread,
packet: my_packet,
joined: false,
})
}
}
/// Spawn a new thread, returning a `JoinHandle` for it.
///
/// The join handle will implicitly *detach* the child thread upon being
/// dropped. In this case, the child thread may outlive the parent (unless
/// the parent thread is the main thread; the whole process is terminated when
/// the main thread finishes.) Additionally, the join handle provides a `join`
/// method that can be used to join the child thread. If the child thread
/// panics, `join` will return an `Err` containing the argument given to
/// `panic`.
///
/// # Panics
///
/// Panicks if the OS fails to create a thread; use `Builder::spawn`
/// to recover from such errors.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn spawn<F>(f: F) -> JoinHandle where F: FnOnce(), F: Send + 'static {
Builder::new().spawn(f).unwrap()
}
/// Spawn a new *scoped* thread, returning a `JoinGuard` for it.
///
/// The join guard can be used to explicitly join the child thread (via
/// `join`), returning `Result<T>`, or it will implicitly join the child
/// upon being dropped. Because the child thread may refer to data on the
/// current thread's stack (hence the "scoped" name), it cannot be detached;
/// it *must* be joined before the relevant stack frame is popped. See the
/// module documentation for additional details.
///
/// # Panics
///
/// Panicks if the OS fails to create a thread; use `Builder::scoped`
/// to recover from such errors.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn scoped<'a, T, F>(f: F) -> JoinGuard<'a, T> where
T: Send + 'a, F: FnOnce() -> T, F: Send + 'a
{
Builder::new().scoped(f).unwrap()
}
/// Gets a handle to the thread that invokes it.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn current() -> Thread {
thread_info::current_thread()
}
/// Cooperatively give up a timeslice to the OS scheduler.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn yield_now() {
unsafe { imp::yield_now() }
}
/// Determines whether the current thread is unwinding because of panic.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn panicking() -> bool {
unwind::panicking()
}
/// Block unless or until the current thread's token is made available (may wake spuriously).
///
/// See the module doc for more detail.
//
// The implementation currently uses the trivial strategy of a Mutex+Condvar
// with wakeup flag, which does not actually allow spurious wakeups. In the
// future, this will be implemented in a more efficient way, perhaps along the lines of
// http://cr.openjdk.java.net/~stefank/6989984.1/raw_files/new/src/os/linux/vm/os_linux.cpp
// or futuxes, and in either case may allow spurious wakeups.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn park() {
let thread = current();
let mut guard = thread.inner.lock.lock().unwrap();
while !*guard {
guard = thread.inner.cvar.wait(guard).unwrap();
}
*guard = false;
}
/// Block unless or until the current thread's token is made available or
/// the specified duration has been reached (may wake spuriously).
///
/// The semantics of this function are equivalent to `park()` except that the
/// thread will be blocked for roughly no longer than dur. This method
/// should not be used for precise timing due to anomalies such as
/// preemption or platform differences that may not cause the maximum
/// amount of time waited to be precisely dur
///
/// See the module doc for more detail.
#[unstable(feature = "std_misc", reason = "recently introduced, depends on Duration")]
pub fn park_timeout(dur: Duration) {
let thread = current();
let mut guard = thread.inner.lock.lock().unwrap();
if !*guard {
let (g, _) = thread.inner.cvar.wait_timeout(guard, dur).unwrap();
guard = g;
}
*guard = false;
}
/// The internal representation of a `Thread` handle
struct Inner {
name: Option<String>,
lock: Mutex<bool>, // true when there is a buffered unpark
cvar: Condvar,
}
unsafe impl Sync for Inner {}
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
/// A handle to a thread.
pub struct Thread {
inner: Arc<Inner>,
}
impl Thread {
// Used only internally to construct a thread object without spawning
fn new(name: Option<String>) -> Thread {
Thread {
inner: Arc::new(Inner {
name: name,
lock: Mutex::new(false),
cvar: Condvar::new(),
})
}
}
/// Deprecated: use module-level free function.
#[deprecated(since = "1.0.0", reason = "use module-level free function")]
#[unstable(feature = "std_misc",
reason = "may change with specifics of new Send semantics")]
pub fn spawn<F>(f: F) -> Thread where F: FnOnce(), F: Send + 'static {
Builder::new().spawn(f).unwrap().thread().clone()
}
/// Deprecated: use module-level free function.
