rust/src/librustc/middle/trans/callee.rs
Huon Wilson 68517a2cca syntax: convert ast_map to use a SmallIntMap.
NodeIds are sequential integers starting at zero, so we can achieve some
memory savings by just storing the items all in a line in a vector.

The occupancy for typical crates seems to be 75-80%, so we're already
more efficient than a HashMap (maximum occupancy 75%), not even counting
the extra book-keeping that HashMap does.
2014-01-19 12:56:26 +11:00

910 lines
33 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Handles translation of callees as well as other call-related
* things. Callees are a superset of normal rust values and sometimes
* have different representations. In particular, top-level fn items
* and methods are represented as just a fn ptr and not a full
* closure.
*/
use std::vec;
use back::abi;
use driver::session;
use lib::llvm::{ValueRef, NoAliasAttribute, StructRetAttribute};
use lib::llvm::llvm;
use metadata::csearch;
use middle::trans::base;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::callee;
use middle::trans::cleanup;
use middle::trans::cleanup::CleanupMethods;
use middle::trans::common;
use middle::trans::common::*;
use middle::trans::datum::*;
use middle::trans::datum::Datum;
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::inline;
use middle::trans::meth;
use middle::trans::monomorphize;
use middle::trans::type_of;
use middle::trans::foreign;
use middle::ty;
use middle::subst::Subst;
use middle::typeck;
use middle::typeck::coherence::make_substs_for_receiver_types;
use util::ppaux::Repr;
use middle::trans::type_::Type;
use syntax::ast;
use syntax::abi::AbiSet;
use syntax::ast_map;
// Represents a (possibly monomorphized) top-level fn item or method
// item. Note that this is just the fn-ptr and is not a Rust closure
// value (which is a pair).
pub struct FnData {
llfn: ValueRef,
}
pub struct MethodData {
llfn: ValueRef,
llself: ValueRef,
}
pub enum CalleeData {
Closure(Datum<Lvalue>),
Fn(FnData),
Method(MethodData)
}
pub struct Callee<'a> {
bcx: &'a Block<'a>,
data: CalleeData
}
fn trans<'a>(bcx: &'a Block<'a>, expr: &ast::Expr) -> Callee<'a> {
let _icx = push_ctxt("trans_callee");
debug!("callee::trans(expr={})", expr.repr(bcx.tcx()));
// pick out special kinds of expressions that can be called:
match expr.node {
ast::ExprPath(_) => {
return trans_def(bcx, bcx.def(expr.id), expr);
}
_ => {}
}
// any other expressions are closures:
return datum_callee(bcx, expr);
fn datum_callee<'a>(bcx: &'a Block<'a>, expr: &ast::Expr) -> Callee<'a> {
let DatumBlock {bcx: mut bcx, datum} = expr::trans(bcx, expr);
match ty::get(datum.ty).sty {
ty::ty_bare_fn(..) => {
let llval = datum.to_llscalarish(bcx);
return Callee {bcx: bcx, data: Fn(FnData {llfn: llval})};
}
ty::ty_closure(..) => {
let datum = unpack_datum!(
bcx, datum.to_lvalue_datum(bcx, "callee", expr.id));
return Callee {bcx: bcx, data: Closure(datum)};
}
_ => {
bcx.tcx().sess.span_bug(
expr.span,
format!("Type of callee is neither bare-fn nor closure: {}",
bcx.ty_to_str(datum.ty)));
}
}
}
fn fn_callee<'a>(bcx: &'a Block<'a>, fd: FnData) -> Callee<'a> {
return Callee {bcx: bcx, data: Fn(fd)};
}
fn trans_def<'a>(bcx: &'a Block<'a>, def: ast::Def, ref_expr: &ast::Expr)
-> Callee<'a> {
match def {
ast::DefFn(did, _) |
ast::DefStaticMethod(did, ast::FromImpl(_), _) => {
fn_callee(bcx, trans_fn_ref(bcx, did, ref_expr.id))
}
ast::DefStaticMethod(impl_did,
ast::FromTrait(trait_did),
_) => {
