rust/src/librbml/lib.rs
Alex Crichton 552eda70d3 std: Stabilize APIs for the 1.9 release
This commit applies all stabilizations, renamings, and deprecations that the
library team has decided on for the upcoming 1.9 release. All tracking issues
have gone through a cycle-long "final comment period" and the specific APIs
stabilized/deprecated are:

Stable

* `std::panic`
* `std::panic::catch_unwind` (renamed from `recover`)
* `std::panic::resume_unwind` (renamed from `propagate`)
* `std::panic::AssertUnwindSafe` (renamed from `AssertRecoverSafe`)
* `std::panic::UnwindSafe` (renamed from `RecoverSafe`)
* `str::is_char_boundary`
* `<*const T>::as_ref`
* `<*mut T>::as_ref`
* `<*mut T>::as_mut`
* `AsciiExt::make_ascii_uppercase`
* `AsciiExt::make_ascii_lowercase`
* `char::decode_utf16`
* `char::DecodeUtf16`
* `char::DecodeUtf16Error`
* `char::DecodeUtf16Error::unpaired_surrogate`
* `BTreeSet::take`
* `BTreeSet::replace`
* `BTreeSet::get`
* `HashSet::take`
* `HashSet::replace`
* `HashSet::get`
* `OsString::with_capacity`
* `OsString::clear`
* `OsString::capacity`
* `OsString::reserve`
* `OsString::reserve_exact`
* `OsStr::is_empty`
* `OsStr::len`
* `std::os::unix::thread`
* `RawPthread`
* `JoinHandleExt`
* `JoinHandleExt::as_pthread_t`
* `JoinHandleExt::into_pthread_t`
* `HashSet::hasher`
* `HashMap::hasher`
* `CommandExt::exec`
* `File::try_clone`
* `SocketAddr::set_ip`
* `SocketAddr::set_port`
* `SocketAddrV4::set_ip`
* `SocketAddrV4::set_port`
* `SocketAddrV6::set_ip`
* `SocketAddrV6::set_port`
* `SocketAddrV6::set_flowinfo`
* `SocketAddrV6::set_scope_id`
* `<[T]>::copy_from_slice`
* `ptr::read_volatile`
* `ptr::write_volatile`
* The `#[deprecated]` attribute
* `OpenOptions::create_new`

Deprecated

* `std::raw::Slice` - use raw parts of `slice` module instead
* `std::raw::Repr` - use raw parts of `slice` module instead
* `str::char_range_at` - use slicing plus `chars()` plus `len_utf8`
* `str::char_range_at_reverse` - use slicing plus `chars().rev()` plus `len_utf8`
* `str::char_at` - use slicing plus `chars()`
* `str::char_at_reverse` - use slicing plus `chars().rev()`
* `str::slice_shift_char` - use `chars()` plus `Chars::as_str`
* `CommandExt::session_leader` - use `before_exec` instead.

Closes #27719
cc #27751 (deprecating the `Slice` bits)
Closes #27754
Closes #27780
Closes #27809
Closes #27811
Closes #27830
Closes #28050
Closes #29453
Closes #29791
Closes #29935
Closes #30014
Closes #30752
Closes #31262
cc #31398 (still need to deal with `before_exec`)
Closes #31405
Closes #31572
Closes #31755
Closes #31756
2016-04-11 08:57:53 -07:00

1610 lines
54 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Really Bad Markup Language (rbml) is an internal serialization format of rustc.
//! This is not intended to be used by users.
//!
//! Originally based on the Extensible Binary Markup Language
//! (ebml; http://www.matroska.org/technical/specs/rfc/index.html),
//! it is now a separate format tuned for the rust object metadata.
//!
//! # Encoding
//!
//! RBML document consists of the tag, length and data.
//! The encoded data can contain multiple RBML documents concatenated.
//!
//! **Tags** are a hint for the following data.
//! Tags are a number from 0x000 to 0xfff, where 0xf0 through 0xff is reserved.
//! Tags less than 0xf0 are encoded in one literal byte.
//! Tags greater than 0xff are encoded in two big-endian bytes,
//! where the tag number is ORed with 0xf000. (E.g. tag 0x123 = `f1 23`)
//!
//! **Lengths** encode the length of the following data.
//! It is a variable-length unsigned isize, and one of the following forms:
//!
//! - `80` through `fe` for lengths up to 0x7e;
//! - `40 ff` through `7f ff` for lengths up to 0x3fff;
//! - `20 40 00` through `3f ff ff` for lengths up to 0x1fffff;
//! - `10 20 00 00` through `1f ff ff ff` for lengths up to 0xfffffff.
//!
//! The "overlong" form is allowed so that the length can be encoded
//! without the prior knowledge of the encoded data.
//! For example, the length 0 can be represented either by `80`, `40 00`,
//! `20 00 00` or `10 00 00 00`.
//! The encoder tries to minimize the length if possible.
//! Also, some predefined tags listed below are so commonly used that
//! their lengths are omitted ("implicit length").
//!
//! **Data** can be either binary bytes or zero or more nested RBML documents.
//! Nested documents cannot overflow, and should be entirely contained
//! within a parent document.
//!
//! # Predefined Tags
//!
//! Most RBML tags are defined by the application.
//! (For the rust object metadata, see also `rustc::metadata::common`.)
//! RBML itself does define a set of predefined tags however,
//! intended for the auto-serialization implementation.
//!
//! Predefined tags with an implicit length:
//!
//! - `U8` (`00`): 1-byte unsigned integer.
//! - `U16` (`01`): 2-byte big endian unsigned integer.
//! - `U32` (`02`): 4-byte big endian unsigned integer.
//! - `U64` (`03`): 8-byte big endian unsigned integer.
//! Any of `U*` tags can be used to encode primitive unsigned integer types,
//! as long as it is no greater than the actual size.
//! For example, `u8` can only be represented via the `U8` tag.
//!
//! - `I8` (`04`): 1-byte signed integer.
//! - `I16` (`05`): 2-byte big endian signed integer.
//! - `I32` (`06`): 4-byte big endian signed integer.
//! - `I64` (`07`): 8-byte big endian signed integer.
//! Similar to `U*` tags. Always uses two's complement encoding.
//!
//! - `Bool` (`08`): 1-byte boolean value, `00` for false and `01` for true.
//!
//! - `Char` (`09`): 4-byte big endian Unicode scalar value.
