1486 lines
61 KiB
Rust
1486 lines
61 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! A pass that checks to make sure private fields and methods aren't used
|
|
//! outside their scopes. This pass will also generate a set of exported items
|
|
//! which are available for use externally when compiled as a library.
|
|
|
|
use std::mem::replace;
|
|
use collections::{HashSet, HashMap};
|
|
|
|
use metadata::csearch;
|
|
use middle::lint;
|
|
use middle::resolve;
|
|
use middle::ty;
|
|
use middle::typeck::{MethodMap, MethodOrigin, MethodParam};
|
|
use middle::typeck::{MethodStatic, MethodObject};
|
|
|
|
use syntax::ast;
|
|
use syntax::ast_map;
|
|
use syntax::ast_util::{is_local, def_id_of_def, local_def};
|
|
use syntax::attr;
|
|
use syntax::codemap::Span;
|
|
use syntax::parse::token;
|
|
use syntax::opt_vec;
|
|
use syntax::visit;
|
|
use syntax::visit::Visitor;
|
|
|
|
type Context<'a> = (&'a MethodMap, &'a resolve::ExportMap2);
|
|
|
|
/// A set of AST nodes exported by the crate.
|
|
pub type ExportedItems = HashSet<ast::NodeId>;
|
|
|
|
/// A set of AST nodes that are fully public in the crate. This map is used for
|
|
/// documentation purposes (reexporting a private struct inlines the doc,
|
|
/// reexporting a public struct doesn't inline the doc).
|
|
pub type PublicItems = HashSet<ast::NodeId>;
|
|
|
|
/// Result of a checking operation - None => no errors were found. Some => an
|
|
/// error and contains the span and message for reporting that error and
|
|
/// optionally the same for a note about the error.
|
|
type CheckResult = Option<(Span, ~str, Option<(Span, ~str)>)>;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The parent visitor, used to determine what's the parent of what (node-wise)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct ParentVisitor {
|
|
parents: HashMap<ast::NodeId, ast::NodeId>,
|
|
curparent: ast::NodeId,
|
|
}
|
|
|
|
impl Visitor<()> for ParentVisitor {
|
|
fn visit_item(&mut self, item: &ast::Item, _: ()) {
|
|
self.parents.insert(item.id, self.curparent);
|
|
|
|
let prev = self.curparent;
|
|
match item.node {
|
|
ast::ItemMod(..) => { self.curparent = item.id; }
|
|
// Enum variants are parented to the enum definition itself beacuse
|
|
// they inherit privacy
|
|
ast::ItemEnum(ref def, _) => {
|
|
for variant in def.variants.iter() {
|
|
// If variants are private, then their logical "parent" is
|
|
// the enclosing module because everyone in the enclosing
|
|
// module can still use the private variant
|
|
if variant.node.vis == ast::Private {
|
|
self.parents.insert(variant.node.id, self.curparent);
|
|
|
|
// Otherwise, if the variant is public, then the parent is
|
|
// considered the enclosing enum because the enum will
|
|
// dictate the privacy visibility of this variant instead.
|
|
} else {
|
|
self.parents.insert(variant.node.id, item.id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Trait methods are always considered "public", but if the trait is
|
|
// private then we need some private item in the chain from the
|
|
// method to the root. In this case, if the trait is private, then
|
|
// parent all the methods to the trait to indicate that they're
|
|
// private.
|
|
ast::ItemTrait(_, _, ref methods) if item.vis != ast::Public => {
|
|
for m in methods.iter() {
|
|
match *m {
|
|
ast::Provided(ref m) => self.parents.insert(m.id, item.id),
|
|
ast::Required(ref m) => self.parents.insert(m.id, item.id),
|
|
};
|
|
}
|
|
}
|
|
|
|
_ => {}
|
|
}
|
|
visit::walk_item(self, item, ());
|
|
self.curparent = prev;
|
|
}
|
|
|
|
fn visit_foreign_item(&mut self, a: &ast::ForeignItem, _: ()) {
|
|
self.parents.insert(a.id, self.curparent);
|
|
visit::walk_foreign_item(self, a, ());
|
|
}
|
|
|
|
fn visit_fn(&mut self, a: &visit::FnKind, b: &ast::FnDecl,
|
|
c: &ast::Block, d: Span, id: ast::NodeId, _: ()) {
|
|
// We already took care of some trait methods above, otherwise things
|
|
// like impl methods and pub trait methods are parented to the
|
|
// containing module, not the containing trait.
|
|
if !self.parents.contains_key(&id) {
|
|
self.parents.insert(id, self.curparent);
|
|
}
|
|
visit::walk_fn(self, a, b, c, d, id, ());
|
|
}
|
|
|
|
fn visit_struct_def(&mut self, s: &ast::StructDef, i: ast::Ident,
|
|
g: &ast::Generics, n: ast::NodeId, _: ()) {
|
|
// Struct constructors are parented to their struct definitions because
|
|
// they essentially are the struct definitions.
|
|
match s.ctor_id {
|
|
Some(id) => { self.parents.insert(id, n); }
|
|
None => {}
|
|
}
|
|
|
|
// While we have the id of the struct definition, go ahead and parent
|
|
// all the fields.
|
|
for field in s.fields.iter() {
|
|
self.parents.insert(field.node.id, self.curparent);
|
|
}
|
|
visit::walk_struct_def(self, s, i, g, n, ())
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The embargo visitor, used to determine the exports of the ast
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct EmbargoVisitor<'a> {
|
|
tcx: ty::ctxt,
|
|
exp_map2: &'a resolve::ExportMap2,
|
|
|
|
// This flag is an indicator of whether the previous item in the
|
|
// hierarchical chain was exported or not. This is the indicator of whether
|
|
// children should be exported as well. Note that this can flip from false
|
|
// to true if a reexported module is entered (or an action similar).
|
|
prev_exported: bool,
|
|
|
|
// This is a list of all exported items in the AST. An exported item is any
|
|
// function/method/item which is usable by external crates. This essentially
|
|
// means that the result is "public all the way down", but the "path down"
|
|
// may jump across private boundaries through reexport statements.
|
|
exported_items: ExportedItems,
|
|
|
|
// This sets contains all the destination nodes which are publicly
|
|
// re-exported. This is *not* a set of all reexported nodes, only a set of
|
|
// all nodes which are reexported *and* reachable from external crates. This
|
|
// means that the destination of the reexport is exported, and hence the
|
|
// destination must also be exported.
|
|
reexports: HashSet<ast::NodeId>,
|
|
|
|
// These two fields are closely related to one another in that they are only
|
|
// used for generation of the 'PublicItems' set, not for privacy checking at
|
|
// all
|
|
public_items: PublicItems,
|
|
prev_public: bool,
|
|
}
|
|
|
|
impl<'a> EmbargoVisitor<'a> {
|
|
// There are checks inside of privacy which depend on knowing whether a
|
|
// trait should be exported or not. The two current consumers of this are:
|
|
//
|
|
// 1. Should default methods of a trait be exported?
|
|
// 2. Should the methods of an implementation of a trait be exported?