fn_callee(bcx, meth::trans_static_method_callee(bcx, impl_did,
trait_did,
ref_expr.id))
}
ast::DefVariant(tid, vid, _) => {
// nullary variants are not callable
assert!(ty::enum_variant_with_id(bcx.tcx(),
tid,
vid).args.len() > 0u);
fn_callee(bcx, trans_fn_ref(bcx, vid, ref_expr.id))
}
ast::DefStruct(def_id) => {
fn_callee(bcx, trans_fn_ref(bcx, def_id, ref_expr.id))
}
ast::DefStatic(..) |
ast::DefArg(..) |
ast::DefLocal(..) |
ast::DefBinding(..) |
ast::DefUpvar(..) |
ast::DefSelf(..) => {
datum_callee(bcx, ref_expr)
}
ast::DefMod(..) | ast::DefForeignMod(..) | ast::DefTrait(..) |
ast::DefTy(..) | ast::DefPrimTy(..) |
ast::DefUse(..) | ast::DefTyParamBinder(..) |
ast::DefRegion(..) | ast::DefLabel(..) | ast::DefTyParam(..) |
ast::DefSelfTy(..) | ast::DefMethod(..) => {
bcx.tcx().sess.span_bug(
ref_expr.span,
format!("Cannot translate def {:?} \
to a callable thing!", def));
}
}
}
}
pub fn trans_fn_ref_to_callee<'a>(
bcx: &'a Block<'a>,
def_id: ast::DefId,
ref_id: ast::NodeId)
-> Callee<'a> {
Callee {bcx: bcx,
data: Fn(trans_fn_ref(bcx, def_id, ref_id))}
}
pub fn trans_fn_ref(bcx: &Block, def_id: ast::DefId, ref_id: ast::NodeId)
-> FnData {
/*!
*
* Translates a reference (with id `ref_id`) to the fn/method
* with id `def_id` into a function pointer. This may require
* monomorphization or inlining. */
let _icx = push_ctxt("trans_fn_ref");
let type_params = node_id_type_params(bcx, ref_id);
let vtables = node_vtables(bcx, ref_id);
debug!("trans_fn_ref(def_id={}, ref_id={:?}, type_params={}, vtables={})",
def_id.repr(bcx.tcx()), ref_id, type_params.repr(bcx.tcx()),
vtables.repr(bcx.tcx()));
trans_fn_ref_with_vtables(bcx, def_id, ref_id, type_params, vtables)
}
pub fn trans_fn_ref_with_vtables_to_callee<'a>(
bcx: &'a Block<'a>,
def_id: ast::DefId,
ref_id: ast::NodeId,
type_params: &[ty::t],
vtables: Option<typeck::vtable_res>)
-> Callee<'a> {
Callee {bcx: bcx,
data: Fn(trans_fn_ref_with_vtables(bcx, def_id, ref_id,
type_params, vtables))}
}
fn resolve_default_method_vtables(bcx: &Block,
impl_id: ast::DefId,
method: &ty::Method,
substs: &ty::substs,
impl_vtables: Option<typeck::vtable_res>)
-> (typeck::vtable_res, typeck::vtable_param_res) {
// Get the vtables that the impl implements the trait at
let impl_res = ty::lookup_impl_vtables(bcx.tcx(), impl_id);
// Build up a param_substs that we are going to resolve the
// trait_vtables under.
let param_substs = Some(@param_substs {
tys: substs.tps.clone(),
self_ty: substs.self_ty,
vtables: impl_vtables,
self_vtables: None
});
let trait_vtables_fixed = resolve_vtables_under_param_substs(
bcx.tcx(), param_substs, impl_res.trait_vtables);
// Now we pull any vtables for parameters on the actual method.
let num_method_vtables = method.generics.type_param_defs.len();
let method_vtables = match impl_vtables {
Some(vtables) => {
let num_impl_type_parameters =
vtables.len() - num_method_vtables;
vtables.tailn(num_impl_type_parameters).to_owned()
},
None => vec::from_elem(num_method_vtables, @~[])
};
let param_vtables = @(*trait_vtables_fixed + method_vtables);
let self_vtables = resolve_param_vtables_under_param_substs(
bcx.tcx(), param_substs, impl_res.self_vtables);
(param_vtables, self_vtables)
}
pub fn trans_fn_ref_with_vtables(
bcx: &Block, //
def_id: ast::DefId, // def id of fn
ref_id: ast::NodeId, // node id of use of fn; may be zero if N/A
type_params: &[ty::t], // values for fn's ty params
vtables: Option<typeck::vtable_res>) // vtables for the call
-> FnData {
/*!
