547 lines
22 KiB
Rust
547 lines
22 KiB
Rust
use std::ffi::OsStr;
|
|
use std::{iter, mem};
|
|
|
|
use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
|
|
use rustc::mir;
|
|
use rustc::ty::{
|
|
self,
|
|
layout::{self, LayoutOf, Size, TyLayout},
|
|
List, TyCtxt,
|
|
};
|
|
use rustc_span::source_map::DUMMY_SP;
|
|
|
|
use rand::RngCore;
|
|
|
|
use crate::*;
|
|
|
|
impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
|
|
|
|
/// Gets an instance for a path.
|
|
fn resolve_did<'mir, 'tcx>(tcx: TyCtxt<'tcx>, path: &[&str]) -> InterpResult<'tcx, DefId> {
|
|
tcx.crates()
|
|
.iter()
|
|
.find(|&&krate| tcx.original_crate_name(krate).as_str() == path[0])
|
|
.and_then(|krate| {
|
|
let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX };
|
|
let mut items = tcx.item_children(krate);
|
|
let mut path_it = path.iter().skip(1).peekable();
|
|
|
|
while let Some(segment) = path_it.next() {
|
|
for item in mem::replace(&mut items, Default::default()).iter() {
|
|
if item.ident.name.as_str() == *segment {
|
|
if path_it.peek().is_none() {
|
|
return Some(item.res.def_id());
|
|
}
|
|
|
|
items = tcx.item_children(item.res.def_id());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
None
|
|
})
|
|
.ok_or_else(|| {
|
|
let path = path.iter().map(|&s| s.to_owned()).collect();
|
|
err_unsup!(PathNotFound(path)).into()
|
|
})
|
|
}
|
|
|
|
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
|
|
/// Gets an instance for a path.
|
|
fn resolve_path(&self, path: &[&str]) -> InterpResult<'tcx, ty::Instance<'tcx>> {
|
|
Ok(ty::Instance::mono(
|
|
self.eval_context_ref().tcx.tcx,
|
|
resolve_did(self.eval_context_ref().tcx.tcx, path)?,
|
|
))
|
|
}
|
|
|
|
/// Write a 0 of the appropriate size to `dest`.
|
|
fn write_null(&mut self, dest: PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
|
|
self.eval_context_mut().write_scalar(Scalar::from_int(0, dest.layout.size), dest)
|
|
}
|
|
|
|
/// Test if this immediate equals 0.
|
|
fn is_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, bool> {
|
|
let this = self.eval_context_ref();
|
|
let null = Scalar::from_int(0, this.memory.pointer_size());
|
|
this.ptr_eq(val, null)
|
|
}
|
|
|
|
/// Turn a Scalar into an Option<NonNullScalar>
|
|
fn test_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, Option<Scalar<Tag>>> {
|
|
let this = self.eval_context_ref();
|
|
Ok(if this.is_null(val)? { None } else { Some(val) })
|
|
}
|
|
|
|
/// Get the `Place` for a local
|
|
fn local_place(&mut self, local: mir::Local) -> InterpResult<'tcx, PlaceTy<'tcx, Tag>> {
|
|
let this = self.eval_context_mut();
|
|
let place = mir::Place { local: local, projection: List::empty() };
|
|
this.eval_place(&place)
|
|
}
|
|
|
|
/// Generate some random bytes, and write them to `dest`.
|
|
fn gen_random(&mut self, ptr: Scalar<Tag>, len: usize) -> InterpResult<'tcx> {
|
|
// Some programs pass in a null pointer and a length of 0
|
|
// to their platform's random-generation function (e.g. getrandom())
|
|
// on Linux. For compatibility with these programs, we don't perform
|
|
// any additional checks - it's okay if the pointer is invalid,
|
|
// since we wouldn't actually be writing to it.
|
|
if len == 0 {
|
|
return Ok(());
|
|
}
|
|
let this = self.eval_context_mut();
|
|
|
|
let mut data = vec![0; len];
|
|
|
|
if this.machine.communicate {
|
|
// Fill the buffer using the host's rng.