|
|
//
|
|
// The answer to both of these questions partly rely on whether the trait
|
|
// itself is exported or not. If the trait is somehow exported, then the
|
|
// answers to both questions must be yes. Right now this question involves
|
|
// more analysis than is currently done in rustc, so we conservatively
|
|
// answer "yes" so that all traits need to be exported.
|
|
fn exported_trait(&self, _id: ast::NodeId) -> bool {
|
|
true
|
|
}
|
|
}
|
|
|
|
impl<'a> Visitor<()> for EmbargoVisitor<'a> {
|
|
fn visit_item(&mut self, item: &ast::Item, _: ()) {
|
|
let orig_all_pub = self.prev_public;
|
|
self.prev_public = orig_all_pub && item.vis == ast::Public;
|
|
if self.prev_public {
|
|
self.public_items.insert(item.id);
|
|
}
|
|
|
|
let orig_all_exported = self.prev_exported;
|
|
match item.node {
|
|
// impls/extern blocks do not break the "public chain" because they
|
|
// cannot have visibility qualifiers on them anyway
|
|
ast::ItemImpl(..) | ast::ItemForeignMod(..) => {}
|
|
|
|
// Traits are a little special in that even if they themselves are
|
|
// not public they may still be exported.
|
|
ast::ItemTrait(..) => {
|
|
self.prev_exported = self.exported_trait(item.id);
|
|
}
|
|
|
|
// Private by default, hence we only retain the "public chain" if
|
|
// `pub` is explicitly listed.
|
|
_ => {
|
|
self.prev_exported =
|
|
(orig_all_exported && item.vis == ast::Public) ||
|
|
self.reexports.contains(&item.id);
|
|
}
|
|
}
|
|
|
|
let public_first = self.prev_exported &&
|
|
self.exported_items.insert(item.id);
|
|
|
|
match item.node {
|
|
// Enum variants inherit from their parent, so if the enum is
|
|
// public all variants are public unless they're explicitly priv
|
|
ast::ItemEnum(ref def, _) if public_first => {
|
|
for variant in def.variants.iter() {
|
|
if variant.node.vis != ast::Private {
|
|
self.exported_items.insert(variant.node.id);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Implementations are a little tricky to determine what's exported
|
|
// out of them. Here's a few cases which are currently defined:
|
|
//
|
|
// * Impls for private types do not need to export their methods
|
|
// (either public or private methods)
|
|
//
|
|
// * Impls for public types only have public methods exported
|
|
//
|
|
// * Public trait impls for public types must have all methods
|
|
// exported.
|
|
//
|
|
// * Private trait impls for public types can be ignored
|
|
//
|
|
// * Public trait impls for private types have their methods
|
|
// exported. I'm not entirely certain that this is the correct
|
|
// thing to do, but I have seen use cases of where this will cause
|
|
// undefined symbols at linkage time if this case is not handled.
|
|
//
|
|
// * Private trait impls for private types can be completely ignored
|
|
ast::ItemImpl(_, _, ref ty, ref methods) => {
|
|
let public_ty = match ty.node {
|
|
ast::TyPath(_, _, id) => {
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().get_copy(&id) {
|
|
ast::DefPrimTy(..) => true,
|
|
def => {
|
|
let did = def_id_of_def(def);
|
|
!is_local(did) ||
|
|
self.exported_items.contains(&did.node)
|
|
}
|
|
}
|
|
}
|
|
_ => true,
|
|
};
|
|
let tr = ty::impl_trait_ref(self.tcx, local_def(item.id));
|
|
let public_trait = tr.map_or(false, |tr| {
|
|
!is_local(tr.def_id) ||
|
|
self.exported_items.contains(&tr.def_id.node)
|
|
});
|
|
|
|
if public_ty || public_trait {
|
|
for method in methods.iter() {
|
|
let meth_public = match method.explicit_self.node {
|
|
ast::SelfStatic => public_ty,
|
|
_ => true,
|
|
} && method.vis == ast::Public;
|
|
if meth_public || tr.is_some() {
|
|
self.exported_items.insert(method.id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Default methods on traits are all public so long as the trait
|
|
// is public
|
|
ast::ItemTrait(_, _, ref methods) if public_first => {
|
|
for method in methods.iter() {
|
|
match *method {
|
|
ast::Provided(ref m) => {
|
|
debug!("provided {}", m.id);
|
|
self.exported_items.insert(m.id);
|
|
}
|
|
ast::Required(ref m) => {
|
|
debug!("required {}", m.id);
|
|
self.exported_items.insert(m.id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Struct constructors are public if the struct is all public.
|
|
ast::ItemStruct(ref def, _) if public_first => {
|
|
match def.ctor_id {
|
|
Some(id) => { self.exported_items.insert(id); }
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
_ => {}
|
|
}
|
|
|
|
visit::walk_item(self, item, ());
|
|
|
|
self.prev_exported = orig_all_exported;
|
|
self.prev_public = orig_all_pub;
|
|
}
|
|
|
|
fn visit_foreign_item(&mut self, a: &ast::ForeignItem, _: ()) {
|
|
if self.prev_exported && a.vis == ast::Public {
|
|
self.exported_items.insert(a.id);
|
|
}
|
|
}
|
|
|
|
fn visit_mod(&mut self, m: &ast::Mod, _sp: Span, id: ast::NodeId, _: ()) {
|
|
// This code is here instead of in visit_item so that the
|
|
// crate module gets processed as well.
|
|
if self.prev_exported {
|
|
let exp_map2 = self.exp_map2.borrow();
|
|
assert!(exp_map2.get().contains_key(&id), "wut {:?}", id);
|
|
for export in exp_map2.get().get(&id).iter() {
|
|
if is_local(export.def_id) {
|
|
self.reexports.insert(export.def_id.node);
|
|
}
|
|
}
|
|
}
|
|
visit::walk_mod(self, m, ())
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The privacy visitor, where privacy checks take place (violations reported)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct PrivacyVisitor<'a> {
|
|
tcx: ty::ctxt,
|
|
curitem: ast::NodeId,
|
|
in_fn: bool,
|
|
in_foreign: bool,
|
|
method_map: &'a MethodMap,
|
|
parents: HashMap<ast::NodeId, ast::NodeId>,
|
|
external_exports: resolve::ExternalExports,
|
|
last_private_map: resolve::LastPrivateMap,
|
|
}
|
|
|
|
enum PrivacyResult {
|
|
Allowable,
|
|
ExternallyDenied,
|
|
DisallowedBy(ast::NodeId),
|
|
}
|
|
|
|
impl<'a> PrivacyVisitor<'a> {
|
|
// used when debugging
|
|
fn nodestr(&self, id: ast::NodeId) -> ~str {
|
|
self.tcx.map.node_to_str(id)
|
|
}
|
|
|
|
// Determines whether the given definition is public from the point of view
|
|
// of the current item.