#[deprecated(since = "1.0.0", reason = "use module-level free function")]
#[unstable(feature = "std_misc",
reason = "may change with specifics of new Send semantics")]
pub fn scoped<'a, T, F>(f: F) -> JoinGuard<'a, T> where
T: Send + 'a, F: FnOnce() -> T, F: Send + 'a
{
Builder::new().scoped(f).unwrap()
}
/// Deprecated: use module-level free function.
#[deprecated(since = "1.0.0", reason = "use module-level free function")]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn current() -> Thread {
thread_info::current_thread()
}
/// Deprecated: use module-level free function.
#[deprecated(since = "1.0.0", reason = "use module-level free function")]
#[unstable(feature = "std_misc", reason = "name may change")]
pub fn yield_now() {
unsafe { imp::yield_now() }
}
/// Deprecated: use module-level free function.
#[deprecated(since = "1.0.0", reason = "use module-level free function")]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn panicking() -> bool {
unwind::panicking()
}
/// Deprecated: use module-level free function.
#[deprecated(since = "1.0.0", reason = "use module-level free function")]
#[unstable(feature = "std_misc", reason = "recently introduced")]
pub fn park() {
let thread = current();
let mut guard = thread.inner.lock.lock().unwrap();
while !*guard {
guard = thread.inner.cvar.wait(guard).unwrap();
}
*guard = false;
}
/// Deprecated: use module-level free function.
#[deprecated(since = "1.0.0", reason = "use module-level free function")]
#[unstable(feature = "std_misc", reason = "recently introduced")]
pub fn park_timeout(dur: Duration) {
let thread = current();
let mut guard = thread.inner.lock.lock().unwrap();
if !*guard {
let (g, _) = thread.inner.cvar.wait_timeout(guard, dur).unwrap();
guard = g;
}
*guard = false;
}
/// Atomically makes the handle's token available if it is not already.
///
/// See the module doc for more detail.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unpark(&self) {
let mut guard = self.inner.lock.lock().unwrap();
if !*guard {
*guard = true;
self.inner.cvar.notify_one();
}
}
/// Get the thread's name.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn name(&self) -> Option<&str> {
self.inner.name.as_ref().map(|s| &**s)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Thread {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.name(), f)
}
}
// a hack to get around privacy restrictions
impl thread_info::NewThread for Thread {
fn new(name: Option<String>) -> Thread { Thread::new(name) }
}
/// Indicates the manner in which a thread exited.
///
/// A thread that completes without panicking is considered to exit successfully.
#[stable(feature = "rust1", since = "1.0.0")]
pub type Result<T> = ::result::Result<T, Box<Any + Send + 'static>>;
struct Packet<T>(Arc<UnsafeCell<Option<Result<T>>>>);
unsafe impl<T:Send> Send for Packet<T> {}
unsafe impl<T> Sync for Packet<T> {}
/// Inner representation for JoinHandle and JoinGuard
struct JoinInner<T> {
native: imp::rust_thread,
thread: Thread,
packet: Packet<T>,
joined: bool,
}
impl<T> JoinInner<T> {
fn join(&mut self) -> Result<T> {
assert!(!self.joined);
unsafe { imp::join(self.native) };
self.joined = true;
unsafe {
(*self.packet.0.get()).take().unwrap()
}
}
}
/// An owned permission to join on a thread (block on its termination).
///
/// Unlike a `JoinGuard`, a `JoinHandle` *detaches* the child thread
/// when it is dropped, rather than automatically joining on drop.
///
/// Due to platform restrictions, it is not possible to `Clone` this
/// handle: the ability to join a child thread is a uniquely-owned
/// permission.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct JoinHandle(JoinInner<()>);
impl JoinHandle {
/// Extract a handle to the underlying thread
#[stable(feature = "rust1", since = "1.0.0")]
pub fn thread(&self) -> &Thread {
&self.0.thread
}
/// Wait for the associated thread to finish.