|
|
getrandom::getrandom(&mut data)
|
|
.map_err(|err| err_unsup_format!("getrandom failed: {}", err))?;
|
|
} else {
|
|
let rng = this.memory.extra.rng.get_mut();
|
|
rng.fill_bytes(&mut data);
|
|
}
|
|
|
|
this.memory.write_bytes(ptr, data.iter().copied())
|
|
}
|
|
|
|
/// Call a function: Push the stack frame and pass the arguments.
|
|
/// For now, arguments must be scalars (so that the caller does not have to know the layout).
|
|
fn call_function(
|
|
&mut self,
|
|
f: ty::Instance<'tcx>,
|
|
args: &[Immediate<Tag>],
|
|
dest: Option<PlaceTy<'tcx, Tag>>,
|
|
stack_pop: StackPopCleanup,
|
|
) -> InterpResult<'tcx> {
|
|
let this = self.eval_context_mut();
|
|
|
|
// Push frame.
|
|
let mir = &*this.load_mir(f.def, None)?;
|
|
let span = this
|
|
.stack()
|
|
.last()
|
|
.and_then(Frame::current_source_info)
|
|
.map(|si| si.span)
|
|
.unwrap_or(DUMMY_SP);
|
|
this.push_stack_frame(f, span, mir, dest, stack_pop)?;
|
|
|
|
// Initialize arguments.
|
|
let mut callee_args = this.frame().body.args_iter();
|
|
for arg in args {
|
|
let callee_arg = this.local_place(
|
|
callee_args.next().expect("callee has fewer arguments than expected"),
|
|
)?;
|
|
this.write_immediate(*arg, callee_arg)?;
|
|
}
|
|
callee_args.next().expect_none("callee has more arguments than expected");
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Visits the memory covered by `place`, sensitive to freezing: the 3rd parameter
|
|
/// will be true if this is frozen, false if this is in an `UnsafeCell`.
|
|
fn visit_freeze_sensitive(
|
|
&self,
|
|
place: MPlaceTy<'tcx, Tag>,
|
|
size: Size,
|
|
mut action: impl FnMut(Pointer<Tag>, Size, bool) -> InterpResult<'tcx>,
|
|
) -> InterpResult<'tcx> {
|
|
let this = self.eval_context_ref();
|
|
trace!("visit_frozen(place={:?}, size={:?})", *place, size);
|
|
debug_assert_eq!(
|
|
size,
|
|
this.size_and_align_of_mplace(place)?
|
|
.map(|(size, _)| size)
|
|
.unwrap_or_else(|| place.layout.size)
|
|
);
|
|
// Store how far we proceeded into the place so far. Everything to the left of
|
|
// this offset has already been handled, in the sense that the frozen parts
|
|
// have had `action` called on them.
|
|
let mut end_ptr = place.ptr.assert_ptr();
|
|
// Called when we detected an `UnsafeCell` at the given offset and size.
|
|
// Calls `action` and advances `end_ptr`.
|
|
let mut unsafe_cell_action = |unsafe_cell_ptr: Scalar<Tag>, unsafe_cell_size: Size| {
|
|
let unsafe_cell_ptr = unsafe_cell_ptr.assert_ptr();
|
|
debug_assert_eq!(unsafe_cell_ptr.alloc_id, end_ptr.alloc_id);
|
|
debug_assert_eq!(unsafe_cell_ptr.tag, end_ptr.tag);
|
|
// We assume that we are given the fields in increasing offset order,
|
|
// and nothing else changes.
|
|
let unsafe_cell_offset = unsafe_cell_ptr.offset;
|
|
let end_offset = end_ptr.offset;
|
|
assert!(unsafe_cell_offset >= end_offset);
|
|
let frozen_size = unsafe_cell_offset - end_offset;
|
|
// Everything between the end_ptr and this `UnsafeCell` is frozen.
|
|
if frozen_size != Size::ZERO {
|
|
action(end_ptr, frozen_size, /*frozen*/ true)?;
|
|
}
|
|
// This `UnsafeCell` is NOT frozen.