|
|
fn def_privacy(&self, did: ast::DefId) -> PrivacyResult {
|
|
if !is_local(did) {
|
|
if self.external_exports.contains(&did) {
|
|
debug!("privacy - {:?} was externally exported", did);
|
|
return Allowable;
|
|
}
|
|
debug!("privacy - is {:?} a public method", did);
|
|
|
|
let methods = self.tcx.methods.borrow();
|
|
return match methods.get().find(&did) {
|
|
Some(meth) => {
|
|
debug!("privacy - well at least it's a method: {:?}", meth);
|
|
match meth.container {
|
|
ty::TraitContainer(id) => {
|
|
debug!("privacy - recursing on trait {:?}", id);
|
|
self.def_privacy(id)
|
|
}
|
|
ty::ImplContainer(id) => {
|
|
match ty::impl_trait_ref(self.tcx, id) {
|
|
Some(t) => {
|
|
debug!("privacy - impl of trait {:?}", id);
|
|
self.def_privacy(t.def_id)
|
|
}
|
|
None => {
|
|
debug!("privacy - found a method {:?}",
|
|
meth.vis);
|
|
if meth.vis == ast::Public {
|
|
Allowable
|
|
} else {
|
|
ExternallyDenied
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
debug!("privacy - nope, not even a method");
|
|
ExternallyDenied
|
|
}
|
|
};
|
|
}
|
|
|
|
debug!("privacy - local {:?} not public all the way down", did);
|
|
// return quickly for things in the same module
|
|
if self.parents.find(&did.node) == self.parents.find(&self.curitem) {
|
|
debug!("privacy - same parent, we're done here");
|
|
return Allowable;
|
|
}
|
|
|
|
// We now know that there is at least one private member between the
|
|
// destination and the root.
|
|
let mut closest_private_id = did.node;
|
|
loop {
|
|
debug!("privacy - examining {}", self.nodestr(closest_private_id));
|
|
let vis = match self.tcx.map.find(closest_private_id) {
|
|
// If this item is a method, then we know for sure that it's an
|
|
// actual method and not a static method. The reason for this is
|
|
// that these cases are only hit in the ExprMethodCall
|
|
// expression, and ExprCall will have its path checked later
|
|
// (the path of the trait/impl) if it's a static method.
|
|
//
|
|
// With this information, then we can completely ignore all
|
|
// trait methods. The privacy violation would be if the trait
|
|
// couldn't get imported, not if the method couldn't be used
|
|
// (all trait methods are public).
|
|
//
|
|
// However, if this is an impl method, then we dictate this
|
|
// decision solely based on the privacy of the method
|
|
// invocation.
|
|
// FIXME(#10573) is this the right behavior? Why not consider
|
|
// where the method was defined?
|
|
Some(ast_map::NodeMethod(ref m)) => {
|
|
let imp = self.tcx.map.get_parent_did(closest_private_id);
|
|
match ty::impl_trait_ref(self.tcx, imp) {
|
|
Some(..) => return Allowable,
|
|
_ if m.vis == ast::Public => return Allowable,
|
|
_ => m.vis
|
|
}
|
|
}
|
|
Some(ast_map::NodeTraitMethod(_)) => {
|
|
return Allowable;
|
|
}
|
|
|
|
// This is not a method call, extract the visibility as one
|
|
// would normally look at it
|
|
Some(ast_map::NodeItem(it)) => it.vis,
|
|
Some(ast_map::NodeForeignItem(_)) => {
|
|
self.tcx.map.get_foreign_vis(closest_private_id)
|
|
}
|
|
Some(ast_map::NodeVariant(ref v)) => {
|
|
// sadly enum variants still inherit visibility, so only
|
|
// break out of this is explicitly private
|
|
if v.node.vis == ast::Private { break }
|
|
ast::Public // need to move up a level (to the enum)
|
|
}
|
|
_ => ast::Public,
|
|
};
|
|
if vis != ast::Public { break }
|
|
// if we've reached the root, then everything was allowable and this
|
|
// access is public.
|
|
if closest_private_id == ast::CRATE_NODE_ID { return Allowable }
|
|
closest_private_id = *self.parents.get(&closest_private_id);
|
|
|
|
// If we reached the top, then we were public all the way down and
|
|
// we can allow this access.
|
|
if closest_private_id == ast::DUMMY_NODE_ID { return Allowable }
|
|
}
|
|
debug!("privacy - closest priv {}", self.nodestr(closest_private_id));
|
|
if self.private_accessible(closest_private_id) {
|
|
Allowable
|
|
} else {
|
|
DisallowedBy(closest_private_id)
|
|
}
|
|
}
|
|
|
|
/// For a local private node in the AST, this function will determine
|
|
/// whether the node is accessible by the current module that iteration is
|
|
/// inside.
|
|
fn private_accessible(&self, id: ast::NodeId) -> bool {
|
|
let parent = *self.parents.get(&id);
|
|
debug!("privacy - accessible parent {}", self.nodestr(parent));
|
|
|
|
// After finding `did`'s closest private member, we roll ourselves back
|
|
// to see if this private member's parent is anywhere in our ancestry.
|
|
// By the privacy rules, we can access all of our ancestor's private
|
|
// members, so that's why we test the parent, and not the did itself.
|
|
let mut cur = self.curitem;
|
|
loop {
|
|
debug!("privacy - questioning {}", self.nodestr(cur));
|
|
match cur {
|
|
// If the relevant parent is in our history, then we're allowed
|
|
// to look inside any of our ancestor's immediate private items,
|
|
// so this access is valid.
|
|
x if x == parent => return true,
|
|
|
|
// If we've reached the root, then we couldn't access this item
|
|
// in the first place
|
|
ast::DUMMY_NODE_ID => return false,
|
|
|
|
// Keep going up
|
|
_ => {}
|
|
}
|
|
|
|
cur = *self.parents.get(&cur);
|
|
}
|
|
}
|
|
|
|
fn report_error(&self, result: CheckResult) -> bool {
|
|
match result {
|
|
None => true,
|
|
Some((span, msg, note)) => {
|
|
self.tcx.sess.span_err(span, msg);
|
|
match note {
|
|
Some((span, msg)) => self.tcx.sess.span_note(span, msg),
|
|
None => {},
|
|
}
|
|
false
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Guarantee that a particular definition is public. Returns a CheckResult
|
|
/// which contains any errors found. These can be reported using `report_error`.
|
|
/// If the result is `None`, no errors were found.
|
|
fn ensure_public(&self, span: Span, to_check: ast::DefId,
|
|
source_did: Option<ast::DefId>, msg: &str) -> CheckResult {
|
|
match self.def_privacy(to_check) {
|
|
ExternallyDenied => Some((span, format!("{} is private", msg), None)),
|
|
DisallowedBy(id) => {
|
|
let (err_span, err_msg) = if id == source_did.unwrap_or(to_check).node {
|
|
return Some((span, format!("{} is private", msg), None));
|
|
} else {
|
|
(span, format!("{} is inaccessible", msg))
|
|
};
|
|
match self.tcx.map.find(id) {
|
|
Some(ast_map::NodeItem(item)) => {
|
|
let desc = match item.node {
|
|
ast::ItemMod(..) => "module",
|
|
ast::ItemTrait(..) => "trait",
|
|
_ => return Some((err_span, err_msg, None)),
|
|
};
|
|
let msg = format!("{} `{}` is private",
|
|
desc,
|
|
token::get_ident(item.ident));
|
|
Some((err_span, err_msg, Some((span, msg))))
|
|
},
|
|
_ => Some((err_span, err_msg, None)),
|
|
}
|
|
},
|
|
Allowable => None,
|
|
}
|
|
}
|
|
|
|
// Checks that a field is in scope.
