rust/src/common.rs
Nicholas Nethercote 92d1850f17 Introduce ConstAllocation.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.

This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.

In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.

The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
2022-03-07 08:25:50 +11:00

444 lines
16 KiB
Rust

use std::convert::TryFrom;
use gccjit::LValue;
use gccjit::{Block, CType, RValue, Type, ToRValue};
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{
BaseTypeMethods,
ConstMethods,
DerivedTypeMethods,
MiscMethods,
StaticMethods,
};
use rustc_middle::mir::Mutability;
use rustc_middle::ty::ScalarInt;
use rustc_middle::ty::layout::{TyAndLayout, LayoutOf};
use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar};
use rustc_span::Symbol;
use rustc_target::abi::{self, HasDataLayout, Pointer, Size};
use crate::consts::const_alloc_to_gcc;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn const_bytes(&self, bytes: &[u8]) -> RValue<'gcc> {
bytes_in_context(self, bytes)
}
fn const_cstr(&self, symbol: Symbol, _null_terminated: bool) -> LValue<'gcc> {
// TODO(antoyo): handle null_terminated.
if let Some(&value) = self.const_cstr_cache.borrow().get(&symbol) {
return value;
}
let global = self.global_string(symbol.as_str());
self.const_cstr_cache.borrow_mut().insert(symbol, global);
global
}
fn global_string(&self, string: &str) -> LValue<'gcc> {
// TODO(antoyo): handle non-null-terminated strings.
let string = self.context.new_string_literal(&*string);
let sym = self.generate_local_symbol_name("str");
let global = self.declare_private_global(&sym, self.val_ty(string));
global.global_set_initializer_rvalue(string);
global
// TODO(antoyo): set linkage.
}
pub fn inttoptr(&self, block: Block<'gcc>, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
let func = block.get_function();
let local = func.new_local(None, value.get_type(), "intLocal");
block.add_assignment(None, local, value);
let value_address = local.get_address(None);
let ptr = self.context.new_cast(None, value_address, dest_ty.make_pointer());
ptr.dereference(None).to_rvalue()
}
pub fn ptrtoint(&self, block: Block<'gcc>, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): when libgccjit allow casting from pointer to int, remove this.
let func = block.get_function();
let local = func.new_local(None, value.get_type(), "ptrLocal");
block.add_assignment(None, local, value);
let ptr_address = local.get_address(None);
let ptr = self.context.new_cast(None, ptr_address, dest_ty.make_pointer());
ptr.dereference(None).to_rvalue()
}
}
pub fn bytes_in_context<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, bytes: &[u8]) -> RValue<'gcc> {
let context = &cx.context;
let byte_type = context.new_type::<u8>();
let typ = context.new_array_type(None, byte_type, bytes.len() as i32);
let elements: Vec<_> =
bytes.iter()
.map(|&byte| context.new_rvalue_from_int(byte_type, byte as i32))
.collect();
context.new_array_constructor(None, typ, &elements)
}
pub fn type_is_pointer<'gcc>(typ: Type<'gcc>) -> bool {
typ.get_pointee().is_some()
}
impl<'gcc, 'tcx> ConstMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn const_null(&self, typ: Type<'gcc>) -> RValue<'gcc> {
if type_is_pointer(typ) {
self.context.new_null(typ)
}
else {
self.const_int(typ, 0)
}
}
fn const_undef(&self, typ: Type<'gcc>) -> RValue<'gcc> {
let local = self.current_func.borrow().expect("func")
.new_local(None, typ, "undefined");
if typ.is_struct().is_some() {
// NOTE: hack to workaround a limitation of the rustc API: see comment on
// CodegenCx.structs_as_pointer
let pointer = local.get_address(None);
self.structs_as_pointer.borrow_mut().insert(pointer);
pointer
}
else {
local.to_rvalue()
}
}
fn const_int(&self, typ: Type<'gcc>, int: i64) -> RValue<'gcc> {
self.context.new_rvalue_from_long(typ, i64::try_from(int).expect("i64::try_from"))
}
fn const_uint(&self, typ: Type<'gcc>, int: u64) -> RValue<'gcc> {