|
|
if unsafe_cell_size != Size::ZERO {
|
|
action(unsafe_cell_ptr, unsafe_cell_size, /*frozen*/ false)?;
|
|
}
|
|
// Update end end_ptr.
|
|
end_ptr = unsafe_cell_ptr.wrapping_offset(unsafe_cell_size, this);
|
|
// Done
|
|
Ok(())
|
|
};
|
|
// Run a visitor
|
|
{
|
|
let mut visitor = UnsafeCellVisitor {
|
|
ecx: this,
|
|
unsafe_cell_action: |place| {
|
|
trace!("unsafe_cell_action on {:?}", place.ptr);
|
|
// We need a size to go on.
|
|
let unsafe_cell_size = this
|
|
.size_and_align_of_mplace(place)?
|
|
.map(|(size, _)| size)
|
|
// for extern types, just cover what we can
|
|
.unwrap_or_else(|| place.layout.size);
|
|
// Now handle this `UnsafeCell`, unless it is empty.
|
|
if unsafe_cell_size != Size::ZERO {
|
|
unsafe_cell_action(place.ptr, unsafe_cell_size)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
},
|
|
};
|
|
visitor.visit_value(place)?;
|
|
}
|
|
// The part between the end_ptr and the end of the place is also frozen.
|
|
// So pretend there is a 0-sized `UnsafeCell` at the end.
|
|
unsafe_cell_action(place.ptr.ptr_wrapping_offset(size, this), Size::ZERO)?;
|
|
// Done!
|
|
return Ok(());
|
|
|
|
/// Visiting the memory covered by a `MemPlace`, being aware of
|
|
/// whether we are inside an `UnsafeCell` or not.
|
|
struct UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
|
|
where
|
|
F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
|
|
{
|
|
ecx: &'ecx MiriEvalContext<'mir, 'tcx>,
|
|
unsafe_cell_action: F,
|
|
}
|
|
|
|
impl<'ecx, 'mir, 'tcx, F> ValueVisitor<'mir, 'tcx, Evaluator<'tcx>>
|
|
for UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
|
|
where
|
|
F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
|
|
{
|
|
type V = MPlaceTy<'tcx, Tag>;
|
|
|
|
#[inline(always)]
|
|
fn ecx(&self) -> &MiriEvalContext<'mir, 'tcx> {
|
|
&self.ecx
|
|
}
|
|
|
|
// Hook to detect `UnsafeCell`.
|
|
fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
|
|
trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
|
|
let is_unsafe_cell = match v.layout.ty.kind {
|
|
ty::Adt(adt, _) =>
|
|
Some(adt.did) == self.ecx.tcx.lang_items().unsafe_cell_type(),
|
|
_ => false,
|
|
};
|
|
if is_unsafe_cell {
|
|
// We do not have to recurse further, this is an `UnsafeCell`.
|
|
(self.unsafe_cell_action)(v)
|
|
} else if self.ecx.type_is_freeze(v.layout.ty) {
|
|
// This is `Freeze`, there cannot be an `UnsafeCell`
|
|
Ok(())
|
|
} else {
|
|
// We want to not actually read from memory for this visit. So, before
|
|
// walking this value, we have to make sure it is not a
|
|
// `Variants::Multiple`.
|
|
match v.layout.variants {
|
|
layout::Variants::Multiple { .. } => {
|
|
// A multi-variant enum, or generator, or so.
|
|
// Treat this like a union: without reading from memory,
|
|
// we cannot determine the variant we are in. Reading from
|
|
// memory would be subject to Stacked Borrows rules, leading
|
|
// to all sorts of "funny" recursion.
|
|
// We only end up here if the type is *not* freeze, so we just call the
|
|
// `UnsafeCell` action.
|
|
(self.unsafe_cell_action)(v)
|
|
}
|
|
layout::Variants::Single { .. } => {
|
|
// Proceed further, try to find where exactly that `UnsafeCell`
|
|
// is hiding.
|
|
self.walk_value(v)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure we visit aggregrates in increasing offset order.