///
/// If the child thread panics, `Err` is returned with the parameter given
/// to `panic`.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn join(mut self) -> Result<()> {
self.0.join()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Drop for JoinHandle {
fn drop(&mut self) {
if !self.0.joined {
unsafe { imp::detach(self.0.native) }
}
}
}
/// An RAII-style guard that will block until thread termination when dropped.
///
/// The type `T` is the return type for the thread's main function.
///
/// Joining on drop is necessary to ensure memory safety when stack
/// data is shared between a parent and child thread.
///
/// Due to platform restrictions, it is not possible to `Clone` this
/// handle: the ability to join a child thread is a uniquely-owned
/// permission.
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct JoinGuard<'a, T: 'a> {
inner: JoinInner<T>,
_marker: PhantomData<&'a T>,
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<'a, T: Send + 'a> Sync for JoinGuard<'a, T> {}
impl<'a, T: Send + 'a> JoinGuard<'a, T> {
/// Extract a handle to the thread this guard will join on.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn thread(&self) -> &Thread {
&self.inner.thread
}
/// Wait for the associated thread to finish, returning the result of the thread's
/// calculation.
///
/// # Panics
///
/// Panics on the child thread are propagated by panicking the parent.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn join(mut self) -> T {
match self.inner.join() {
Ok(res) => res,
Err(_) => panic!("child thread {:?} panicked", self.thread()),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Send> JoinGuard<'static, T> {
/// Detaches the child thread, allowing it to outlive its parent.
#[deprecated(since = "1.0.0", reason = "use spawn instead")]
#[unstable(feature = "std_misc")]
pub fn detach(mut self) {
unsafe { imp::detach(self.inner.native) };
self.inner.joined = true; // avoid joining in the destructor
}
}
#[unsafe_destructor]
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: Send + 'a> Drop for JoinGuard<'a, T> {
fn drop(&mut self) {
if !self.inner.joined {
if self.inner.join().is_err() {
panic!("child thread {:?} panicked", self.thread());
}
}
}
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use any::Any;
use sync::mpsc::{channel, Sender};
use boxed::BoxAny;
use result;
use std::old_io::{ChanReader, ChanWriter};
use super::{Builder};
use thread;
use thunk::Thunk;
use time::Duration;
// !!! These tests are dangerous. If something is buggy, they will hang, !!!
// !!! instead of exiting cleanly. This might wedge the buildbots. !!!
#[test]
fn test_unnamed_thread() {
thread::spawn(move|| {
assert!(thread::current().name().is_none());
}).join().ok().unwrap();
}
#[test]
fn test_named_thread() {
Builder::new().name("ada lovelace".to_string()).scoped(move|| {
assert!(thread::current().name().unwrap() == "ada lovelace".to_string());
}).unwrap().join();
}
#[test]
fn test_run_basic() {
let (tx, rx) = channel();
thread::spawn(move|| {
tx.send(()).unwrap();
});
rx.recv().unwrap();
}
#[test]
fn test_join_success() {
assert!(thread::scoped(move|| -> String {
"Success!".to_string()
}).join() == "Success!");
}
#[test]
fn test_join_panic() {
match thread::spawn(move|| {
panic!()
}).join() {
result::Result::Err(_) => (),
result::Result::Ok(()) => panic!()
}
}
#[test]
fn test_scoped_success() {
let res = thread::scoped(move|| -> String {
"Success!".to_string()
}).join();
assert!(res == "Success!");
}
#[test]
#[should_fail]
fn test_scoped_panic() {
thread::scoped(|| panic!()).join();
}
#[test]
#[should_fail]
fn test_scoped_implicit_panic() {
let _ = thread::scoped(|| panic!());
}
#[test]
fn test_spawn_sched() {
use clone::Clone;
let (tx, rx) = channel();
fn f(i: int, tx: Sender<()>) {
let tx = tx.clone();
thread::spawn(move|| {
if i == 0 {
tx.send(()).unwrap();
} else {
f(i - 1, tx);
}
});
}
f(10, tx);
rx.recv().unwrap();
}
#[test]
fn test_spawn_sched_childs_on_default_sched() {
let (tx, rx) = channel();
thread::spawn(move|| {
thread::spawn(move|| {
tx.send(()).unwrap();
});
});
rx.recv().unwrap();
}
fn avoid_copying_the_body<F>(spawnfn: F) where F: FnOnce(Thunk<'static>) {
let (tx, rx) = channel::<uint>();
let x = box 1;
let x_in_parent = (&*x) as *const int as uint;
spawnfn(Thunk::new(move|| {
let x_in_child = (&*x) as *const int as uint;
tx.send(x_in_child).unwrap();
}));
let x_in_child = rx.recv().unwrap();
assert_eq!(x_in_parent, x_in_child);
}
#[test]
fn test_avoid_copying_the_body_spawn() {
avoid_copying_the_body(|v| {
thread::spawn(move || v.invoke(()));
});
}
#[test]
fn test_avoid_copying_the_body_thread_spawn() {
avoid_copying_the_body(|f| {
thread::spawn(move|| {
f.invoke(());
});
})
}
#[test]
fn test_avoid_copying_the_body_join() {
avoid_copying_the_body(|f| {
let _ = thread::spawn(move|| {
f.invoke(())
}).join();
})
}
#[test]
fn test_child_doesnt_ref_parent() {
// If the child refcounts the parent task, this will stack overflow when
// climbing the task tree to dereference each ancestor. (See #1789)
// (well, it would if the constant were 8000+ - I lowered it to be more
// valgrind-friendly. try this at home, instead..!)