//! Surrogate pairs or out-of-bound values are invalid.
//!
//! - `F32` (`0a`): 4-byte big endian unsigned integer representing
//! IEEE 754 binary32 floating-point format.
//! - `F64` (`0b`): 8-byte big endian unsigned integer representing
//! IEEE 754 binary64 floating-point format.
//!
//! - `Sub8` (`0c`): 1-byte unsigned integer for supplementary information.
//! - `Sub32` (`0d`): 4-byte unsigned integer for supplementary information.
//! Those two tags normally occur as the first subdocument of certain tags,
//! namely `Enum`, `Vec` and `Map`, to provide a variant or size information.
//! They can be used interchangeably.
//!
//! Predefined tags with an explicit length:
//!
//! - `Str` (`10`): A UTF-8-encoded string.
//!
//! - `Enum` (`11`): An enum.
//! The first subdocument should be `Sub*` tags with a variant ID.
//! Subsequent subdocuments, if any, encode variant arguments.
//!
//! - `Vec` (`12`): A vector (sequence).
//! - `VecElt` (`13`): A vector element.
//! The first subdocument should be `Sub*` tags with the number of elements.
//! Subsequent subdocuments should be `VecElt` tag per each element.
//!
//! - `Map` (`14`): A map (associated array).
//! - `MapKey` (`15`): A key part of the map entry.
//! - `MapVal` (`16`): A value part of the map entry.
//! The first subdocument should be `Sub*` tags with the number of entries.
//! Subsequent subdocuments should be an alternating sequence of
//! `MapKey` and `MapVal` tags per each entry.
//!
//! - `Opaque` (`17`): An opaque, custom-format tag.
//! Used to wrap ordinary custom tags or data in the auto-serialized context.
//! Rustc typically uses this to encode type information.
//!
//! First 0x20 tags are reserved by RBML; custom tags start at 0x20.
#![crate_name = "rbml"]
#![unstable(feature = "rustc_private", issue = "27812")]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/",
html_playground_url = "https://play.rust-lang.org/",
test(attr(deny(warnings))))]
#![cfg_attr(not(stage0), deny(warnings))]
#![feature(rustc_private)]
#![feature(staged_api)]
#![feature(question_mark)]
#![cfg_attr(test, feature(test))]
extern crate serialize;
#[cfg(test)]
extern crate serialize as rustc_serialize; // Used by RustcEncodable
#[macro_use]
extern crate log;
#[cfg(test)]
extern crate test;
pub mod opaque;
pub mod leb128;
pub use self::EbmlEncoderTag::*;
pub use self::Error::*;
use std::str;
use std::fmt;
/// Common data structures
#[derive(Clone, Copy)]
pub struct Doc<'a> {
pub data: &'a [u8],
pub start: usize,
pub end: usize,
}
impl<'doc> Doc<'doc> {
pub fn new(data: &'doc [u8]) -> Doc<'doc> {
Doc {
data: data,
start: 0,
end: data.len(),
}
}
pub fn get(&self, tag: usize) -> Doc<'doc> {
reader::get_doc(*self, tag)
}
pub fn is_empty(&self) -> bool {
self.start == self.end
}
pub fn as_str_slice(&self) -> &'doc str {
str::from_utf8(&self.data[self.start..self.end]).unwrap()
}
pub fn as_str(&self) -> String {
self.as_str_slice().to_string()
}
}
pub struct TaggedDoc<'a> {
tag: usize,
pub doc: Doc<'a>,
}
#[derive(Copy, Clone, Debug)]
pub enum EbmlEncoderTag {
// tags 00..1f are reserved for auto-serialization.
// first NUM_IMPLICIT_TAGS tags are implicitly sized and lengths are not encoded.
EsU8 = 0x00, // + 1 byte
EsU16 = 0x01, // + 2 bytes
EsU32 = 0x02, // + 4 bytes
EsU64 = 0x03, // + 8 bytes
EsI8 = 0x04, // + 1 byte
EsI16 = 0x05, // + 2 bytes
EsI32 = 0x06, // + 4 bytes
EsI64 = 0x07, // + 8 bytes
EsBool = 0x08, // + 1 byte
EsChar = 0x09, // + 4 bytes
EsF32 = 0x0a, // + 4 bytes
EsF64 = 0x0b, // + 8 bytes
EsSub8 = 0x0c, // + 1 byte
EsSub32 = 0x0d, // + 4 bytes
// 0x0e and 0x0f are reserved
EsStr = 0x10,
EsEnum = 0x11, // encodes the variant id as the first EsSub*
EsVec = 0x12, // encodes the # of elements as the first EsSub*
EsVecElt = 0x13,
EsMap = 0x14, // encodes the # of pairs as the first EsSub*
EsMapKey = 0x15,
EsMapVal = 0x16,
EsOpaque = 0x17,
}
const NUM_TAGS: usize = 0x1000;
const NUM_IMPLICIT_TAGS: usize = 0x0e;
#[cfg_attr(rustfmt, rustfmt_skip)]
static TAG_IMPLICIT_LEN: [i8; NUM_IMPLICIT_TAGS] = [
1, 2, 4, 8, // EsU*
1, 2, 4, 8, // ESI*
1, // EsBool
4, // EsChar
4, 8, // EsF*
1, 4, // EsSub*
];
#[derive(Debug)]
pub enum Error {
IntTooBig(usize),
InvalidTag(usize),
Expected(String),
IoError(std::io::Error),
ApplicationError(String),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// FIXME: this should be a more useful display form
fmt::Debug::fmt(self, f)
}
}
// --------------------------------------
pub mod reader {
use std::char;
use std::isize;
use std::mem::transmute;
use serialize;
use super::opaque;
use super::{ApplicationError, EsVec, EsMap, EsEnum, EsSub8, EsSub32, EsVecElt, EsMapKey,
EsU64, EsU32, EsU16, EsU8, EsI64, EsI32, EsI16, EsI8, EsBool, EsF64, EsF32,
EsChar, EsStr, EsMapVal, EsOpaque, EbmlEncoderTag, Doc, TaggedDoc, Error,
IntTooBig, InvalidTag, Expected, NUM_IMPLICIT_TAGS, TAG_IMPLICIT_LEN};
pub type DecodeResult<T> = Result<T, Error>;
// rbml reading
macro_rules! try_or {
($e:expr, $r:expr) => (
match $e {
Ok(e) => e,
Err(e) => {
debug!("ignored error: {:?}", e);
return $r
}
}
)
}
#[derive(Copy, Clone)]
pub struct Res {
pub val: usize,
pub next: usize,
}
pub fn tag_at(data: &[u8], start: usize) -> DecodeResult<Res> {
let v = data[start] as usize;
if v < 0xf0 {
Ok(Res {
val: v,
next: start + 1,
})
} else if v > 0xf0 {
Ok(Res {
val: ((v & 0xf) << 8) | data[start + 1] as usize,
next: start + 2,
})
} else {
// every tag starting with byte 0xf0 is an overlong form, which is prohibited.