|
|
fn visit_aggregate(
|
|
&mut self,
|
|
place: MPlaceTy<'tcx, Tag>,
|
|
fields: impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>>,
|
|
) -> InterpResult<'tcx> {
|
|
match place.layout.fields {
|
|
layout::FieldPlacement::Array { .. } => {
|
|
// For the array layout, we know the iterator will yield sorted elements so
|
|
// we can avoid the allocation.
|
|
self.walk_aggregate(place, fields)
|
|
}
|
|
layout::FieldPlacement::Arbitrary { .. } => {
|
|
// Gather the subplaces and sort them before visiting.
|
|
let mut places =
|
|
fields.collect::<InterpResult<'tcx, Vec<MPlaceTy<'tcx, Tag>>>>()?;
|
|
places.sort_by_key(|place| place.ptr.assert_ptr().offset);
|
|
self.walk_aggregate(place, places.into_iter().map(Ok))
|
|
}
|
|
layout::FieldPlacement::Union { .. } => {
|
|
// Uh, what?
|
|
bug!("a union is not an aggregate we should ever visit")
|
|
}
|
|
}
|
|
}
|
|
|
|
// We have to do *something* for unions.
|
|
fn visit_union(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
|
|
// With unions, we fall back to whatever the type says, to hopefully be consistent
|
|
// with LLVM IR.
|
|
// FIXME: are we consistent, and is this really the behavior we want?
|
|
let frozen = self.ecx.type_is_freeze(v.layout.ty);
|
|
if frozen { Ok(()) } else { (self.unsafe_cell_action)(v) }
|
|
}
|
|
|
|
// We should never get to a primitive, but always short-circuit somewhere above.
|
|
fn visit_primitive(&mut self, _v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
|
|
bug!("we should always short-circuit before coming to a primitive")
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper function to get a `libc` constant as a `Scalar`.
|
|
fn eval_libc(&mut self, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
|
|
self.eval_context_mut()
|
|
.eval_path_scalar(&["libc", name])?
|
|
.ok_or_else(|| err_unsup_format!("Path libc::{} cannot be resolved.", name))?
|
|
.not_undef()
|
|
}
|
|
|
|
/// Helper function to get a `libc` constant as an `i32`.
|
|
fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> {
|
|
self.eval_libc(name)?.to_i32()
|
|
}
|
|
|
|
/// Helper function to get the `TyLayout` of a `libc` type
|
|
fn libc_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyLayout<'tcx>> {
|
|
let this = self.eval_context_mut();
|
|
let ty = this.resolve_path(&["libc", name])?.monomorphic_ty(*this.tcx);
|
|
this.layout_of(ty)
|
|
}
|
|
|
|
// Writes several `ImmTy`s contiguosly into memory. This is useful when you have to pack
|
|
// different values into a struct.
|
|
fn write_packed_immediates(
|
|
&mut self,
|
|
place: MPlaceTy<'tcx, Tag>,
|
|
imms: &[ImmTy<'tcx, Tag>],
|
|
) -> InterpResult<'tcx> {
|
|
let this = self.eval_context_mut();
|
|
|
|
let mut offset = Size::from_bytes(0);
|
|
|
|
for &imm in imms {
|
|
this.write_immediate_to_mplace(
|
|
*imm,
|
|
place.offset(offset, MemPlaceMeta::None, imm.layout, &*this.tcx)?,
|
|
)?;
|
|
offset += imm.layout.size;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Helper function used inside the shims of foreign functions to check that isolation is
|
|
/// disabled. It returns an error using the `name` of the foreign function if this is not the
|
|
/// case.
|
|
fn check_no_isolation(&self, name: &str) -> InterpResult<'tcx> {
|
|
if !self.eval_context_ref().machine.communicate {
|
|
throw_unsup_format!(
|
|
"`{}` not available when isolation is enabled. Pass the flag `-Zmiri-disable-isolation` to disable it.",
|
|
name,
|
|
)
|
|
}
|
|
Ok(())
|
|
}
|
|
/// Helper function used inside the shims of foreign functions to assert that the target
|
|
/// platform is `platform`. It panics showing a message with the `name` of the foreign function
|
|
/// if this is not the case.