self.context.new_rvalue_from_long(typ, u64::try_from(int).expect("u64::try_from") as i64)
}
fn const_uint_big(&self, typ: Type<'gcc>, num: u128) -> RValue<'gcc> {
if num >> 64 != 0 {
// FIXME(antoyo): use a new function new_rvalue_from_unsigned_long()?
let low = self.context.new_rvalue_from_long(self.u64_type, num as u64 as i64);
let high = self.context.new_rvalue_from_long(typ, (num >> 64) as u64 as i64);
let sixty_four = self.context.new_rvalue_from_long(typ, 64);
(high << sixty_four) | self.context.new_cast(None, low, typ)
}
else if typ.is_i128(self) {
let num = self.context.new_rvalue_from_long(self.u64_type, num as u64 as i64);
self.context.new_cast(None, num, typ)
}
else {
self.context.new_rvalue_from_long(typ, num as u64 as i64)
}
}
fn const_bool(&self, val: bool) -> RValue<'gcc> {
self.const_uint(self.type_i1(), val as u64)
}
fn const_i32(&self, i: i32) -> RValue<'gcc> {
self.const_int(self.type_i32(), i as i64)
}
fn const_u32(&self, i: u32) -> RValue<'gcc> {
self.const_uint(self.type_u32(), i as u64)
}
fn const_u64(&self, i: u64) -> RValue<'gcc> {
self.const_uint(self.type_u64(), i)
}
fn const_usize(&self, i: u64) -> RValue<'gcc> {
let bit_size = self.data_layout().pointer_size.bits();
if bit_size < 64 {
// make sure it doesn't overflow
assert!(i < (1 << bit_size));
}
self.const_uint(self.usize_type, i)
}
fn const_u8(&self, _i: u8) -> RValue<'gcc> {
unimplemented!();
}
fn const_real(&self, _t: Type<'gcc>, _val: f64) -> RValue<'gcc> {
unimplemented!();
}
fn const_str(&self, s: Symbol) -> (RValue<'gcc>, RValue<'gcc>) {
let len = s.as_str().len();
let cs = self.const_ptrcast(self.const_cstr(s, false).get_address(None),
self.type_ptr_to(self.layout_of(self.tcx.types.str_).gcc_type(self, true)),
);
(cs, self.const_usize(len as u64))
}
fn const_struct(&self, values: &[RValue<'gcc>], packed: bool) -> RValue<'gcc> {
let fields: Vec<_> = values.iter()
.map(|value| value.get_type())
.collect();
// TODO(antoyo): cache the type? It's anonymous, so probably not.
let typ = self.type_struct(&fields, packed);
let struct_type = typ.is_struct().expect("struct type");
self.context.new_struct_constructor(None, struct_type.as_type(), None, values)
}
fn const_to_opt_uint(&self, _v: RValue<'gcc>) -> Option<u64> {
// TODO(antoyo)
None
}
fn const_to_opt_u128(&self, _v: RValue<'gcc>, _sign_ext: bool) -> Option<u128> {
// TODO(antoyo)
None
}
fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, ty: Type<'gcc>) -> RValue<'gcc> {
let bitsize = if layout.is_bool() { 1 } else { layout.value.size(self).bits() };
match cv {
Scalar::Int(ScalarInt::ZST) => {
assert_eq!(0, layout.value.size(self).bytes());
self.const_undef(self.type_ix(0))
}
Scalar::Int(int) => {
let data = int.assert_bits(layout.value.size(self));
// FIXME(antoyo): there's some issues with using the u128 code that follows, so hard-code
// the paths for floating-point values.
if ty == self.float_type {
return self.context.new_rvalue_from_double(ty, f32::from_bits(data as u32) as f64);
}
else if ty == self.double_type {
return self.context.new_rvalue_from_double(ty, f64::from_bits(data as u64));
}
let value = self.const_uint_big(self.type_ix(bitsize), data);
if layout.value == Pointer {
self.inttoptr(self.current_block.borrow().expect("block"), value, ty)
} else {
self.const_bitcast(value, ty)
}
}
Scalar::Ptr(ptr, _size) => {
let (alloc_id, offset) = ptr.into_parts();
let base_addr =
match self.tcx.global_alloc(alloc_id) {
GlobalAlloc::Memory(alloc) => {
let init = const_alloc_to_gcc(self, alloc);
let alloc = alloc.inner();
let value =
match alloc.mutability {
Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None),
_ => self.static_addr_of(init, alloc.align, None),
};
if !self.sess().fewer_names() {
// TODO(antoyo): set value name.
}
value
},
GlobalAlloc::Function(fn_instance) => {
self.get_fn_addr(fn_instance)
},
GlobalAlloc::Static(def_id) => {
assert!(self.tcx.is_static(def_id));