Err(InvalidTag(v))
}
}
#[inline(never)]
fn vuint_at_slow(data: &[u8], start: usize) -> DecodeResult<Res> {
let a = data[start];
if a & 0x80 != 0 {
return Ok(Res {
val: (a & 0x7f) as usize,
next: start + 1,
});
}
if a & 0x40 != 0 {
return Ok(Res {
val: ((a & 0x3f) as usize) << 8 | (data[start + 1] as usize),
next: start + 2,
});
}
if a & 0x20 != 0 {
return Ok(Res {
val: ((a & 0x1f) as usize) << 16 | (data[start + 1] as usize) << 8 |
(data[start + 2] as usize),
next: start + 3,
});
}
if a & 0x10 != 0 {
return Ok(Res {
val: ((a & 0x0f) as usize) << 24 | (data[start + 1] as usize) << 16 |
(data[start + 2] as usize) << 8 |
(data[start + 3] as usize),
next: start + 4,
});
}
Err(IntTooBig(a as usize))
}
pub fn vuint_at(data: &[u8], start: usize) -> DecodeResult<Res> {
if data.len() - start < 4 {
return vuint_at_slow(data, start);
}
// Lookup table for parsing EBML Element IDs as per
// http://ebml.sourceforge.net/specs/ The Element IDs are parsed by
// reading a big endian u32 positioned at data[start]. Using the four
// most significant bits of the u32 we lookup in the table below how
// the element ID should be derived from it.
//
// The table stores tuples (shift, mask) where shift is the number the
// u32 should be right shifted with and mask is the value the right
// shifted value should be masked with. If for example the most
// significant bit is set this means it's a class A ID and the u32
// should be right shifted with 24 and masked with 0x7f. Therefore we
// store (24, 0x7f) at index 0x8 - 0xF (four bit numbers where the most
// significant bit is set).
//
// By storing the number of shifts and masks in a table instead of
// checking in order if the most significant bit is set, the second
// most significant bit is set etc. we can replace up to three
// "and+branch" with a single table lookup which gives us a measured
// speedup of around 2x on x86_64.
static SHIFT_MASK_TABLE: [(usize, u32); 16] = [(0, 0x0),
(0, 0x0fffffff),
(8, 0x1fffff),
(8, 0x1fffff),
(16, 0x3fff),
(16, 0x3fff),
(16, 0x3fff),
(16, 0x3fff),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f)];
unsafe {
let ptr = data.as_ptr().offset(start as isize) as *const u32;
let val = u32::from_be(*ptr);
let i = (val >> 28) as usize;
let (shift, mask) = SHIFT_MASK_TABLE[i];
Ok(Res {
val: ((val >> shift) & mask) as usize,
next: start + ((32 - shift) >> 3),
})
}
}
pub fn tag_len_at(data: &[u8], tag: Res) -> DecodeResult<Res> {
if tag.val < NUM_IMPLICIT_TAGS && TAG_IMPLICIT_LEN[tag.val] >= 0 {
Ok(Res {
val: TAG_IMPLICIT_LEN[tag.val] as usize,
next: tag.next,
})
} else {
vuint_at(data, tag.next)
}
}
pub fn doc_at<'a>(data: &'a [u8], start: usize) -> DecodeResult<TaggedDoc<'a>> {
let elt_tag = tag_at(data, start)?;
let elt_size = tag_len_at(data, elt_tag)?;
let end = elt_size.next + elt_size.val;
Ok(TaggedDoc {
tag: elt_tag.val,
doc: Doc {
data: data,
start: elt_size.next,
end: end,
},
})
}
pub fn maybe_get_doc<'a>(d: Doc<'a>, tg: usize) -> Option<Doc<'a>> {
let mut pos = d.start;
while pos < d.end {
let elt_tag = try_or!(tag_at(d.data, pos), None);
let elt_size = try_or!(tag_len_at(d.data, elt_tag), None);
pos = elt_size.next + elt_size.val;
if elt_tag.val == tg {
return Some(Doc {
data: d.data,
start: elt_size.next,
end: pos,
});
}
}
None
}
pub fn get_doc<'a>(d: Doc<'a>, tg: usize) -> Doc<'a> {
match maybe_get_doc(d, tg) {
Some(d) => d,
None => {
error!("failed to find block with tag {:?}", tg);
panic!();
}
}
}
pub fn docs<'a>(d: Doc<'a>) -> DocsIterator<'a> {
DocsIterator { d: d }
}
pub struct DocsIterator<'a> {
d: Doc<'a>,
}
impl<'a> Iterator for DocsIterator<'a> {
type Item = (usize, Doc<'a>);
fn next(&mut self) -> Option<(usize, Doc<'a>)> {
if self.d.start >= self.d.end {
return None;
}
let elt_tag = try_or!(tag_at(self.d.data, self.d.start), {
self.d.start = self.d.end;
None
});
let elt_size = try_or!(tag_len_at(self.d.data, elt_tag), {
self.d.start = self.d.end;
None
});
let end = elt_size.next + elt_size.val;
let doc = Doc {
data: self.d.data,
start: elt_size.next,
end: end,
};
self.d.start = end;
return Some((elt_tag.val, doc));
}
}
pub fn tagged_docs<'a>(d: Doc<'a>, tag: usize) -> TaggedDocsIterator<'a> {
TaggedDocsIterator {
iter: docs(d),
tag: tag,
}
}
pub struct TaggedDocsIterator<'a> {
iter: DocsIterator<'a>,
tag: usize,
}
impl<'a> Iterator for TaggedDocsIterator<'a> {
type Item = Doc<'a>;
fn next(&mut self) -> Option<Doc<'a>> {
while let Some((tag, doc)) = self.iter.next() {
if tag == self.tag {
return Some(doc);
}
}
None
}
}
pub fn with_doc_data<T, F>(d: Doc, f: F) -> T
where F: FnOnce(&[u8]) -> T
{
f(&d.data[d.start..d.end])
}
pub fn doc_as_u8(d: Doc) -> u8 {
assert_eq!(d.end, d.start + 1);
d.data[d.start]
}
pub fn doc_as_u64(d: Doc) -> u64 {
if d.end >= 8 {
// For performance, we read 8 big-endian bytes,
// and mask off the junk if there is any. This
// obviously won't work on the first 8 bytes
// of a file - we will fall of the start
// of the page and segfault.