|
|
fn assert_platform(&self, platform: &str, name: &str) {
|
|
assert_eq!(
|
|
self.eval_context_ref().tcx.sess.target.target.target_os,
|
|
platform,
|
|
"`{}` is only available on the `{}` platform",
|
|
name,
|
|
platform,
|
|
)
|
|
}
|
|
|
|
/// Sets the last error variable.
|
|
fn set_last_error(&mut self, scalar: Scalar<Tag>) -> InterpResult<'tcx> {
|
|
let this = self.eval_context_mut();
|
|
let errno_place = this.machine.last_error.unwrap();
|
|
this.write_scalar(scalar, errno_place.into())
|
|
}
|
|
|
|
/// Gets the last error variable.
|
|
fn get_last_error(&self) -> InterpResult<'tcx, Scalar<Tag>> {
|
|
let this = self.eval_context_ref();
|
|
let errno_place = this.machine.last_error.unwrap();
|
|
this.read_scalar(errno_place.into())?.not_undef()
|
|
}
|
|
|
|
/// Sets the last OS error using a `std::io::Error`. This function tries to produce the most
|
|
/// similar OS error from the `std::io::ErrorKind` and sets it as the last OS error.
|
|
fn set_last_error_from_io_error(&mut self, e: std::io::Error) -> InterpResult<'tcx> {
|
|
use std::io::ErrorKind::*;
|
|
let this = self.eval_context_mut();
|
|
let target = &this.tcx.tcx.sess.target.target;
|
|
let last_error = if target.options.target_family == Some("unix".to_owned()) {
|
|
this.eval_libc(match e.kind() {
|
|
ConnectionRefused => "ECONNREFUSED",
|
|
ConnectionReset => "ECONNRESET",
|
|
PermissionDenied => "EPERM",
|
|
BrokenPipe => "EPIPE",
|
|
NotConnected => "ENOTCONN",
|
|
ConnectionAborted => "ECONNABORTED",
|
|
AddrNotAvailable => "EADDRNOTAVAIL",
|
|
AddrInUse => "EADDRINUSE",
|
|
NotFound => "ENOENT",
|
|
Interrupted => "EINTR",
|
|
InvalidInput => "EINVAL",
|
|
TimedOut => "ETIMEDOUT",
|
|
AlreadyExists => "EEXIST",
|
|
WouldBlock => "EWOULDBLOCK",
|
|
_ => {
|
|
throw_unsup_format!("The {} error cannot be transformed into a raw os error", e)
|
|
}
|
|
})?
|
|
} else {
|
|
// FIXME: we have to implement the Windows equivalent of this.
|
|
throw_unsup_format!(
|
|
"Setting the last OS error from an io::Error is unsupported for {}.",
|
|
target.target_os
|
|
)
|
|
};
|
|
this.set_last_error(last_error)
|
|
}
|
|
|
|
/// Helper function that consumes an `std::io::Result<T>` and returns an
|
|
/// `InterpResult<'tcx,T>::Ok` instead. In case the result is an error, this function returns
|
|
/// `Ok(-1)` and sets the last OS error accordingly.
|
|
///
|
|
/// This function uses `T: From<i32>` instead of `i32` directly because some IO related
|
|
/// functions return different integer types (like `read`, that returns an `i64`).
|
|
fn try_unwrap_io_result<T: From<i32>>(
|
|
&mut self,
|
|
result: std::io::Result<T>,
|
|
) -> InterpResult<'tcx, T> {
|
|
match result {
|
|
Ok(ok) => Ok(ok),
|
|
Err(e) => {
|
|
self.eval_context_mut().set_last_error_from_io_error(e)?;
|
|
Ok((-1).into())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper function to read an OsString from a null-terminated sequence of bytes, which is what
|
|
/// the Unix APIs usually handle.