|
|
// FIXME #6993: change type (and name) from Ident to Name
|
|
fn check_field(&mut self, span: Span, id: ast::DefId, ident: ast::Ident,
|
|
enum_id: Option<ast::DefId>) {
|
|
let fields = ty::lookup_struct_fields(self.tcx, id);
|
|
let struct_vis = if is_local(id) {
|
|
match self.tcx.map.get(id.node) {
|
|
ast_map::NodeItem(ref it) => it.vis,
|
|
ast_map::NodeVariant(ref v) => {
|
|
if v.node.vis == ast::Inherited {
|
|
let parent = self.tcx.map.get_parent(id.node);
|
|
self.tcx.map.expect_item(parent).vis
|
|
} else {
|
|
v.node.vis
|
|
}
|
|
}
|
|
_ => {
|
|
self.tcx.sess.span_bug(span,
|
|
format!("not an item or variant def"));
|
|
}
|
|
}
|
|
} else {
|
|
let cstore = self.tcx.sess.cstore;
|
|
match enum_id {
|
|
Some(enum_id) => {
|
|
let v = csearch::get_enum_variants(self.tcx, enum_id);
|
|
match v.iter().find(|v| v.id == id) {
|
|
Some(variant) => {
|
|
if variant.vis == ast::Inherited {
|
|
csearch::get_item_visibility(cstore, enum_id)
|
|
} else {
|
|
variant.vis
|
|
}
|
|
}
|
|
None => {
|
|
self.tcx.sess.span_bug(span, "no xcrate variant");
|
|
}
|
|
}
|
|
}
|
|
None => csearch::get_item_visibility(cstore, id)
|
|
}
|
|
};
|
|
|
|
for field in fields.iter() {
|
|
if field.name != ident.name { continue; }
|
|
// public structs have public fields by default, and private structs
|
|
// have private fields by default.
|
|
if struct_vis == ast::Public && field.vis != ast::Private { break }
|
|
if struct_vis != ast::Public && field.vis == ast::Public { break }
|
|
if !is_local(field.id) ||
|
|
!self.private_accessible(field.id.node) {
|
|
self.tcx.sess.span_err(span,
|
|
format!("field `{}` is private",
|
|
token::get_ident(ident)))
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Given the ID of a method, checks to ensure it's in scope.
|
|
fn check_static_method(&mut self, span: Span, method_id: ast::DefId,
|
|
name: ast::Ident) {
|
|
// If the method is a default method, we need to use the def_id of
|
|
// the default implementation.
|
|
let method_id = ty::method(self.tcx, method_id).provided_source
|
|
.unwrap_or(method_id);
|
|
|
|
let string = token::get_ident(name);
|
|
self.report_error(self.ensure_public(span,
|
|
method_id,
|
|
None,
|
|
format!("method `{}`", string)));
|
|
}
|
|
|
|
// Checks that a path is in scope.
|
|
fn check_path(&mut self, span: Span, path_id: ast::NodeId, path: &ast::Path) {
|
|
debug!("privacy - path {}", self.nodestr(path_id));
|
|
let def_map = self.tcx.def_map.borrow();
|
|
let orig_def = def_map.get().get_copy(&path_id);
|
|
let ck = |tyname: &str| {
|
|
let ck_public = |def: ast::DefId| {
|
|
let name = token::get_ident(path.segments
|
|
.last()
|
|
.unwrap()
|
|
.identifier);
|
|
let origdid = def_id_of_def(orig_def);
|
|
self.ensure_public(span,
|
|
def,
|
|
Some(origdid),
|
|
format!("{} `{}`",
|
|
tyname,
|
|
name))
|
|
};
|
|
|
|
match *self.last_private_map.get(&path_id) {
|
|
resolve::LastMod(resolve::AllPublic) => {},
|
|
resolve::LastMod(resolve::DependsOn(def)) => {
|
|
self.report_error(ck_public(def));
|
|
},
|
|
resolve::LastImport{value_priv: value_priv,
|
|
value_used: check_value,
|
|
type_priv: type_priv,
|
|
type_used: check_type} => {
|
|
// This dance with found_error is because we don't want to report
|
|
// a privacy error twice for the same directive.
|
|
let found_error = match (type_priv, check_type) {
|
|
(Some(resolve::DependsOn(def)), resolve::Used) => {
|
|
!self.report_error(ck_public(def))
|
|
},
|
|
_ => false,
|
|
};
|
|
if !found_error {
|
|
match (value_priv, check_value) {
|
|
(Some(resolve::DependsOn(def)), resolve::Used) => {
|
|
self.report_error(ck_public(def));
|
|
},
|
|
_ => {},
|
|
}
|
|
}
|
|
// If an import is not used in either namespace, we still want to check
|
|
// that it could be legal. Therefore we check in both namespaces and only
|
|
// report an error if both would be illegal. We only report one error,
|
|
// even if it is illegal to import from both namespaces.
|
|
match (value_priv, check_value, type_priv, check_type) {
|
|
(Some(p), resolve::Unused, None, _) |
|
|
(None, _, Some(p), resolve::Unused) => {
|
|
let p = match p {
|
|
resolve::AllPublic => None,
|
|
resolve::DependsOn(def) => ck_public(def),
|
|
};
|
|
if p.is_some() {
|
|
self.report_error(p);
|
|
}
|
|
},
|
|
(Some(v), resolve::Unused, Some(t), resolve::Unused) => {
|
|
let v = match v {
|
|
resolve::AllPublic => None,
|
|
resolve::DependsOn(def) => ck_public(def),
|
|
};
|
|
let t = match t {
|
|
resolve::AllPublic => None,
|
|
resolve::DependsOn(def) => ck_public(def),
|
|
};
|
|
match (v, t) {
|
|
(Some(_), Some(t)) => {
|
|
self.report_error(Some(t));
|
|
},
|
|
_ => {},
|
|
}
|
|
},
|
|
_ => {},
|
|
}
|
|
},
|
|
}
|
|
};
|
|
// FIXME(#12334) Imports can refer to definitions in both the type and
|
|
// value namespaces. The privacy information is aware of this, but the
|
|
// def map is not. Therefore the names we work out below will not always
|
|
// be accurate and we can get slightly wonky error messages (but type
|
|
// checking is always correct).