let mut b = [0; 8];
b.copy_from_slice(&d.data[d.end - 8..d.end]);
let data = unsafe { (*(b.as_ptr() as *const u64)).to_be() };
let len = d.end - d.start;
if len < 8 {
data & ((1 << (len * 8)) - 1)
} else {
data
}
} else {
let mut result = 0;
for b in &d.data[d.start..d.end] {
result = (result << 8) + (*b as u64);
}
result
}
}
#[inline]
pub fn doc_as_u16(d: Doc) -> u16 {
doc_as_u64(d) as u16
}
#[inline]
pub fn doc_as_u32(d: Doc) -> u32 {
doc_as_u64(d) as u32
}
#[inline]
pub fn doc_as_i8(d: Doc) -> i8 {
doc_as_u8(d) as i8
}
#[inline]
pub fn doc_as_i16(d: Doc) -> i16 {
doc_as_u16(d) as i16
}
#[inline]
pub fn doc_as_i32(d: Doc) -> i32 {
doc_as_u32(d) as i32
}
#[inline]
pub fn doc_as_i64(d: Doc) -> i64 {
doc_as_u64(d) as i64
}
pub struct Decoder<'a> {
parent: Doc<'a>,
pos: usize,
}
impl<'doc> Decoder<'doc> {
pub fn new(d: Doc<'doc>) -> Decoder<'doc> {
Decoder {
parent: d,
pos: d.start,
}
}
fn next_doc(&mut self, exp_tag: EbmlEncoderTag) -> DecodeResult<Doc<'doc>> {
debug!(". next_doc(exp_tag={:?})", exp_tag);
if self.pos >= self.parent.end {
return Err(Expected(format!("no more documents in current node!")));
}
let TaggedDoc { tag: r_tag, doc: r_doc } = doc_at(self.parent.data, self.pos)?;
debug!("self.parent={:?}-{:?} self.pos={:?} r_tag={:?} r_doc={:?}-{:?}",
self.parent.start,
self.parent.end,
self.pos,
r_tag,
r_doc.start,
r_doc.end);
if r_tag != (exp_tag as usize) {
return Err(Expected(format!("expected EBML doc with tag {:?} but found tag {:?}",
exp_tag,
r_tag)));
}
if r_doc.end > self.parent.end {
return Err(Expected(format!("invalid EBML, child extends to {:#x}, parent to \
{:#x}",
r_doc.end,
self.parent.end)));
}
self.pos = r_doc.end;
Ok(r_doc)
}
fn push_doc<T, F>(&mut self, exp_tag: EbmlEncoderTag, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
let d = self.next_doc(exp_tag)?;
let old_parent = self.parent;
let old_pos = self.pos;
self.parent = d;
self.pos = d.start;
let r = f(self)?;
self.parent = old_parent;
self.pos = old_pos;
Ok(r)
}
fn _next_sub(&mut self) -> DecodeResult<usize> {
// empty vector/map optimization
if self.parent.is_empty() {
return Ok(0);
}
let TaggedDoc { tag: r_tag, doc: r_doc } = doc_at(self.parent.data, self.pos)?;
let r = if r_tag == (EsSub8 as usize) {
doc_as_u8(r_doc) as usize
} else if r_tag == (EsSub32 as usize) {
doc_as_u32(r_doc) as usize
} else {
return Err(Expected(format!("expected EBML doc with tag {:?} or {:?} but found \
tag {:?}",
EsSub8,
EsSub32,
r_tag)));
};
if r_doc.end > self.parent.end {
return Err(Expected(format!("invalid EBML, child extends to {:#x}, parent to \
{:#x}",
r_doc.end,
self.parent.end)));
}
self.pos = r_doc.end;
debug!("_next_sub result={:?}", r);
Ok(r)
}
// variable-length unsigned integer with different tags.
// `first_tag` should be a tag for u8 or i8.
// `last_tag` should be the largest allowed integer tag with the matching signedness.
// all tags between them should be valid, in the order of u8, u16, u32 and u64.
fn _next_int(&mut self,
first_tag: EbmlEncoderTag,
last_tag: EbmlEncoderTag)
-> DecodeResult<u64> {
if self.pos >= self.parent.end {
return Err(Expected(format!("no more documents in current node!")));
}
let TaggedDoc { tag: r_tag, doc: r_doc } = doc_at(self.parent.data, self.pos)?;
let r = if first_tag as usize <= r_tag && r_tag <= last_tag as usize {
match r_tag - first_tag as usize {
0 => doc_as_u8(r_doc) as u64,
1 => doc_as_u16(r_doc) as u64,
2 => doc_as_u32(r_doc) as u64,
3 => doc_as_u64(r_doc),
_ => unreachable!(),
}
} else {
return Err(Expected(format!("expected EBML doc with tag {:?} through {:?} but \
found tag {:?}",
first_tag,
last_tag,
r_tag)));
};
if r_doc.end > self.parent.end {
return Err(Expected(format!("invalid EBML, child extends to {:#x}, parent to \
{:#x}",
r_doc.end,
self.parent.end)));
}
self.pos = r_doc.end;
debug!("_next_int({:?}, {:?}) result={:?}", first_tag, last_tag, r);
Ok(r)
}
pub fn read_opaque<R, F>(&mut self, op: F) -> DecodeResult<R>
where F: FnOnce(&mut opaque::Decoder, Doc) -> DecodeResult<R>
{
let doc = self.next_doc(EsOpaque)?;
let result = {
let mut opaque_decoder = opaque::Decoder::new(doc.data, doc.start);
op(&mut opaque_decoder, doc)?