|
|
fn read_os_str_from_c_str<'a>(&'a self, scalar: Scalar<Tag>) -> InterpResult<'tcx, &'a OsStr>
|
|
where
|
|
'tcx: 'a,
|
|
'mir: 'a,
|
|
{
|
|
#[cfg(target_os = "unix")]
|
|
fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> {
|
|
Ok(std::os::unix::ffi::OsStringExt::from_bytes(bytes))
|
|
}
|
|
#[cfg(not(target_os = "unix"))]
|
|
fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> {
|
|
let s = std::str::from_utf8(bytes)
|
|
.map_err(|_| err_unsup_format!("{:?} is not a valid utf-8 string", bytes))?;
|
|
Ok(&OsStr::new(s))
|
|
}
|
|
|
|
let this = self.eval_context_ref();
|
|
let bytes = this.memory.read_c_str(scalar)?;
|
|
bytes_to_os_str(bytes)
|
|
}
|
|
|
|
/// Helper function to write an OsStr as a null-terminated sequence of bytes, which is what
|
|
/// the Unix APIs usually handle. This function returns `Ok(false)` without trying to write if
|
|
/// `size` is not large enough to fit the contents of `os_string` plus a null terminator. It
|
|
/// returns `Ok(true)` if the writing process was successful.
|
|
fn write_os_str_to_c_str(
|
|
&mut self,
|
|
os_str: &OsStr,
|
|
scalar: Scalar<Tag>,
|
|
size: u64,
|
|
) -> InterpResult<'tcx, bool> {
|
|
#[cfg(target_os = "unix")]
|
|
fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
|
|
std::os::unix::ffi::OsStringExt::into_bytes(os_str)
|
|
}
|
|
#[cfg(not(target_os = "unix"))]
|
|
fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
|
|
// On non-unix platforms the best we can do to transform bytes from/to OS strings is to do the
|
|
// intermediate transformation into strings. Which invalidates non-utf8 paths that are actually
|
|
// valid.
|
|
os_str
|
|
.to_str()
|
|
.map(|s| s.as_bytes())
|
|
.ok_or_else(|| err_unsup_format!("{:?} is not a valid utf-8 string", os_str).into())
|
|
}
|
|
|
|
let bytes = os_str_to_bytes(os_str)?;
|
|
// If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null
|
|
// terminator to memory using the `ptr` pointer would cause an out-of-bounds access.
|
|
if size <= bytes.len() as u64 {
|
|
return Ok(false);
|
|
}
|
|
self.eval_context_mut()
|
|
.memory
|
|
.write_bytes(scalar, bytes.iter().copied().chain(iter::once(0u8)))?;
|
|
Ok(true)
|
|
}
|
|
|
|
fn alloc_os_str_as_c_str(
|
|
&mut self,
|
|
os_str: &OsStr,
|
|
memkind: MemoryKind<MiriMemoryKind>
|
|
) -> Pointer<Tag> {
|
|
let size = os_str.len() as u64 + 1; // Make space for `0` terminator.
|
|
let this = self.eval_context_mut();
|
|
|
|
let arg_type = this.tcx.mk_array(this.tcx.types.u8, size);
|
|
let arg_place = this.allocate(this.layout_of(arg_type).unwrap(), memkind);
|
|
self.write_os_str_to_c_str(os_str, arg_place.ptr, size).unwrap();
|
|
arg_place.ptr.assert_ptr()
|
|
}
|
|
}
|
|
|
|
pub fn immty_from_int_checked<'tcx>(
|
|
int: impl Into<i128>,
|
|
layout: TyLayout<'tcx>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
|
|
let int = int.into();
|
|
Ok(ImmTy::try_from_int(int, layout).ok_or_else(||
|
|
err_unsup_format!("Signed value {:#x} does not fit in {} bits", int, layout.size.bits())
|
|
)?)
|
|
}
|
|
|
|
pub fn immty_from_uint_checked<'tcx>(
|
|
int: impl Into<u128>,
|
|
layout: TyLayout<'tcx>,
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
|
|
let int = int.into();
|
|
Ok(ImmTy::try_from_uint(int, layout).ok_or_else(||
|
|
err_unsup_format!("Signed value {:#x} does not fit in {} bits", int, layout.size.bits())
|
|
)?)
|
|
}
|