rust/src/operator.rs
Oliver Schneider 3a658e09e8
rustup (i128)
2017-01-12 08:28:42 +01:00

313 lines
11 KiB
Rust

use rustc::mir;
use rustc::ty::Ty;
use error::{EvalError, EvalResult};
use eval_context::EvalContext;
use lvalue::Lvalue;
use memory::Pointer;
use value::{
PrimVal,
PrimValKind,
Value,
bytes_to_f32,
bytes_to_f64,
f32_to_bytes,
f64_to_bytes,
bytes_to_bool,
};
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
fn binop_with_overflow(
&mut self,
op: mir::BinOp,
left: &mir::Operand<'tcx>,
right: &mir::Operand<'tcx>,
) -> EvalResult<'tcx, (PrimVal, bool)> {
let left_ty = self.operand_ty(left);
let right_ty = self.operand_ty(right);
let left_kind = self.ty_to_primval_kind(left_ty)?;
let right_kind = self.ty_to_primval_kind(right_ty)?;
let left_val = self.eval_operand_to_primval(left)?;
let right_val = self.eval_operand_to_primval(right)?;
binary_op(op, left_val, left_kind, right_val, right_kind)
}
/// Applies the binary operation `op` to the two operands and writes a tuple of the result
/// and a boolean signifying the potential overflow to the destination.
pub(super) fn intrinsic_with_overflow(
&mut self,
op: mir::BinOp,
left: &mir::Operand<'tcx>,
right: &mir::Operand<'tcx>,
dest: Lvalue<'tcx>,
dest_ty: Ty<'tcx>,
) -> EvalResult<'tcx, ()> {
let (val, overflowed) = self.binop_with_overflow(op, left, right)?;
let val = Value::ByValPair(val, PrimVal::from_bool(overflowed));
self.write_value(val, dest, dest_ty)
}
/// Applies the binary operation `op` to the arguments and writes the result to the
/// destination. Returns `true` if the operation overflowed.
pub(super) fn intrinsic_overflowing(
&mut self,
op: mir::BinOp,
left: &mir::Operand<'tcx>,
right: &mir::Operand<'tcx>,
dest: Lvalue<'tcx>,
dest_ty: Ty<'tcx>,
) -> EvalResult<'tcx, bool> {
let (val, overflowed) = self.binop_with_overflow(op, left, right)?;
self.write_primval(dest, val, dest_ty)?;
Ok(overflowed)
}
}
macro_rules! overflow {
($op:ident, $l:expr, $r:expr) => ({
let (val, overflowed) = $l.$op($r);
let primval = PrimVal::Bytes(val as u128);
Ok((primval, overflowed))
})
}
macro_rules! int_arithmetic {
($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({
let l = $l;
let r = $r;
match $kind {
I8 => overflow!($int_op, l as i8, r as i8),
I16 => overflow!($int_op, l as i16, r as i16),
I32 => overflow!($int_op, l as i32, r as i32),
I64 => overflow!($int_op, l as i64, r as i64),
U8 => overflow!($int_op, l as u8, r as u8),
U16 => overflow!($int_op, l as u16, r as u16),
U32 => overflow!($int_op, l as u32, r as u32),
U64 => overflow!($int_op, l as u64, r as u64),
_ => bug!("int_arithmetic should only be called on int primvals"),
}
})
}
macro_rules! int_shift {
($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({
let l = $l;
let r = $r;
match $kind {
I8 => overflow!($int_op, l as i8, r),
I16 => overflow!($int_op, l as i16, r),
I32 => overflow!($int_op, l as i32, r),
I64 => overflow!($int_op, l as i64, r),
U8 => overflow!($int_op, l as u8, r),
U16 => overflow!($int_op, l as u16, r),
U32 => overflow!($int_op, l as u32, r),
U64 => overflow!($int_op, l as u64, r),
_ => bug!("int_shift should only be called on int primvals"),
}
})
}
macro_rules! float_arithmetic {
($from_bytes:ident, $to_bytes:ident, $float_op:tt, $l:expr, $r:expr) => ({
let l = $from_bytes($l);
let r = $from_bytes($r);
let bytes = $to_bytes(l $float_op r);
PrimVal::Bytes(bytes)
})
}
macro_rules! f32_arithmetic {
($float_op:tt, $l:expr, $r:expr) => (
float_arithmetic!(bytes_to_f32, f32_to_bytes, $float_op, $l, $r)
)
}
macro_rules! f64_arithmetic {
($float_op:tt, $l:expr, $r:expr) => (
float_arithmetic!(bytes_to_f64, f64_to_bytes, $float_op, $l, $r)
)
}
/// Returns the result of the specified operation and whether it overflowed.