};
Ok(result)
}
pub fn position(&self) -> usize {
self.pos
}
pub fn advance(&mut self, bytes: usize) {
self.pos += bytes;
}
}
impl<'doc> serialize::Decoder for Decoder<'doc> {
type Error = Error;
fn read_nil(&mut self) -> DecodeResult<()> {
Ok(())
}
fn read_u64(&mut self) -> DecodeResult<u64> {
self._next_int(EsU8, EsU64)
}
fn read_u32(&mut self) -> DecodeResult<u32> {
Ok(self._next_int(EsU8, EsU32)? as u32)
}
fn read_u16(&mut self) -> DecodeResult<u16> {
Ok(self._next_int(EsU8, EsU16)? as u16)
}
fn read_u8(&mut self) -> DecodeResult<u8> {
Ok(doc_as_u8(self.next_doc(EsU8)?))
}
fn read_uint(&mut self) -> DecodeResult<usize> {
let v = self._next_int(EsU8, EsU64)?;
if v > (::std::usize::MAX as u64) {
Err(IntTooBig(v as usize))
} else {
Ok(v as usize)
}
}
fn read_i64(&mut self) -> DecodeResult<i64> {
Ok(self._next_int(EsI8, EsI64)? as i64)
}
fn read_i32(&mut self) -> DecodeResult<i32> {
Ok(self._next_int(EsI8, EsI32)? as i32)
}
fn read_i16(&mut self) -> DecodeResult<i16> {
Ok(self._next_int(EsI8, EsI16)? as i16)
}
fn read_i8(&mut self) -> DecodeResult<i8> {
Ok(doc_as_u8(self.next_doc(EsI8)?) as i8)
}
fn read_int(&mut self) -> DecodeResult<isize> {
let v = self._next_int(EsI8, EsI64)? as i64;
if v > (isize::MAX as i64) || v < (isize::MIN as i64) {
debug!("FIXME \\#6122: Removing this makes this function miscompile");
Err(IntTooBig(v as usize))
} else {
Ok(v as isize)
}
}
fn read_bool(&mut self) -> DecodeResult<bool> {
Ok(doc_as_u8(self.next_doc(EsBool)?) != 0)
}
fn read_f64(&mut self) -> DecodeResult<f64> {
let bits = doc_as_u64(self.next_doc(EsF64)?);
Ok(unsafe { transmute(bits) })
}
fn read_f32(&mut self) -> DecodeResult<f32> {
let bits = doc_as_u32(self.next_doc(EsF32)?);
Ok(unsafe { transmute(bits) })
}
fn read_char(&mut self) -> DecodeResult<char> {
Ok(char::from_u32(doc_as_u32(self.next_doc(EsChar)?)).unwrap())
}
fn read_str(&mut self) -> DecodeResult<String> {
Ok(self.next_doc(EsStr)?.as_str())
}
// Compound types:
fn read_enum<T, F>(&mut self, name: &str, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_enum({})", name);
let doc = self.next_doc(EsEnum)?;
let (old_parent, old_pos) = (self.parent, self.pos);
self.parent = doc;
self.pos = self.parent.start;
let result = f(self)?;
self.parent = old_parent;
self.pos = old_pos;
Ok(result)
}
fn read_enum_variant<T, F>(&mut self, _: &[&str], mut f: F) -> DecodeResult<T>
where F: FnMut(&mut Decoder<'doc>, usize) -> DecodeResult<T>
{
debug!("read_enum_variant()");
let idx = self._next_sub()?;
debug!(" idx={}", idx);
f(self, idx)
}
fn read_enum_variant_arg<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_enum_variant_arg(idx={})", idx);
f(self)
}
fn read_enum_struct_variant<T, F>(&mut self, _: &[&str], mut f: F) -> DecodeResult<T>
where F: FnMut(&mut Decoder<'doc>, usize) -> DecodeResult<T>
{
debug!("read_enum_struct_variant()");
let idx = self._next_sub()?;
debug!(" idx={}", idx);
f(self, idx)
}
fn read_enum_struct_variant_field<T, F>(&mut self,
name: &str,
idx: usize,
f: F)
-> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_enum_struct_variant_arg(name={}, idx={})", name, idx);
f(self)
}
fn read_struct<T, F>(&mut self, name: &str, _: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_struct(name={})", name);
f(self)
}
fn read_struct_field<T, F>(&mut self, name: &str, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_struct_field(name={}, idx={})", name, idx);
f(self)
}
fn read_tuple<T, F>(&mut self, tuple_len: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_tuple()");
self.read_seq(move |d, len| {
if len == tuple_len {
f(d)
} else {
Err(Expected(format!("Expected tuple of length `{}`, found tuple of length \
`{}`",
tuple_len,
len)))
}
})
}
fn read_tuple_arg<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_tuple_arg(idx={})", idx);
self.read_seq_elt(idx, f)
}
fn read_tuple_struct<T, F>(&mut self, name: &str, len: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_tuple_struct(name={})", name);
self.read_tuple(len, f)
}
fn read_tuple_struct_arg<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_tuple_struct_arg(idx={})", idx);
self.read_tuple_arg(idx, f)
}
fn read_option<T, F>(&mut self, mut f: F) -> DecodeResult<T>
where F: FnMut(&mut Decoder<'doc>, bool) -> DecodeResult<T>
{
debug!("read_option()");
self.read_enum("Option", move |this| {
this.read_enum_variant(&["None", "Some"], move |this, idx| {
match idx {
0 => f(this, false),
1 => f(this, true),
_ => Err(Expected(format!("Expected None or Some"))),
}
})
})
}
fn read_seq<T, F>(&mut self, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>, usize) -> DecodeResult<T>
{
debug!("read_seq()");
self.push_doc(EsVec, move |d| {
let len = d._next_sub()?;
debug!(" len={}", len);
f(d, len)
})
}
fn read_seq_elt<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_seq_elt(idx={})", idx);
self.push_doc(EsVecElt, f)
}
fn read_map<T, F>(&mut self, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>, usize) -> DecodeResult<T>
{
debug!("read_map()");
self.push_doc(EsMap, move |d| {
let len = d._next_sub()?;
debug!(" len={}", len);
f(d, len)
})
}
fn read_map_elt_key<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_map_elt_key(idx={})", idx);
self.push_doc(EsMapKey, f)
}
fn read_map_elt_val<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_map_elt_val(idx={})", idx);
self.push_doc(EsMapVal, f)
}
fn error(&mut self, err: &str) -> Error {
ApplicationError(err.to_string())
}
}
}
pub mod writer {
use std::mem;
use std::io::prelude::*;
use std::io::{self, SeekFrom, Cursor};
use super::opaque;
use super::{EsVec, EsMap, EsEnum, EsSub8, EsSub32, EsVecElt, EsMapKey, EsU64, EsU32, EsU16,
EsU8, EsI64, EsI32, EsI16, EsI8, EsBool, EsF64, EsF32, EsChar, EsStr, EsMapVal,
EsOpaque, NUM_IMPLICIT_TAGS, NUM_TAGS};
use serialize;
pub type EncodeResult = io::Result<()>;
// rbml writing
pub struct Encoder<'a> {
pub writer: &'a mut Cursor<Vec<u8>>,
size_positions: Vec<u64>,
relax_limit: u64, // do not move encoded bytes before this position
}
fn write_tag<W: Write>(w: &mut W, n: usize) -> EncodeResult {
if n < 0xf0 {
w.write_all(&[n as u8])
} else if 0x100 <= n && n < NUM_TAGS {
w.write_all(&[0xf0 | (n >> 8) as u8, n as u8])
} else {
Err(io::Error::new(io::ErrorKind::Other, &format!("invalid tag: {}", n)[..]))