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().get_copy(&path_id) {
|
|
ast::DefStaticMethod(..) => ck("static method"),
|
|
ast::DefFn(..) => ck("function"),
|
|
ast::DefStatic(..) => ck("static"),
|
|
ast::DefVariant(..) => ck("variant"),
|
|
ast::DefTy(..) => ck("type"),
|
|
ast::DefTrait(..) => ck("trait"),
|
|
ast::DefStruct(..) => ck("struct"),
|
|
ast::DefMethod(_, Some(..)) => ck("trait method"),
|
|
ast::DefMethod(..) => ck("method"),
|
|
ast::DefMod(..) => ck("module"),
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
// Checks that a method is in scope.
|
|
fn check_method(&mut self, span: Span, origin: MethodOrigin,
|
|
ident: ast::Ident) {
|
|
match origin {
|
|
MethodStatic(method_id) => {
|
|
self.check_static_method(span, method_id, ident)
|
|
}
|
|
// Trait methods are always all public. The only controlling factor
|
|
// is whether the trait itself is accessible or not.
|
|
MethodParam(MethodParam { trait_id: trait_id, .. }) |
|
|
MethodObject(MethodObject { trait_id: trait_id, .. }) => {
|
|
self.report_error(self.ensure_public(span, trait_id, None, "source trait"));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> Visitor<()> for PrivacyVisitor<'a> {
|
|
fn visit_item(&mut self, item: &ast::Item, _: ()) {
|
|
// Do not check privacy inside items with the resolve_unexported
|
|
// attribute. This is used for the test runner.
|
|
if attr::contains_name(item.attrs.as_slice(), "!resolve_unexported") {
|
|
return;
|
|
}
|
|
|
|
let orig_curitem = replace(&mut self.curitem, item.id);
|
|
visit::walk_item(self, item, ());
|
|
self.curitem = orig_curitem;
|
|
}
|
|
|
|
fn visit_expr(&mut self, expr: &ast::Expr, _: ()) {
|
|
match expr.node {
|
|
ast::ExprField(base, ident, _) => {
|
|
// Method calls are now a special syntactic form,
|
|
// so `a.b` should always be a field.
|
|
let method_map = self.method_map.borrow();
|
|
assert!(!method_map.get().contains_key(&expr.id));
|
|
|
|
// With type_autoderef, make sure we don't
|
|
// allow pointers to violate privacy
|
|
let t = ty::type_autoderef(ty::expr_ty(self.tcx, base));
|
|
match ty::get(t).sty {
|
|
ty::ty_struct(id, _) => {
|
|
self.check_field(expr.span, id, ident, None);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
ast::ExprMethodCall(ident, _, ref args) => {
|
|
// see above
|
|
let t = ty::type_autoderef(ty::expr_ty(self.tcx,
|
|
*args.get(0)));
|
|
match ty::get(t).sty {
|
|
ty::ty_enum(_, _) | ty::ty_struct(_, _) => {
|
|
match self.method_map.borrow().get().find(&expr.id) {
|
|
None => {
|
|
self.tcx.sess.span_bug(expr.span,
|
|
"method call not in \
|
|
method map");
|
|
}
|
|
Some(method) => {
|
|
debug!("(privacy checking) checking impl method");
|
|
self.check_method(expr.span, method.origin, ident);
|
|
}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
ast::ExprStruct(_, ref fields, _) => {
|
|
match ty::get(ty::expr_ty(self.tcx, expr)).sty {
|
|
ty::ty_struct(id, _) => {
|
|
for field in (*fields).iter() {
|
|
self.check_field(expr.span, id, field.ident.node,
|
|
None);
|
|
}
|
|
}
|
|
ty::ty_enum(_, _) => {
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().get_copy(&expr.id) {
|
|
ast::DefVariant(enum_id, variant_id, _) => {
|
|
for field in fields.iter() {
|
|
self.check_field(expr.span, variant_id,
|
|
field.ident.node,
|
|
Some(enum_id));
|
|
}
|
|
}
|
|
_ => self.tcx.sess.span_bug(expr.span,
|
|
"resolve didn't \
|
|
map enum struct \
|
|
constructor to a \
|
|
variant def"),
|
|
}
|
|
}
|
|
_ => self.tcx.sess.span_bug(expr.span, "struct expr \
|
|
didn't have \
|
|
struct type?!"),
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
visit::walk_expr(self, expr, ());
|
|
}
|
|
|
|
fn visit_view_item(&mut self, a: &ast::ViewItem, _: ()) {
|
|
match a.node {
|
|
ast::ViewItemExternMod(..) => {}
|
|
ast::ViewItemUse(ref uses) => {
|
|
for vpath in uses.iter() {
|
|
match vpath.node {
|
|
ast::ViewPathSimple(..) | ast::ViewPathGlob(..) => {}
|
|
ast::ViewPathList(_, ref list, _) => {
|
|
for pid in list.iter() {
|
|
debug!("privacy - list {}", pid.node.id);
|
|
let seg = ast::PathSegment {
|
|
identifier: pid.node.name,
|
|
lifetimes: opt_vec::Empty,
|
|
types: opt_vec::Empty,
|
|
};
|
|
let segs = vec!(seg);
|
|
let path = ast::Path {
|
|
global: false,
|
|
span: pid.span,
|
|
segments: segs,
|
|
};
|
|
self.check_path(pid.span, pid.node.id, &path);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
visit::walk_view_item(self, a, ());
|
|
}
|
|
|
|
fn visit_pat(&mut self, pattern: &ast::Pat, _: ()) {
|
|
// Foreign functions do not have their patterns mapped in the def_map,
|
|
// and there's nothing really relevant there anyway, so don't bother
|
|
// checking privacy. If you can name the type then you can pass it to an
|
|
// external C function anyway.