pub fn binary_op<'tcx>(
bin_op: mir::BinOp,
left: PrimVal,
left_kind: PrimValKind,
right: PrimVal,
right_kind: PrimValKind,
) -> EvalResult<'tcx, (PrimVal, bool)> {
use rustc::mir::BinOp::*;
use value::PrimValKind::*;
// FIXME(solson): Temporary hack. It will go away when we get rid of Pointer's ability to store
// plain bytes, and leave that to PrimVal::Bytes.
fn normalize(val: PrimVal) -> PrimVal {
if let PrimVal::Ptr(ptr) = val {
if let Ok(bytes) = ptr.to_int() {
return PrimVal::Bytes(bytes as u128);
}
}
val
}
let (left, right) = (normalize(left), normalize(right));
let (l, r) = match (left, right) {
(PrimVal::Bytes(left_bytes), PrimVal::Bytes(right_bytes)) => (left_bytes, right_bytes),
(PrimVal::Ptr(left_ptr), PrimVal::Ptr(right_ptr)) => {
if left_ptr.alloc_id == right_ptr.alloc_id {
// If the pointers are into the same allocation, fall through to the more general
// match later, which will do comparisons on the pointer offsets.
(left_ptr.offset as u128, right_ptr.offset as u128)
} else {
return Ok((unrelated_ptr_ops(bin_op, left_ptr, right_ptr)?, false));
}
}
(PrimVal::Ptr(ptr), PrimVal::Bytes(bytes)) |
(PrimVal::Bytes(bytes), PrimVal::Ptr(ptr)) => {
return Ok((unrelated_ptr_ops(bin_op, ptr, Pointer::from_int(bytes as u64))?, false));
}
(PrimVal::Undef, _) | (_, PrimVal::Undef) => return Err(EvalError::ReadUndefBytes),
};
// These ops can have an RHS with a different numeric type.
if bin_op == Shl || bin_op == Shr {
// These are the maximum values a bitshift RHS could possibly have. For example, u16
// can be bitshifted by 0..16, so masking with 0b1111 (16 - 1) will ensure we are in
// that range.
let type_bits: u32 = match left_kind {
I8 | U8 => 8,
I16 | U16 => 16,
I32 | U32 => 32,
I64 | U64 => 64,
I128 | U128 => 128,
_ => bug!("bad MIR: bitshift lhs is not integral"),
};
// Cast to `u32` because `overflowing_sh{l,r}` only take `u32`, then apply the bitmask
// to ensure it's within the valid shift value range.
let masked_shift_width = (r as u32) & (type_bits - 1);
return match bin_op {
Shl => int_shift!(left_kind, overflowing_shl, l, masked_shift_width),
Shr => int_shift!(left_kind, overflowing_shr, l, masked_shift_width),
_ => bug!("it has already been checked that this is a shift op"),
};
}
if left_kind != right_kind {
let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op);
return Err(EvalError::Unimplemented(msg));
}
let val = match (bin_op, left_kind) {
(Eq, F32) => PrimVal::from_bool(bytes_to_f32(l) == bytes_to_f32(r)),
(Ne, F32) => PrimVal::from_bool(bytes_to_f32(l) != bytes_to_f32(r)),
(Lt, F32) => PrimVal::from_bool(bytes_to_f32(l) < bytes_to_f32(r)),
(Le, F32) => PrimVal::from_bool(bytes_to_f32(l) <= bytes_to_f32(r)),
(Gt, F32) => PrimVal::from_bool(bytes_to_f32(l) > bytes_to_f32(r)),
(Ge, F32) => PrimVal::from_bool(bytes_to_f32(l) >= bytes_to_f32(r)),
(Eq, F64) => PrimVal::from_bool(bytes_to_f64(l) == bytes_to_f64(r)),
(Ne, F64) => PrimVal::from_bool(bytes_to_f64(l) != bytes_to_f64(r)),
(Lt, F64) => PrimVal::from_bool(bytes_to_f64(l) < bytes_to_f64(r)),