}
}
fn write_sized_vuint<W: Write>(w: &mut W, n: usize, size: usize) -> EncodeResult {
match size {
1 => w.write_all(&[0x80 | (n as u8)]),
2 => w.write_all(&[0x40 | ((n >> 8) as u8), n as u8]),
3 => w.write_all(&[0x20 | ((n >> 16) as u8), (n >> 8) as u8, n as u8]),
4 => w.write_all(&[0x10 | ((n >> 24) as u8), (n >> 16) as u8, (n >> 8) as u8, n as u8]),
_ => Err(io::Error::new(io::ErrorKind::Other, &format!("isize too big: {}", n)[..])),
}
}
pub fn write_vuint<W: Write>(w: &mut W, n: usize) -> EncodeResult {
if n < 0x7f {
return write_sized_vuint(w, n, 1);
}
if n < 0x4000 {
return write_sized_vuint(w, n, 2);
}
if n < 0x200000 {
return write_sized_vuint(w, n, 3);
}
if n < 0x10000000 {
return write_sized_vuint(w, n, 4);
}
Err(io::Error::new(io::ErrorKind::Other, &format!("isize too big: {}", n)[..]))
}
impl<'a> Encoder<'a> {
pub fn new(w: &'a mut Cursor<Vec<u8>>) -> Encoder<'a> {
Encoder {
writer: w,
size_positions: vec![],
relax_limit: 0,
}
}
pub fn start_tag(&mut self, tag_id: usize) -> EncodeResult {
debug!("Start tag {:?}", tag_id);
assert!(tag_id >= NUM_IMPLICIT_TAGS);
// Write the enum ID:
write_tag(self.writer, tag_id)?;
// Write a placeholder four-byte size.
let cur_pos = self.writer.seek(SeekFrom::Current(0))?;
self.size_positions.push(cur_pos);
let zeroes: &[u8] = &[0, 0, 0, 0];
self.writer.write_all(zeroes)
}
pub fn end_tag(&mut self) -> EncodeResult {
let last_size_pos = self.size_positions.pop().unwrap();
let cur_pos = self.writer.seek(SeekFrom::Current(0))?;
self.writer.seek(SeekFrom::Start(last_size_pos))?;
let size = (cur_pos - last_size_pos - 4) as usize;
// relax the size encoding for small tags (bigger tags are costly to move).
// we should never try to move the stable positions, however.
const RELAX_MAX_SIZE: usize = 0x100;
if size <= RELAX_MAX_SIZE && last_size_pos >= self.relax_limit {
// we can't alter the buffer in place, so have a temporary buffer
let mut buf = [0u8; RELAX_MAX_SIZE];
{
let last_size_pos = last_size_pos as usize;
let data = &self.writer.get_ref()[last_size_pos + 4..cur_pos as usize];
buf[..size].copy_from_slice(data);
}
// overwrite the size and data and continue
write_vuint(self.writer, size)?;
self.writer.write_all(&buf[..size])?;
} else {
// overwrite the size with an overlong encoding and skip past the data
write_sized_vuint(self.writer, size, 4)?;
self.writer.seek(SeekFrom::Start(cur_pos))?;
}
debug!("End tag (size = {:?})", size);
Ok(())
}
pub fn wr_tag<F>(&mut self, tag_id: usize, blk: F) -> EncodeResult
where F: FnOnce() -> EncodeResult
{
self.start_tag(tag_id)?;
blk()?;
self.end_tag()
}
pub fn wr_tagged_bytes(&mut self, tag_id: usize, b: &[u8]) -> EncodeResult {
assert!(tag_id >= NUM_IMPLICIT_TAGS);
write_tag(self.writer, tag_id)?;
write_vuint(self.writer, b.len())?;
self.writer.write_all(b)
}
pub fn wr_tagged_u64(&mut self, tag_id: usize, v: u64) -> EncodeResult {
let bytes: [u8; 8] = unsafe { mem::transmute(v.to_be()) };
// tagged integers are emitted in big-endian, with no
// leading zeros.
let leading_zero_bytes = v.leading_zeros() / 8;
self.wr_tagged_bytes(tag_id, &bytes[leading_zero_bytes as usize..])