|
|
if self.in_foreign { return }
|
|
|
|
match pattern.node {
|
|
ast::PatStruct(_, ref fields, _) => {
|
|
match ty::get(ty::pat_ty(self.tcx, pattern)).sty {
|
|
ty::ty_struct(id, _) => {
|
|
for field in fields.iter() {
|
|
self.check_field(pattern.span, id, field.ident,
|
|
None);
|
|
}
|
|
}
|
|
ty::ty_enum(_, _) => {
|
|
let def_map = self.tcx.def_map.borrow();
|
|
match def_map.get().find(&pattern.id) {
|
|
Some(&ast::DefVariant(enum_id, variant_id, _)) => {
|
|
for field in fields.iter() {
|
|
self.check_field(pattern.span, variant_id,
|
|
field.ident, Some(enum_id));
|
|
}
|
|
}
|
|
_ => self.tcx.sess.span_bug(pattern.span,
|
|
"resolve didn't \
|
|
map enum struct \
|
|
pattern to a \
|
|
variant def"),
|
|
}
|
|
}
|
|
_ => self.tcx.sess.span_bug(pattern.span,
|
|
"struct pattern didn't have \
|
|
struct type?!"),
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
visit::walk_pat(self, pattern, ());
|
|
}
|
|
|
|
fn visit_foreign_item(&mut self, fi: &ast::ForeignItem, _: ()) {
|
|
self.in_foreign = true;
|
|
visit::walk_foreign_item(self, fi, ());
|
|
self.in_foreign = false;
|
|
}
|
|
|
|
fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId, _: ()) {
|
|
self.check_path(path.span, id, path);
|
|
visit::walk_path(self, path, ());
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The privacy sanity check visitor, ensures unnecessary visibility isn't here
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct SanePrivacyVisitor {
|
|
tcx: ty::ctxt,
|
|
in_fn: bool,
|
|
}
|
|
|
|
impl Visitor<()> for SanePrivacyVisitor {
|
|
fn visit_item(&mut self, item: &ast::Item, _: ()) {
|
|
if self.in_fn {
|
|
self.check_all_inherited(item);
|
|
} else {
|
|
self.check_sane_privacy(item);
|
|
}
|
|
|
|
let orig_in_fn = replace(&mut self.in_fn, match item.node {
|
|
ast::ItemMod(..) => false, // modules turn privacy back on
|
|
_ => self.in_fn, // otherwise we inherit
|
|
});
|
|
visit::walk_item(self, item, ());
|
|
self.in_fn = orig_in_fn;
|
|
}
|
|
|
|
fn visit_fn(&mut self, fk: &visit::FnKind, fd: &ast::FnDecl,
|
|
b: &ast::Block, s: Span, n: ast::NodeId, _: ()) {
|
|
// This catches both functions and methods
|
|
let orig_in_fn = replace(&mut self.in_fn, true);
|
|
visit::walk_fn(self, fk, fd, b, s, n, ());
|
|
self.in_fn = orig_in_fn;
|
|
}
|
|
|
|
fn visit_view_item(&mut self, i: &ast::ViewItem, _: ()) {
|
|
match i.vis {
|
|
ast::Inherited => {}
|
|
ast::Private => {
|
|
self.tcx.sess.span_err(i.span, "unnecessary visibility \
|
|
qualifier");
|
|
}
|
|
ast::Public => {
|
|
if self.in_fn {
|
|
self.tcx.sess.span_err(i.span, "unnecessary `pub`, imports \
|
|
in functions are never \
|
|
reachable");
|
|
} else {
|
|
match i.node {
|
|
ast::ViewItemExternMod(..) => {
|
|
self.tcx.sess.span_err(i.span, "`pub` visibility \
|
|
is not allowed");
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
visit::walk_view_item(self, i, ());
|
|
}
|
|
}
|
|
|
|
impl SanePrivacyVisitor {
|
|
/// Validates all of the visibility qualifers placed on the item given. This
|
|
/// ensures that there are no extraneous qualifiers that don't actually do
|
|
/// anything. In theory these qualifiers wouldn't parse, but that may happen
|
|
/// later on down the road...
|
|
fn check_sane_privacy(&self, item: &ast::Item) {
|
|
let tcx = self.tcx;
|
|
let check_inherited = |sp: Span, vis: ast::Visibility, note: &str| {
|
|
if vis != ast::Inherited {
|
|
tcx.sess.span_err(sp, "unnecessary visibility qualifier");
|
|
if note.len() > 0 {
|
|
tcx.sess.span_note(sp, note);
|
|
}
|
|
}
|
|
};
|
|
let check_not_priv = |sp: Span, vis: ast::Visibility, note: &str| {
|
|
if vis == ast::Private {
|
|
tcx.sess.span_err(sp, "unnecessary `priv` qualifier");
|
|
if note.len() > 0 {
|
|
tcx.sess.span_note(sp, note);
|
|
}
|
|
}
|
|
};
|
|
let check_struct = |def: &@ast::StructDef,
|
|
vis: ast::Visibility,
|
|
parent_vis: Option<ast::Visibility>| {
|
|
let public_def = match vis {
|
|
ast::Public => true,
|
|
ast::Inherited | ast::Private => parent_vis == Some(ast::Public),
|
|
};
|
|
for f in def.fields.iter() {
|
|
match f.node.kind {
|
|
ast::NamedField(_, ast::Public) if public_def => {
|
|
tcx.sess.span_err(f.span, "unnecessary `pub` \
|
|
visibility");
|
|
}
|
|
ast::NamedField(_, ast::Private) if !public_def => {
|
|
tcx.sess.span_err(f.span, "unnecessary `priv` \
|
|
visibility");
|
|
}
|
|
ast::NamedField(..) | ast::UnnamedField => {}
|
|
}
|
|
}
|
|
};
|
|
match item.node {
|
|
// implementations of traits don't need visibility qualifiers because
|
|
// that's controlled by having the trait in scope.
|
|
ast::ItemImpl(_, Some(..), _, ref methods) => {
|
|
check_inherited(item.span, item.vis,
|
|
"visibility qualifiers have no effect on trait \
|
|
impls");
|
|
for m in methods.iter() {
|
|
check_inherited(m.span, m.vis, "");
|
|
}
|
|
}
|
|
|
|
ast::ItemImpl(_, _, _, ref methods) => {
|
|
check_inherited(item.span, item.vis,
|
|
"place qualifiers on individual methods instead");
|
|
for i in methods.iter() {
|
|
check_not_priv(i.span, i.vis, "functions are private by \
|
|
default");
|
|
}
|
|
}
|
|
ast::ItemForeignMod(ref fm) => {
|
|
check_inherited(item.span, item.vis,
|
|
"place qualifiers on individual functions \
|
|
instead");
|
|
for i in fm.items.iter() {
|
|
check_not_priv(i.span, i.vis, "functions are private by \
|
|
default");
|
|
}
|
|
}
|
|
|
|
ast::ItemEnum(ref def, _) => {
|
|
for v in def.variants.iter() {
|
|
match v.node.vis {
|
|
ast::Public => {
|
|
if item.vis == ast::Public {
|
|
tcx.sess.span_err(v.span, "unnecessary `pub` \
|
|
visibility");
|
|
}
|
|
}
|
|
ast::Private => {
|
|
if item.vis != ast::Public {
|
|
tcx.sess.span_err(v.span, "unnecessary `priv` \
|
|
visibility");
|
|
}
|
|
}
|
|
ast::Inherited => {}
|
|
}
|
|
|
|
match v.node.kind {
|
|
ast::StructVariantKind(ref s) => {
|
|
check_struct(s, v.node.vis, Some(item.vis));
|
|
}
|
|
ast::TupleVariantKind(..) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::ItemStruct(ref def, _) => check_struct(def, item.vis, None),
|
|
|
|
ast::ItemTrait(_, _, ref methods) => {
|
|
for m in methods.iter() {
|
|
match *m {
|
|
ast::Provided(ref m) => {
|
|
check_inherited(m.span, m.vis,
|
|
"unnecessary visibility");
|
|
}
|
|
ast::Required(..) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::ItemStatic(..) |
|
|
ast::ItemFn(..) | ast::ItemMod(..) | ast::ItemTy(..) |
|
|
ast::ItemMac(..) => {
|
|
check_not_priv(item.span, item.vis, "items are private by \
|
|
default");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When inside of something like a function or a method, visibility has no
|
|
/// control over anything so this forbids any mention of any visibility
|
|
fn check_all_inherited(&self, item: &ast::Item) {
|
|
let tcx = self.tcx;
|
|
let check_inherited = |sp: Span, vis: ast::Visibility| {
|
|
if vis != ast::Inherited {
|
|
tcx.sess.span_err(sp, "visibility has no effect inside functions");
|
|
}
|
|
};
|
|
let check_struct = |def: &@ast::StructDef| {
|
|
for f in def.fields.iter() {
|
|
match f.node.kind {
|
|
ast::NamedField(_, p) => check_inherited(f.span, p),
|
|
ast::UnnamedField => {}
|
|
}
|
|
}
|
|
};
|
|
check_inherited(item.span, item.vis);
|
|
match item.node {
|
|
ast::ItemImpl(_, _, _, ref methods) => {
|
|
for m in methods.iter() {
|
|
check_inherited(m.span, m.vis);
|
|
}
|
|
}
|
|
ast::ItemForeignMod(ref fm) => {
|
|
for i in fm.items.iter() {
|
|
check_inherited(i.span, i.vis);
|
|
}
|
|
}
|
|
ast::ItemEnum(ref def, _) => {
|
|
for v in def.variants.iter() {
|
|
check_inherited(v.span, v.node.vis);
|
|
|
|
match v.node.kind {
|
|
ast::StructVariantKind(ref s) => check_struct(s),
|
|
ast::TupleVariantKind(..) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::ItemStruct(ref def, _) => check_struct(def),
|
|
|
|
ast::ItemTrait(_, _, ref methods) => {
|
|
for m in methods.iter() {
|
|
match *m {
|
|
ast::Required(..) => {}
|
|
ast::Provided(ref m) => check_inherited(m.span, m.vis),
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::ItemStatic(..) |
|
|
ast::ItemFn(..) | ast::ItemMod(..) | ast::ItemTy(..) |
|
|
ast::ItemMac(..) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct VisiblePrivateTypesVisitor<'a> {
|
|
tcx: ty::ctxt,
|
|
exported_items: &'a ExportedItems,
|
|
public_items: &'a PublicItems,
|
|
}
|
|
|
|
struct CheckTypeForPrivatenessVisitor<'a, 'b> {
|
|
inner: &'b VisiblePrivateTypesVisitor<'a>,
|
|
/// whether the type refers to private types.