* Translates a reference to a fn/method item, monomorphizing and
* inlining as it goes.
*
* # Parameters
*
* - `bcx`: the current block where the reference to the fn occurs
* - `def_id`: def id of the fn or method item being referenced
* - `ref_id`: node id of the reference to the fn/method, if applicable.
* This parameter may be zero; but, if so, the resulting value may not
* have the right type, so it must be cast before being used.
* - `type_params`: values for each of the fn/method's type parameters
* - `vtables`: values for each bound on each of the type parameters
*/
let _icx = push_ctxt("trans_fn_ref_with_vtables");
let ccx = bcx.ccx();
let tcx = ccx.tcx;
debug!("trans_fn_ref_with_vtables(bcx={}, def_id={}, ref_id={:?}, \
type_params={}, vtables={})",
bcx.to_str(),
def_id.repr(bcx.tcx()),
ref_id,
type_params.repr(bcx.tcx()),
vtables.repr(bcx.tcx()));
assert!(type_params.iter().all(|t| !ty::type_needs_infer(*t)));
// Polytype of the function item (may have type params)
let fn_tpt = ty::lookup_item_type(tcx, def_id);
let substs = ty::substs { regions: ty::ErasedRegions,
self_ty: None,
tps: /*bad*/ type_params.to_owned() };
// Load the info for the appropriate trait if necessary.
match ty::trait_of_method(tcx, def_id) {
None => {}
Some(trait_id) => {
ty::populate_implementations_for_trait_if_necessary(tcx, trait_id)
}
}
// We need to do a bunch of special handling for default methods.
// We need to modify the def_id and our substs in order to monomorphize
// the function.
let (is_default, def_id, substs, self_vtables, vtables) =
match ty::provided_source(tcx, def_id) {
None => (false, def_id, substs, None, vtables),
Some(source_id) => {
// There are two relevant substitutions when compiling
// default methods. First, there is the substitution for
// the type parameters of the impl we are using and the
// method we are calling. This substitution is the substs
// argument we already have.
// In order to compile a default method, though, we need
// to consider another substitution: the substitution for
// the type parameters on trait; the impl we are using
// implements the trait at some particular type
// parameters, and we need to substitute for those first.
// So, what we need to do is find this substitution and
// compose it with the one we already have.
let impl_id = ty::method(tcx, def_id).container_id();
let method = ty::method(tcx, source_id);
let trait_ref = ty::impl_trait_ref(tcx, impl_id)
.expect("could not find trait_ref for impl with \
default methods");
// Compute the first substitution
let first_subst = make_substs_for_receiver_types(
tcx, impl_id, trait_ref, method);
// And compose them
let new_substs = first_subst.subst(tcx, &substs);
let (param_vtables, self_vtables) =
resolve_default_method_vtables(bcx, impl_id,
method, &substs, vtables);
debug!("trans_fn_with_vtables - default method: \
substs = {}, trait_subst = {}, \
first_subst = {}, new_subst = {}, \
vtables = {}, \
self_vtable = {}, param_vtables = {}",
substs.repr(tcx), trait_ref.substs.repr(tcx),
first_subst.repr(tcx), new_substs.repr(tcx),
vtables.repr(tcx),
self_vtables.repr(tcx), param_vtables.repr(tcx));
(true, source_id,
new_substs, Some(self_vtables), Some(param_vtables))
}
};
// Check whether this fn has an inlined copy and, if so, redirect
// def_id to the local id of the inlined copy.
let def_id = {
if def_id.crate != ast::LOCAL_CRATE {
inline::maybe_instantiate_inline(ccx, def_id)
} else {
def_id
}
};
// We must monomorphise if the fn has type parameters, is a rust
// intrinsic, or is a default method. In particular, if we see an
// intrinsic that is inlined from a different crate, we want to reemit the
// intrinsic instead of trying to call it in the other crate.