}
#[inline]
pub fn wr_tagged_u32(&mut self, tag_id: usize, v: u32) -> EncodeResult {
self.wr_tagged_u64(tag_id, v as u64)
}
#[inline]
pub fn wr_tagged_u16(&mut self, tag_id: usize, v: u16) -> EncodeResult {
self.wr_tagged_u64(tag_id, v as u64)
}
#[inline]
pub fn wr_tagged_u8(&mut self, tag_id: usize, v: u8) -> EncodeResult {
self.wr_tagged_bytes(tag_id, &[v])
}
#[inline]
pub fn wr_tagged_i64(&mut self, tag_id: usize, v: i64) -> EncodeResult {
self.wr_tagged_u64(tag_id, v as u64)
}
#[inline]
pub fn wr_tagged_i32(&mut self, tag_id: usize, v: i32) -> EncodeResult {
self.wr_tagged_u32(tag_id, v as u32)
}
#[inline]
pub fn wr_tagged_i16(&mut self, tag_id: usize, v: i16) -> EncodeResult {
self.wr_tagged_u16(tag_id, v as u16)
}
#[inline]
pub fn wr_tagged_i8(&mut self, tag_id: usize, v: i8) -> EncodeResult {
self.wr_tagged_bytes(tag_id, &[v as u8])
}
pub fn wr_tagged_str(&mut self, tag_id: usize, v: &str) -> EncodeResult {
self.wr_tagged_bytes(tag_id, v.as_bytes())
}
// for auto-serialization
fn wr_tagged_raw_bytes(&mut self, tag_id: usize, b: &[u8]) -> EncodeResult {
write_tag(self.writer, tag_id)?;
self.writer.write_all(b)
}
fn wr_tagged_raw_u64(&mut self, tag_id: usize, v: u64) -> EncodeResult {
let bytes: [u8; 8] = unsafe { mem::transmute(v.to_be()) };
self.wr_tagged_raw_bytes(tag_id, &bytes)
}
fn wr_tagged_raw_u32(&mut self, tag_id: usize, v: u32) -> EncodeResult {
let bytes: [u8; 4] = unsafe { mem::transmute(v.to_be()) };
self.wr_tagged_raw_bytes(tag_id, &bytes)
}
fn wr_tagged_raw_u16(&mut self, tag_id: usize, v: u16) -> EncodeResult {
let bytes: [u8; 2] = unsafe { mem::transmute(v.to_be()) };
self.wr_tagged_raw_bytes(tag_id, &bytes)
}
fn wr_tagged_raw_u8(&mut self, tag_id: usize, v: u8) -> EncodeResult {
self.wr_tagged_raw_bytes(tag_id, &[v])
}
fn wr_tagged_raw_i64(&mut self, tag_id: usize, v: i64) -> EncodeResult {
self.wr_tagged_raw_u64(tag_id, v as u64)
}
fn wr_tagged_raw_i32(&mut self, tag_id: usize, v: i32) -> EncodeResult {
self.wr_tagged_raw_u32(tag_id, v as u32)
}
fn wr_tagged_raw_i16(&mut self, tag_id: usize, v: i16) -> EncodeResult {
self.wr_tagged_raw_u16(tag_id, v as u16)
}
fn wr_tagged_raw_i8(&mut self, tag_id: usize, v: i8) -> EncodeResult {
self.wr_tagged_raw_bytes(tag_id, &[v as u8])
}
pub fn wr_bytes(&mut self, b: &[u8]) -> EncodeResult {
debug!("Write {:?} bytes", b.len());
self.writer.write_all(b)
}
pub fn wr_str(&mut self, s: &str) -> EncodeResult {
debug!("Write str: {:?}", s);
self.writer.write_all(s.as_bytes())
}
/// Returns the current position while marking it stable, i.e.
/// generated bytes so far wouldn't be affected by relaxation.
pub fn mark_stable_position(&mut self) -> u64 {
let pos = self.writer.seek(SeekFrom::Current(0)).unwrap();
if self.relax_limit < pos {
self.relax_limit = pos;
}
pos
}
}
impl<'a> Encoder<'a> {
// used internally to emit things like the vector length and so on
fn _emit_tagged_sub(&mut self, v: usize) -> EncodeResult {
if v as u8 as usize == v {
self.wr_tagged_raw_u8(EsSub8 as usize, v as u8)
} else if v as u32 as usize == v {
self.wr_tagged_raw_u32(EsSub32 as usize, v as u32)
} else {
Err(io::Error::new(io::ErrorKind::Other,
&format!("length or variant id too big: {}", v)[..]))
}
}
pub fn emit_opaque<F>(&mut self, f: F) -> EncodeResult
where F: FnOnce(&mut opaque::Encoder) -> EncodeResult
{
self.start_tag(EsOpaque as usize)?;
{
let mut opaque_encoder = opaque::Encoder::new(self.writer);
f(&mut opaque_encoder)?;
}
self.mark_stable_position();
self.end_tag()
}
}
impl<'a> serialize::Encoder for Encoder<'a> {
type Error = io::Error;
fn emit_nil(&mut self) -> EncodeResult {
Ok(())
}
fn emit_uint(&mut self, v: usize) -> EncodeResult {
self.emit_u64(v as u64)
}
fn emit_u64(&mut self, v: u64) -> EncodeResult {
if v as u32 as u64 == v {
self.emit_u32(v as u32)
} else {
self.wr_tagged_raw_u64(EsU64 as usize, v)
}
}
fn emit_u32(&mut self, v: u32) -> EncodeResult {
if v as u16 as u32 == v {
self.emit_u16(v as u16)
} else {
self.wr_tagged_raw_u32(EsU32 as usize, v)
}
}
fn emit_u16(&mut self, v: u16) -> EncodeResult {
if v as u8 as u16 == v {
self.emit_u8(v as u8)
} else {
self.wr_tagged_raw_u16(EsU16 as usize, v)
}
}
fn emit_u8(&mut self, v: u8) -> EncodeResult {
self.wr_tagged_raw_u8(EsU8 as usize, v)
}
fn emit_int(&mut self, v: isize) -> EncodeResult {
self.emit_i64(v as i64)
}
fn emit_i64(&mut self, v: i64) -> EncodeResult {
if v as i32 as i64 == v {
self.emit_i32(v as i32)
} else {
self.wr_tagged_raw_i64(EsI64 as usize, v)
}
}
fn emit_i32(&mut self, v: i32) -> EncodeResult {
if v as i16 as i32 == v {
self.emit_i16(v as i16)
} else {
self.wr_tagged_raw_i32(EsI32 as usize, v)
}
}
fn emit_i16(&mut self, v: i16) -> EncodeResult {
if v as i8 as i16 == v {
self.emit_i8(v as i8)
} else {
self.wr_tagged_raw_i16(EsI16 as usize, v)
}
}
fn emit_i8(&mut self, v: i8) -> EncodeResult {
self.wr_tagged_raw_i8(EsI8 as usize, v)
}
fn emit_bool(&mut self, v: bool) -> EncodeResult {
self.wr_tagged_raw_u8(EsBool as usize, v as u8)
}
fn emit_f64(&mut self, v: f64) -> EncodeResult {
let bits = unsafe { mem::transmute(v) };
self.wr_tagged_raw_u64(EsF64 as usize, bits)
}
fn emit_f32(&mut self, v: f32) -> EncodeResult {
let bits = unsafe { mem::transmute(v) };
self.wr_tagged_raw_u32(EsF32 as usize, bits)
}
fn emit_char(&mut self, v: char) -> EncodeResult {
self.wr_tagged_raw_u32(EsChar as usize, v as u32)
}
fn emit_str(&mut self, v: &str) -> EncodeResult {
self.wr_tagged_str(EsStr as usize, v)
}
fn emit_enum<F>(&mut self, _name: &str, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.start_tag(EsEnum as usize)?;