|
|
contains_private: bool,
|
|
/// whether we've recurred at all (i.e. if we're pointing at the
|
|
/// first type on which visit_ty was called).
|
|
at_outer_type: bool,
|
|
// whether that first type is a public path.
|
|
outer_type_is_public_path: bool,
|
|
}
|
|
|
|
impl<'a> VisiblePrivateTypesVisitor<'a> {
|
|
fn path_is_private_type(&self, path_id: ast::NodeId) -> bool {
|
|
let did = match self.tcx.def_map.borrow().get().find_copy(&path_id) {
|
|
// `int` etc. (None doesn't seem to occur.)
|
|
None | Some(ast::DefPrimTy(..)) => return false,
|
|
Some(def) => def_id_of_def(def)
|
|
};
|
|
// A path can only be private if:
|
|
// it's in this crate...
|
|
is_local(did) &&
|
|
// ... it's not exported (obviously) ...
|
|
!self.exported_items.contains(&did.node) &&
|
|
// .. and it corresponds to a type in the AST (this returns None for
|
|
// type parameters)
|
|
self.tcx.map.find(did.node).is_some()
|
|
}
|
|
|
|
fn trait_is_public(&self, trait_id: ast::NodeId) -> bool {
|
|
// FIXME: this would preferably be using `exported_items`, but all
|
|
// traits are exported currently (see `EmbargoVisitor.exported_trait`)
|
|
self.public_items.contains(&trait_id)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'b> Visitor<()> for CheckTypeForPrivatenessVisitor<'a, 'b> {
|
|
fn visit_ty(&mut self, ty: &ast::Ty, _: ()) {
|
|
match ty.node {
|
|
ast::TyPath(_, _, path_id) => {
|
|
if self.inner.path_is_private_type(path_id) {
|
|
self.contains_private = true;
|
|
// found what we're looking for so let's stop
|
|
// working.
|
|
return
|
|
} else if self.at_outer_type {
|
|
self.outer_type_is_public_path = true;
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
self.at_outer_type = false;
|
|
visit::walk_ty(self, ty, ())
|
|
}
|
|
|
|
// don't want to recurse into [, .. expr]
|
|
fn visit_expr(&mut self, _: &ast::Expr, _: ()) {}
|
|
}
|
|
|
|
impl<'a> Visitor<()> for VisiblePrivateTypesVisitor<'a> {
|
|
fn visit_item(&mut self, item: &ast::Item, _: ()) {
|
|
match item.node {
|
|
// contents of a private mod can be reexported, so we need
|
|
// to check internals.
|
|
ast::ItemMod(_) => {}
|
|
|
|
// An `extern {}` doesn't introduce a new privacy
|
|
// namespace (the contents have their own privacies).
|
|
ast::ItemForeignMod(_) => {}
|
|
|
|
ast::ItemTrait(..) if !self.trait_is_public(item.id) => return,
|
|
|
|
// impls need some special handling to try to offer useful
|
|
// error messages without (too many) false positives
|
|
// (i.e. we could just return here to not check them at
|
|
// all, or some worse estimation of whether an impl is
|
|
// publically visible.
|
|
ast::ItemImpl(ref g, ref trait_ref, self_, ref methods) => {
|
|
// `impl [... for] Private` is never visible.
|
|
let self_contains_private;
|
|
// impl [... for] Public<...>, but not `impl [... for]
|
|
// ~[Public]` or `(Public,)` etc.
|
|
let self_is_public_path;
|
|
|
|
// check the properties of the Self type:
|
|
{
|
|
let mut visitor = CheckTypeForPrivatenessVisitor {
|
|
inner: self,
|
|
contains_private: false,
|
|
at_outer_type: true,
|
|
outer_type_is_public_path: false,
|
|
};
|
|
visitor.visit_ty(self_, ());
|
|
self_contains_private = visitor.contains_private;
|
|
self_is_public_path = visitor.outer_type_is_public_path;
|
|
}
|
|
|
|
// miscellanous info about the impl
|
|
|
|
// `true` iff this is `impl Private for ...`.
|
|
let not_private_trait =
|
|
trait_ref.as_ref().map_or(true, // no trait counts as public trait
|
|
|tr| {
|
|
let did = ty::trait_ref_to_def_id(self.tcx, tr);
|
|
|
|
!is_local(did) || self.trait_is_public(did.node)
|
|
});
|
|
|
|
// `true` iff this is a trait impl or at least one method is public.
|
|
//
|
|
// `impl Public { $( fn ...() {} )* }` is not visible.
|
|
//
|
|
// This is required over just using the methods' privacy
|
|
// directly because we might have `impl<T: Foo<Private>> ...`,
|
|
// and we shouldn't warn about the generics if all the methods
|
|
// are private (because `T` won't be visible externally).