let must_monomorphise;
if type_params.len() > 0 || is_default {
must_monomorphise = true;
} else if def_id.crate == ast::LOCAL_CRATE {
{
let map_node = session::expect(
ccx.sess,
ccx.tcx.items.find(def_id.node),
|| format!("local item should be in ast map"));
match map_node {
ast_map::NodeForeignItem(_, abis, _, _) => {
must_monomorphise = abis.is_intrinsic()
}
_ => {
must_monomorphise = false;
}
}
}
} else {
must_monomorphise = false;
}
// Create a monomorphic verison of generic functions
if must_monomorphise {
// Should be either intra-crate or inlined.
assert_eq!(def_id.crate, ast::LOCAL_CRATE);
let (val, must_cast) =
monomorphize::monomorphic_fn(ccx, def_id, &substs,
vtables, self_vtables,
Some(ref_id));
let mut val = val;
if must_cast && ref_id != 0 {
// Monotype of the REFERENCE to the function (type params
// are subst'd)
let ref_ty = common::node_id_type(bcx, ref_id);
val = PointerCast(
bcx, val, type_of::type_of_fn_from_ty(ccx, None, ref_ty).ptr_to());
}
return FnData {llfn: val};
}
// Find the actual function pointer.
let mut val = {
if def_id.crate == ast::LOCAL_CRATE {
// Internal reference.
get_item_val(ccx, def_id.node)
} else {
// External reference.
trans_external_path(ccx, def_id, fn_tpt.ty)
}
};
// This is subtle and surprising, but sometimes we have to bitcast
// the resulting fn pointer. The reason has to do with external
// functions. If you have two crates that both bind the same C
// library, they may not use precisely the same types: for
// example, they will probably each declare their own structs,
// which are distinct types from LLVM's point of view (nominal
// types).
//
// Now, if those two crates are linked into an application, and
// they contain inlined code, you can wind up with a situation
// where both of those functions wind up being loaded into this
// application simultaneously. In that case, the same function
// (from LLVM's point of view) requires two types. But of course
// LLVM won't allow one function to have two types.
//
// What we currently do, therefore, is declare the function with
// one of the two types (whichever happens to come first) and then
// bitcast as needed when the function is referenced to make sure
// it has the type we expect.
//
// This can occur on either a crate-local or crate-external
// reference. It also occurs when testing libcore and in some
// other weird situations. Annoying.
let llty = type_of::type_of_fn_from_ty(ccx, None, fn_tpt.ty);
let llptrty = llty.ptr_to();
if val_ty(val) != llptrty {
val = BitCast(bcx, val, llptrty);
}
return FnData {llfn: val};
}
// ______________________________________________________________________
// Translating calls
pub fn trans_call<'a>(
in_cx: &'a Block<'a>,
call_ex: &ast::Expr,
f: &ast::Expr,
args: CallArgs,
id: ast::NodeId,
dest: expr::Dest)
-> &'a Block<'a> {
let _icx = push_ctxt("trans_call");
trans_call_inner(in_cx,
Some(common::expr_info(call_ex)),
expr_ty(in_cx, f),
node_id_type(in_cx, id),
|cx, _| trans(cx, f),
args,
Some(dest),
DontAutorefArg).bcx
}
pub fn trans_method_call<'a>(
in_cx: &'a Block<'a>,
call_ex: &ast::Expr,
callee_id: ast::NodeId,
rcvr: &ast::Expr,
args: CallArgs,
dest: expr::Dest)
-> &'a Block<'a> {
let _icx = push_ctxt("trans_method_call");
debug!("trans_method_call(call_ex={}, rcvr={})",
call_ex.repr(in_cx.tcx()),
rcvr.repr(in_cx.tcx()));
trans_call_inner(
in_cx,
Some(common::expr_info(call_ex)),
node_id_type(in_cx, callee_id),
expr_ty(in_cx, call_ex),
|cx, arg_cleanup_scope| {
let origin_opt = {