self.get_static(def_id).get_address(None)
},
};
let ptr_type = base_addr.get_type();
let base_addr = self.const_bitcast(base_addr, self.usize_type);
let offset = self.context.new_rvalue_from_long(self.usize_type, offset.bytes() as i64);
let ptr = self.const_bitcast(base_addr + offset, ptr_type);
if layout.value != Pointer {
self.const_bitcast(ptr.dereference(None).to_rvalue(), ty)
}
else {
self.const_bitcast(ptr, ty)
}
}
}
}
fn const_data_from_alloc(&self, alloc: ConstAllocation<'tcx>) -> Self::Value {
const_alloc_to_gcc(self, alloc)
}
fn from_const_alloc(&self, layout: TyAndLayout<'tcx>, alloc: ConstAllocation<'tcx>, offset: Size) -> PlaceRef<'tcx, RValue<'gcc>> {
assert_eq!(alloc.inner().align, layout.align.abi);
let ty = self.type_ptr_to(layout.gcc_type(self, true));
let value =
if layout.size == Size::ZERO {
let value = self.const_usize(alloc.inner().align.bytes());
self.context.new_cast(None, value, ty)
}
else {
let init = const_alloc_to_gcc(self, alloc);
let base_addr = self.static_addr_of(init, alloc.inner().align, None);
let array = self.const_bitcast(base_addr, self.type_i8p());
let value = self.context.new_array_access(None, array, self.const_usize(offset.bytes())).get_address(None);
self.const_bitcast(value, ty)
};
PlaceRef::new_sized(value, layout)
}
fn const_ptrcast(&self, val: RValue<'gcc>, ty: Type<'gcc>) -> RValue<'gcc> {
self.context.new_cast(None, val, ty)
}
}
pub trait SignType<'gcc, 'tcx> {
fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
fn to_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
}
impl<'gcc, 'tcx> SignType<'gcc, 'tcx> for Type<'gcc> {
fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_i8(cx) || self.is_i16(cx) || self.is_i32(cx) || self.is_i64(cx) || self.is_i128(cx)
}
fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_u8(cx) || self.is_u16(cx) || self.is_u32(cx) || self.is_u64(cx) || self.is_u128(cx)
}
fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
if self.is_u8(cx) {
cx.i8_type
}
else if self.is_u16(cx) {
cx.i16_type
}
else if self.is_u32(cx) {
cx.i32_type
}
else if self.is_u64(cx) {
cx.i64_type
}
else if self.is_u128(cx) {
cx.i128_type
}
else {
self.clone()
}
}
fn to_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
if self.is_i8(cx) {
cx.u8_type
}
else if self.is_i16(cx) {
cx.u16_type
}
else if self.is_i32(cx) {
cx.u32_type
}
else if self.is_i64(cx) {
cx.u64_type
}
else if self.is_i128(cx) {
cx.u128_type
}
else {
self.clone()
}
}
}
pub trait TypeReflection<'gcc, 'tcx> {
fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_f32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_f64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
}
impl<'gcc, 'tcx> TypeReflection<'gcc, 'tcx> for Type<'gcc> {
fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u8_type
}
fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u16_type
}
fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.uint_type
}
fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.ulong_type
}
fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.ulonglong_type
}
fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i8_type
}
fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u8_type
}
fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i16_type
}
fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u16_type
}
fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i32_type
}
fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u32_type
}
fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i64_type
}
fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u64_type
}
fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.context.new_c_type(CType::Int128t)
}
fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.context.new_c_type(CType::UInt128t)
}
fn is_f32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.context.new_type::<f32>()
}
fn is_f64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.context.new_type::<f64>()
}
}