f(self)?;
self.end_tag()
}
fn emit_enum_variant<F>(&mut self, _: &str, v_id: usize, _: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self._emit_tagged_sub(v_id)?;
f(self)
}
fn emit_enum_variant_arg<F>(&mut self, _: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
f(self)
}
fn emit_enum_struct_variant<F>(&mut self,
v_name: &str,
v_id: usize,
cnt: usize,
f: F)
-> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_enum_variant(v_name, v_id, cnt, f)
}
fn emit_enum_struct_variant_field<F>(&mut self, _: &str, idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_enum_variant_arg(idx, f)
}
fn emit_struct<F>(&mut self, _: &str, _len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
f(self)
}
fn emit_struct_field<F>(&mut self, _name: &str, _: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
f(self)
}
fn emit_tuple<F>(&mut self, len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_seq(len, f)
}
fn emit_tuple_arg<F>(&mut self, idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_seq_elt(idx, f)
}
fn emit_tuple_struct<F>(&mut self, _: &str, len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_seq(len, f)
}
fn emit_tuple_struct_arg<F>(&mut self, idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_seq_elt(idx, f)
}
fn emit_option<F>(&mut self, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_enum("Option", f)
}
fn emit_option_none(&mut self) -> EncodeResult {
self.emit_enum_variant("None", 0, 0, |_| Ok(()))
}
fn emit_option_some<F>(&mut self, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_enum_variant("Some", 1, 1, f)
}
fn emit_seq<F>(&mut self, len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
if len == 0 {
// empty vector optimization
return self.wr_tagged_bytes(EsVec as usize, &[]);
}
self.start_tag(EsVec as usize)?;
self._emit_tagged_sub(len)?;
f(self)?;
self.end_tag()
}
fn emit_seq_elt<F>(&mut self, _idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.start_tag(EsVecElt as usize)?;
f(self)?;
self.end_tag()
}
fn emit_map<F>(&mut self, len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
if len == 0 {
// empty map optimization
return self.wr_tagged_bytes(EsMap as usize, &[]);
}
self.start_tag(EsMap as usize)?;
self._emit_tagged_sub(len)?;
f(self)?;
self.end_tag()
}
fn emit_map_elt_key<F>(&mut self, _idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.start_tag(EsMapKey as usize)?;
f(self)?;
self.end_tag()
}
fn emit_map_elt_val<F>(&mut self, _idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.start_tag(EsMapVal as usize)?;
f(self)?;
self.end_tag()
}
}
}
// ___________________________________________________________________________
// Testing
#[cfg(test)]
mod tests {
use super::{Doc, reader, writer};
use serialize::{Encodable, Decodable};
use std::io::Cursor;
#[test]
fn test_vuint_at() {
let data = &[
0x80,
0xff,
0x40, 0x00,
0x7f, 0xff,
0x20, 0x00, 0x00,
0x3f, 0xff, 0xff,
0x10, 0x00, 0x00, 0x00,
0x1f, 0xff, 0xff, 0xff
];
let mut res: reader::Res;
// Class A
res = reader::vuint_at(data, 0).unwrap();
assert_eq!(res.val, 0);
assert_eq!(res.next, 1);
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, (1 << 7) - 1);
assert_eq!(res.next, 2);
// Class B
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, 0);
assert_eq!(res.next, 4);
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, (1 << 14) - 1);
assert_eq!(res.next, 6);
// Class C
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, 0);
assert_eq!(res.next, 9);
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, (1 << 21) - 1);
assert_eq!(res.next, 12);
// Class D
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, 0);
assert_eq!(res.next, 16);
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, (1 << 28) - 1);
assert_eq!(res.next, 20);
}
#[test]
fn test_option_int() {
fn test_v(v: Option<isize>) {
debug!("v == {:?}", v);
let mut wr = Cursor::new(Vec::new());
{
let mut rbml_w = writer::Encoder::new(&mut wr);
let _ = v.encode(&mut rbml_w);
}
let rbml_doc = Doc::new(wr.get_ref());
let mut deser = reader::Decoder::new(rbml_doc);
let v1 = Decodable::decode(&mut deser).unwrap();
debug!("v1 == {:?}", v1);
assert_eq!(v, v1);
}
test_v(Some(22));
test_v(None);
test_v(Some(3));
}
}
#[cfg(test)]
mod bench {
#![allow(non_snake_case)]
use test::Bencher;
use super::reader;
#[bench]
pub fn vuint_at_A_aligned(b: &mut Bencher) {
let data = (0..4 * 100)
.map(|i| {
match i % 2 {
0 => 0x80,
_ => i as u8,
}
})
.collect::<Vec<_>>();
let mut sum = 0;
b.iter(|| {
let mut i = 0;
while i < data.len() {
sum += reader::vuint_at(&data, i).unwrap().val;
i += 4;
}
});
}
#[bench]
pub fn vuint_at_A_unaligned(b: &mut Bencher) {
let data = (0..4 * 100 + 1)
.map(|i| {
match i % 2 {
1 => 0x80,
_ => i as u8,
}
})
.collect::<Vec<_>>();
let mut sum = 0;
b.iter(|| {
let mut i = 1;
while i < data.len() {
sum += reader::vuint_at(&data, i).unwrap().val;
i += 4;
}
});
}
#[bench]
pub fn vuint_at_D_aligned(b: &mut Bencher) {
let data = (0..4 * 100)
.map(|i| {
match i % 4 {
0 => 0x10,
3 => i as u8,
_ => 0,
}
})
.collect::<Vec<_>>();
let mut sum = 0;
b.iter(|| {
let mut i = 0;
while i < data.len() {
sum += reader::vuint_at(&data, i).unwrap().val;
i += 4;
}
});
}
#[bench]
pub fn vuint_at_D_unaligned(b: &mut Bencher) {
let data = (0..4 * 100 + 1)
.map(|i| {
match i % 4 {
1 => 0x10,
0 => i as u8,
_ => 0,
}
})
.collect::<Vec<_>>();
let mut sum = 0;
b.iter(|| {
let mut i = 1;
while i < data.len() {
sum += reader::vuint_at(&data, i).unwrap().val;
i += 4;
}
});
}
}