(Le, F64) => PrimVal::from_bool(bytes_to_f64(l) <= bytes_to_f64(r)),
(Gt, F64) => PrimVal::from_bool(bytes_to_f64(l) > bytes_to_f64(r)),
(Ge, F64) => PrimVal::from_bool(bytes_to_f64(l) >= bytes_to_f64(r)),
(Add, F32) => f32_arithmetic!(+, l, r),
(Sub, F32) => f32_arithmetic!(-, l, r),
(Mul, F32) => f32_arithmetic!(*, l, r),
(Div, F32) => f32_arithmetic!(/, l, r),
(Rem, F32) => f32_arithmetic!(%, l, r),
(Add, F64) => f64_arithmetic!(+, l, r),
(Sub, F64) => f64_arithmetic!(-, l, r),
(Mul, F64) => f64_arithmetic!(*, l, r),
(Div, F64) => f64_arithmetic!(/, l, r),
(Rem, F64) => f64_arithmetic!(%, l, r),
(Eq, _) => PrimVal::from_bool(l == r),
(Ne, _) => PrimVal::from_bool(l != r),
(Lt, _) => PrimVal::from_bool(l < r),
(Le, _) => PrimVal::from_bool(l <= r),
(Gt, _) => PrimVal::from_bool(l > r),
(Ge, _) => PrimVal::from_bool(l >= r),
(BitOr, _) => PrimVal::Bytes(l | r),
(BitAnd, _) => PrimVal::Bytes(l & r),
(BitXor, _) => PrimVal::Bytes(l ^ r),
(Add, k) if k.is_int() => return int_arithmetic!(k, overflowing_add, l, r),
(Sub, k) if k.is_int() => return int_arithmetic!(k, overflowing_sub, l, r),
(Mul, k) if k.is_int() => return int_arithmetic!(k, overflowing_mul, l, r),
(Div, k) if k.is_int() => return int_arithmetic!(k, overflowing_div, l, r),
(Rem, k) if k.is_int() => return int_arithmetic!(k, overflowing_rem, l, r),
_ => {
let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op);
return Err(EvalError::Unimplemented(msg));
}
};
Ok((val, false))
}
fn unrelated_ptr_ops<'tcx>(bin_op: mir::BinOp, left: Pointer, right: Pointer) -> EvalResult<'tcx, PrimVal> {
use rustc::mir::BinOp::*;
match bin_op {
Eq => Ok(PrimVal::from_bool(false)),
Ne => Ok(PrimVal::from_bool(true)),
Lt | Le | Gt | Ge => Err(EvalError::InvalidPointerMath),
_ if left.to_int().is_ok() ^ right.to_int().is_ok() => {
Err(EvalError::ReadPointerAsBytes)
},
_ => bug!(),
}
}
pub fn unary_op<'tcx>(
un_op: mir::UnOp,
val: PrimVal,
val_kind: PrimValKind,
) -> EvalResult<'tcx, PrimVal> {
use rustc::mir::UnOp::*;
use value::PrimValKind::*;
let bytes = val.to_bytes()?;
let result_bytes = match (un_op, val_kind) {
(Not, Bool) => !bytes_to_bool(bytes) as u128,
(Not, U8) => !(bytes as u8) as u128,
(Not, U16) => !(bytes as u16) as u128,
(Not, U32) => !(bytes as u32) as u128,
(Not, U64) => !(bytes as u64) as u128,
(Not, U128) => !bytes,
(Not, I8) => !(bytes as i8) as u128,
(Not, I16) => !(bytes as i16) as u128,
(Not, I32) => !(bytes as i32) as u128,
(Not, I64) => !(bytes as i64) as u128,
(Not, I128) => !(bytes as i128) as u128,
(Neg, I8) => -(bytes as i8) as u128,
(Neg, I16) => -(bytes as i16) as u128,
(Neg, I32) => -(bytes as i32) as u128,
(Neg, I64) => -(bytes as i64) as u128,
(Neg, I128) => -(bytes as i128) as u128,
(Neg, F32) => f32_to_bytes(-bytes_to_f32(bytes)),
(Neg, F64) => f64_to_bytes(-bytes_to_f64(bytes)),
_ => {
let msg = format!("unimplemented unary op: {:?}, {:?}", un_op, val);
return Err(EvalError::Unimplemented(msg));
}
};
Ok(PrimVal::Bytes(result_bytes))
}