|
|
let trait_or_some_public_method =
|
|
trait_ref.is_some() ||
|
|
methods.iter().any(|m| self.exported_items.contains(&m.id));
|
|
|
|
if !self_contains_private &&
|
|
not_private_trait &&
|
|
trait_or_some_public_method {
|
|
|
|
visit::walk_generics(self, g, ());
|
|
|
|
match *trait_ref {
|
|
None => {
|
|
for method in methods.iter() {
|
|
visit::walk_method_helper(self, *method, ())
|
|
}
|
|
}
|
|
Some(ref tr) => {
|
|
// Any private types in a trait impl fall into two
|
|
// categories.
|
|
// 1. mentioned in the trait definition
|
|
// 2. mentioned in the type params/generics
|
|
//
|
|
// Those in 1. can only occur if the trait is in
|
|
// this crate and will've been warned about on the
|
|
// trait definition (there's no need to warn twice
|
|
// so we don't check the methods).
|
|
//
|
|
// Those in 2. are warned via walk_generics and this
|
|
// call here.
|
|
visit::walk_trait_ref_helper(self, tr, ())
|
|
}
|
|
}
|
|
} else if trait_ref.is_none() && self_is_public_path {
|
|
// impl Public<Private> { ... }. Any public static
|
|
// methods will be visible as `Public::foo`.
|
|
let mut found_pub_static = false;
|
|
for method in methods.iter() {
|
|
if method.explicit_self.node == ast::SelfStatic &&
|
|
self.exported_items.contains(&method.id) {
|
|
found_pub_static = true;
|
|
visit::walk_method_helper(self, *method, ());
|
|
}
|
|
}
|
|
if found_pub_static {
|
|
visit::walk_generics(self, g, ())
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// `type ... = ...;` can contain private types, because
|
|
// we're introducing a new name.
|
|
ast::ItemTy(..) => return,
|
|
|
|
// not at all public, so we don't care
|
|
_ if !self.exported_items.contains(&item.id) => return,
|
|
|
|
_ => {}
|
|
}
|
|
|
|
// we've carefully constructed it so that if we're here, then
|
|
// any `visit_ty`'s will be called on things that are in
|
|
// public signatures, i.e. things that we're interested in for
|
|
// this visitor.
|
|
visit::walk_item(self, item, ());
|
|
}
|
|
|
|
fn visit_foreign_item(&mut self, item: &ast::ForeignItem, _: ()) {
|
|
if self.exported_items.contains(&item.id) {
|
|
visit::walk_foreign_item(self, item, ())
|
|
}
|
|
}
|
|
|
|
fn visit_fn(&mut self,
|
|
fk: &visit::FnKind, fd: &ast::FnDecl, b: &ast::Block, s: Span, id: ast::NodeId,
|
|
_: ()) {
|
|
// needs special handling for methods.
|
|
if self.exported_items.contains(&id) {
|
|
visit::walk_fn(self, fk, fd, b, s, id, ());
|
|
}
|
|
}
|
|
|
|
fn visit_ty(&mut self, t: &ast::Ty, _: ()) {
|
|
match t.node {
|
|
ast::TyPath(ref p, _, path_id) => {
|
|
if self.path_is_private_type(path_id) {
|
|
self.tcx.sess.add_lint(lint::VisiblePrivateTypes,
|
|
path_id, p.span,
|
|
~"private type in exported type signature");
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
visit::walk_ty(self, t, ())
|
|
}
|
|
|
|
fn visit_variant(&mut self, v: &ast::Variant, g: &ast::Generics, _: ()) {
|
|
if self.exported_items.contains(&v.node.id) {
|
|
visit::walk_variant(self, v, g, ());
|
|
}
|
|
}
|
|
|
|
fn visit_struct_field(&mut self, s: &ast::StructField, _: ()) {
|
|
match s.node.kind {
|
|
// the only way to get here is by being inside a public
|
|
// struct/enum variant, so the only way to have a private
|
|
// field is with an explicit `priv`.
|
|
ast::NamedField(_, ast::Private) => {}
|
|
|
|
_ => visit::walk_struct_field(self, s, ())
|
|
}
|
|
}
|
|
|
|
|
|
// we don't need to introspect into these at all: an
|
|
// expression/block context can't possibly contain exported
|
|
// things, and neither do view_items. (Making them no-ops stops us
|
|
// from traversing the whole AST without having to be super
|
|
// careful about our `walk_...` calls above.)
|
|
fn visit_view_item(&mut self, _: &ast::ViewItem, _: ()) {}
|
|
fn visit_block(&mut self, _: &ast::Block, _: ()) {}
|
|
fn visit_expr(&mut self, _: &ast::Expr, _: ()) {}
|
|
}
|
|
|
|
pub fn check_crate(tcx: ty::ctxt,
|
|
method_map: &MethodMap,
|
|
exp_map2: &resolve::ExportMap2,
|
|
external_exports: resolve::ExternalExports,
|
|
last_private_map: resolve::LastPrivateMap,
|
|
krate: &ast::Crate) -> (ExportedItems, PublicItems) {
|
|
// Figure out who everyone's parent is
|
|
let mut visitor = ParentVisitor {
|
|
parents: HashMap::new(),
|
|
curparent: ast::DUMMY_NODE_ID,
|
|
};
|
|
visit::walk_crate(&mut visitor, krate, ());
|
|
|
|
// Use the parent map to check the privacy of everything
|
|
let mut visitor = PrivacyVisitor {
|
|
curitem: ast::DUMMY_NODE_ID,
|
|
in_fn: false,
|
|
in_foreign: false,
|
|
tcx: tcx,
|
|
parents: visitor.parents,
|
|
method_map: method_map,
|
|
external_exports: external_exports,
|
|
last_private_map: last_private_map,
|
|
};
|
|
visit::walk_crate(&mut visitor, krate, ());
|
|
|
|
// Sanity check to make sure that all privacy usage and controls are
|
|
// reasonable.
|
|
let mut visitor = SanePrivacyVisitor {
|
|
in_fn: false,
|
|
tcx: tcx,
|
|
};
|
|
visit::walk_crate(&mut visitor, krate, ());
|
|
|
|
tcx.sess.abort_if_errors();
|
|
|
|
// Build up a set of all exported items in the AST. This is a set of all
|
|
// items which are reachable from external crates based on visibility.
|
|
let mut visitor = EmbargoVisitor {
|
|
tcx: tcx,
|
|
exported_items: HashSet::new(),
|
|
public_items: HashSet::new(),
|
|
reexports: HashSet::new(),
|
|
exp_map2: exp_map2,
|
|
prev_exported: true,
|
|
prev_public: true,
|
|
};
|
|
loop {
|
|
let before = visitor.exported_items.len();
|
|
visit::walk_crate(&mut visitor, krate, ());
|
|
if before == visitor.exported_items.len() {
|
|
break
|
|
}
|
|
}
|
|
|
|
let EmbargoVisitor { exported_items, public_items, .. } = visitor;
|
|
|
|
{
|
|
let mut visitor = VisiblePrivateTypesVisitor {
|
|
tcx: tcx,
|
|
exported_items: &exported_items,
|
|
public_items: &public_items
|
|
};
|
|
visit::walk_crate(&mut visitor, krate, ());
|
|
}
|
|
return (exported_items, public_items);
|
|
}
|