static GENERATIONS: uint = 16;
fn child_no(x: uint) -> Thunk<'static> {
return Thunk::new(move|| {
if x < GENERATIONS {
thread::spawn(move|| child_no(x+1).invoke(()));
}
});
}
thread::spawn(|| child_no(0).invoke(()));
}
#[test]
fn test_simple_newsched_spawn() {
thread::spawn(move || {});
}
#[test]
fn test_try_panic_message_static_str() {
match thread::spawn(move|| {
panic!("static string");
}).join() {
Err(e) => {
type T = &'static str;
assert!(e.is::<T>());
assert_eq!(*e.downcast::<T>().ok().unwrap(), "static string");
}
Ok(()) => panic!()
}
}
#[test]
fn test_try_panic_message_owned_str() {
match thread::spawn(move|| {
panic!("owned string".to_string());
}).join() {
Err(e) => {
type T = String;
assert!(e.is::<T>());
assert_eq!(*e.downcast::<T>().ok().unwrap(), "owned string".to_string());
}
Ok(()) => panic!()
}
}
#[test]
fn test_try_panic_message_any() {
match thread::spawn(move|| {
panic!(box 413u16 as Box<Any + Send>);
}).join() {
Err(e) => {
type T = Box<Any + Send>;
assert!(e.is::<T>());
let any = e.downcast::<T>().ok().unwrap();
assert!(any.is::<u16>());
assert_eq!(*any.downcast::<u16>().ok().unwrap(), 413u16);
}
Ok(()) => panic!()
}
}
#[test]
fn test_try_panic_message_unit_struct() {
struct Juju;
match thread::spawn(move|| {
panic!(Juju)
}).join() {
Err(ref e) if e.is::<Juju>() => {}
Err(_) | Ok(()) => panic!()
}
}
#[test]
fn test_stdout() {
let (tx, rx) = channel();
let mut reader = ChanReader::new(rx);
let stdout = ChanWriter::new(tx);
Builder::new().stdout(box stdout as Box<Writer + Send>).scoped(move|| {
print!("Hello, world!");
}).unwrap().join();
let output = reader.read_to_string().unwrap();
assert_eq!(output, "Hello, world!".to_string());
}
#[test]
fn test_park_timeout_unpark_before() {
for _ in 0..10 {
thread::current().unpark();
thread::park_timeout(Duration::seconds(10_000_000));
}
}
#[test]
fn test_park_timeout_unpark_not_called() {
for _ in 0..10 {
thread::park_timeout(Duration::milliseconds(10));
}
}
#[test]
fn test_park_timeout_unpark_called_other_thread() {
use std::old_io;
for _ in 0..10 {
let th = thread::current();
let _guard = thread::spawn(move || {
old_io::timer::sleep(Duration::milliseconds(50));
th.unpark();
});
thread::park_timeout(Duration::seconds(10_000_000));
}
}
// NOTE: the corresponding test for stderr is in run-pass/task-stderr, due
// to the test harness apparently interfering with stderr configuration.
}