let mut method_map = cx.ccx().maps.method_map.borrow_mut();
method_map.get().find_copy(&call_ex.id)
};
match origin_opt {
Some(origin) => {
debug!("origin for {}: {}",
call_ex.repr(in_cx.tcx()),
origin.repr(in_cx.tcx()));
meth::trans_method_callee(cx,
callee_id,
rcvr,
origin,
arg_cleanup_scope)
}
None => {
cx.tcx().sess.span_bug(call_ex.span, "method call expr wasn't in method map")
}
}
},
args,
Some(dest),
DontAutorefArg).bcx
}
pub fn trans_lang_call<'a>(
bcx: &'a Block<'a>,
did: ast::DefId,
args: &[ValueRef],
dest: Option<expr::Dest>)
-> Result<'a> {
let fty = if did.crate == ast::LOCAL_CRATE {
ty::node_id_to_type(bcx.ccx().tcx, did.node)
} else {
csearch::get_type(bcx.ccx().tcx, did).ty
};
let rty = ty::ty_fn_ret(fty);
callee::trans_call_inner(bcx,
None,
fty,
rty,
|bcx, _| {
trans_fn_ref_with_vtables_to_callee(bcx,
did,
0,
[],
None)
},
ArgVals(args),
dest,
DontAutorefArg)
}
pub fn trans_lang_call_with_type_params<'a>(
bcx: &'a Block<'a>,
did: ast::DefId,
args: &[ValueRef],
type_params: &[ty::t],
dest: expr::Dest)
-> &'a Block<'a> {
let fty;
if did.crate == ast::LOCAL_CRATE {
fty = ty::node_id_to_type(bcx.tcx(), did.node);
} else {
fty = csearch::get_type(bcx.tcx(), did).ty;
}
let rty = ty::ty_fn_ret(fty);
return callee::trans_call_inner(
bcx,
None,
fty,
rty,
|bcx, _| {
let callee =
trans_fn_ref_with_vtables_to_callee(bcx, did, 0,
type_params,
None);
let new_llval;
match callee.data {
Fn(fn_data) => {
let substituted = ty::subst_tps(callee.bcx.tcx(),
type_params,
None,
fty);
let llfnty = type_of::type_of(callee.bcx.ccx(),
substituted);
new_llval = PointerCast(callee.bcx, fn_data.llfn, llfnty);
}
_ => fail!()
}
Callee { bcx: callee.bcx, data: Fn(FnData { llfn: new_llval }) }
},
ArgVals(args), Some(dest), DontAutorefArg).bcx;
}
pub fn trans_call_inner<'a>(
bcx: &'a Block<'a>,
call_info: Option<NodeInfo>,
callee_ty: ty::t,
ret_ty: ty::t,
get_callee: |bcx: &'a Block<'a>,
arg_cleanup_scope: cleanup::ScopeId|
-> Callee<'a>,
args: CallArgs,
dest: Option<expr::Dest>,
autoref_arg: AutorefArg)
-> Result<'a> {
/*!
* This behemoth of a function translates function calls.
* Unfortunately, in order to generate more efficient LLVM
* output at -O0, it has quite a complex signature (refactoring
* this into two functions seems like a good idea).
*
* In particular, for lang items, it is invoked with a dest of
* None, and in that case the return value contains the result of
* the fn. The lang item must not return a structural type or else
* all heck breaks loose.
*
* For non-lang items, `dest` is always Some, and hence the result
* is written into memory somewhere. Nonetheless we return the
* actual return value of the function.
*/
// Introduce a temporary cleanup scope that will contain cleanups
// for the arguments while they are being evaluated. The purpose
// this cleanup is to ensure that, should a failure occur while
// evaluating argument N, the values for arguments 0...N-1 are all
// cleaned up. If no failure occurs, the values are handed off to
// the callee, and hence none of the cleanups in this temporary
// scope will ever execute.
let fcx = bcx.fcx;
let ccx = fcx.ccx;
let arg_cleanup_scope = fcx.push_custom_cleanup_scope();
let callee = get_callee(bcx, cleanup::CustomScope(arg_cleanup_scope));
let mut bcx = callee.bcx;
let (llfn, llenv) = unsafe {
match callee.data {
Fn(d) => {
(d.llfn, llvm::LLVMGetUndef(Type::opaque_box(ccx).ptr_to().to_ref()))
}
Method(d) => {
// Weird but true: we pass self in the *environment* slot!
(d.llfn, d.llself)
}
Closure(d) => {
// Closures are represented as (llfn, llclosure) pair:
// load the requisite values out.
let pair = d.to_llref();
let llfn = GEPi(bcx, pair, [0u, abi::fn_field_code]);
let llfn = Load(bcx, llfn);
let llenv = GEPi(bcx, pair, [0u, abi::fn_field_box]);
let llenv = Load(bcx, llenv);
(llfn, llenv)
}
}
};
let abi = match ty::get(callee_ty).sty {
ty::ty_bare_fn(ref f) => f.abis,
_ => AbiSet::Rust()
};
let is_rust_fn =
abi.is_rust() ||
abi.is_intrinsic();
// Generate a location to store the result. If the user does
// not care about the result, just make a stack slot.
let opt_llretslot = match dest {
None => {
assert!(!type_of::return_uses_outptr(ccx, ret_ty));
None
}
Some(expr::SaveIn(dst)) => Some(dst),
Some(expr::Ignore) => {
if !type_is_zero_size(ccx, ret_ty) {
Some(alloc_ty(bcx, ret_ty, "__llret"))
} else {
let llty = type_of::type_of(ccx, ret_ty);
Some(C_undef(llty.ptr_to()))
}
}
};
let mut llresult = unsafe {
llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref())
};
// The code below invokes the function, using either the Rust
// conventions (if it is a rust fn) or the native conventions
// (otherwise). The important part is that, when all is sad
// and done, either the return value of the function will have been
// written in opt_llretslot (if it is Some) or `llresult` will be
// set appropriately (otherwise).
if is_rust_fn {
let mut llargs = ~[];
// Push the out-pointer if we use an out-pointer for this
// return type, otherwise push "undef".
if type_of::return_uses_outptr(ccx, ret_ty) {
llargs.push(opt_llretslot.unwrap());
}
// Push the environment.
llargs.push(llenv);
// Push the arguments.
bcx = trans_args(bcx, args, callee_ty,
autoref_arg, &mut llargs,
cleanup::CustomScope(arg_cleanup_scope));
fcx.pop_custom_cleanup_scope(arg_cleanup_scope);
// A function pointer is called without the declaration
// available, so we have to apply any attributes with ABI
// implications directly to the call instruction. Right now,
// the only attribute we need to worry about is `sret`.
let mut attrs = ~[];
if type_of::return_uses_outptr(ccx, ret_ty) {
attrs.push((1, StructRetAttribute));
}
// The `noalias` attribute on the return value is useful to a
// function ptr caller.
match ty::get(ret_ty).sty {
// `~` pointer return values never alias because ownership
// is transferred
ty::ty_uniq(..) |
ty::ty_vec(_, ty::vstore_uniq) => {
attrs.push((0, NoAliasAttribute));
}
_ => ()
}
// Invoke the actual rust fn and update bcx/llresult.
let (llret, b) = base::invoke(bcx, llfn, llargs, attrs, call_info);
bcx = b;
llresult = llret;
// If the Rust convention for this type is return via
// the return value, copy it into llretslot.
match opt_llretslot {
Some(llretslot) => {
if !type_of::return_uses_outptr(bcx.ccx(), ret_ty) &&
!type_is_zero_size(bcx.ccx(), ret_ty)
{
Store(bcx, llret, llretslot);
}
}
None => {}
}
} else {
// Lang items are the only case where dest is None, and
// they are always Rust fns.
assert!(dest.is_some());
let mut llargs = ~[];
bcx = trans_args(bcx, args, callee_ty,
autoref_arg, &mut llargs,
cleanup::CustomScope(arg_cleanup_scope));
fcx.pop_custom_cleanup_scope(arg_cleanup_scope);
let arg_tys = match args {
ArgExprs(a) => a.iter().map(|x| expr_ty(bcx, *x)).collect(),
ArgVals(_) => fail!("expected arg exprs.")
};
bcx = foreign::trans_native_call(bcx, callee_ty,
llfn, opt_llretslot.unwrap(), llargs, arg_tys);
}
// If the caller doesn't care about the result of this fn call,
// drop the temporary slot we made.
match dest {
None => {
assert!(!type_of::return_uses_outptr(bcx.ccx(), ret_ty));
}
Some(expr::Ignore) => {
// drop the value if it is not being saved.
bcx = glue::drop_ty(bcx, opt_llretslot.unwrap(), ret_ty);
}
Some(expr::SaveIn(_)) => { }
}
if ty::type_is_bot(ret_ty) {
Unreachable(bcx);
}
rslt(bcx, llresult)
}
pub enum CallArgs<'a> {
ArgExprs(&'a [@ast::Expr]),
ArgVals(&'a [ValueRef])
}
pub fn trans_args<'a>(
cx: &'a Block<'a>,
args: CallArgs,
fn_ty: ty::t,
autoref_arg: AutorefArg,
llargs: &mut ~[ValueRef],
arg_cleanup_scope: cleanup::ScopeId)
-> &'a Block<'a>
{
let _icx = push_ctxt("trans_args");
let arg_tys = ty::ty_fn_args(fn_ty);
let variadic = ty::fn_is_variadic(fn_ty);
let mut bcx = cx;
// First we figure out the caller's view of the types of the arguments.
// This will be needed if this is a generic call, because the callee has
// to cast her view of the arguments to the caller's view.
match args {
ArgExprs(arg_exprs) => {
let num_formal_args = arg_tys.len();
for (i, arg_expr) in arg_exprs.iter().enumerate() {
let arg_ty = if i >= num_formal_args {
assert!(variadic);
expr_ty_adjusted(cx, *arg_expr)
} else {
arg_tys[i]
};
let arg_val = unpack_result!(bcx, {
trans_arg_expr(bcx,
arg_ty,
*arg_expr,
arg_cleanup_scope,
autoref_arg)
});
llargs.push(arg_val);
}
}
ArgVals(vs) => {
llargs.push_all(vs);
}
}
bcx
}
pub enum AutorefArg {
DontAutorefArg,
DoAutorefArg
}
pub fn trans_arg_expr<'a>(
bcx: &'a Block<'a>,
formal_arg_ty: ty::t,
arg_expr: &ast::Expr,
arg_cleanup_scope: cleanup::ScopeId,
autoref_arg: AutorefArg)
-> Result<'a> {
let _icx = push_ctxt("trans_arg_expr");
let mut bcx = bcx;
let ccx = bcx.ccx();
debug!("trans_arg_expr(formal_arg_ty=({}), arg_expr={})",
formal_arg_ty.repr(bcx.tcx()),
arg_expr.repr(bcx.tcx()));
// translate the arg expr to a datum
let arg_datum = unpack_datum!(bcx, expr::trans(bcx, arg_expr));
let arg_datum_ty = arg_datum.ty;
debug!(" arg datum: {}", arg_datum.to_str(bcx.ccx()));
let mut val;
if ty::type_is_bot(arg_datum_ty) {
// For values of type _|_, we generate an
// "undef" value, as such a value should never
// be inspected. It's important for the value
// to have type lldestty (the callee's expected type).
let llformal_arg_ty = type_of::type_of(ccx, formal_arg_ty);
unsafe {
val = llvm::LLVMGetUndef(llformal_arg_ty.to_ref());
}
} else {
// FIXME(#3548) use the adjustments table
match autoref_arg {
DoAutorefArg => {
// We will pass argument by reference
// We want an lvalue, so that we can pass by reference and
let arg_datum = unpack_datum!(
bcx, arg_datum.to_lvalue_datum(bcx, "arg", arg_expr.id));
val = arg_datum.val;
}
DontAutorefArg => {
// Make this an rvalue, since we are going to be
// passing ownership.
let arg_datum = unpack_datum!(
bcx, arg_datum.to_rvalue_datum(bcx, "arg"));
// Now that arg_datum is owned, get it into the appropriate
// mode (ref vs value).
let arg_datum = unpack_datum!(
bcx, arg_datum.to_appropriate_datum(bcx));
// Technically, ownership of val passes to the callee.
// However, we must cleanup should we fail before the
// callee is actually invoked.
val = arg_datum.add_clean(bcx.fcx, arg_cleanup_scope);
}
}
if formal_arg_ty != arg_datum_ty {
// this could happen due to e.g. subtyping
let llformal_arg_ty = type_of::type_of_explicit_arg(ccx, formal_arg_ty);
debug!("casting actual type ({}) to match formal ({})",
bcx.val_to_str(val), bcx.llty_str(llformal_arg_ty));
val = PointerCast(bcx, val, llformal_arg_ty);
}
}
debug!("--- trans_arg_expr passing {}", bcx.val_to_str(val));
return rslt(bcx, val);
}