rust/src/comp/middle/ty.rs
2011-03-22 08:04:38 -07:00

1670 lines
56 KiB
Rust

import std._str;
import std._uint;
import std._vec;
import std.map;
import std.map.hashmap;
import std.option;
import std.option.none;
import std.option.some;
import driver.session;
import front.ast;
import front.ast.mutability;
import util.common;
import util.common.new_def_hash;
import util.common.span;
// Data types
type arg = rec(ast.mode mode, @t ty);
type field = rec(ast.ident ident, mt mt);
type method = rec(ast.proto proto,
ast.ident ident,
vec[arg] inputs,
@t output);
type mt = rec(@t ty, ast.mutability mut);
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in front/ast.rs as well.
type t = rec(sty struct, option.t[str] cname);
tag sty {
ty_nil;
ty_bool;
ty_int;
ty_float;
ty_uint;
ty_machine(util.common.ty_mach);
ty_char;
ty_str;
ty_tag(ast.def_id, vec[@t]);
ty_box(mt);
ty_vec(mt);
ty_port(@t);
ty_chan(@t);
ty_tup(vec[mt]);
ty_rec(vec[field]);
ty_fn(ast.proto, vec[arg], @t); // TODO: effect
ty_native_fn(ast.native_abi, vec[arg], @t); // TODO: effect
ty_obj(vec[method]);
ty_var(int); // ephemeral type var
ty_local(ast.def_id); // type of a local var
ty_param(ast.def_id); // fn/tag type param
ty_type;
ty_native;
// TODO: ty_fn_arg(@t), for a possibly-aliased function argument
}
// Data structures used in type unification
type unify_handler = obj {
fn resolve_local(ast.def_id id) -> @t;
fn record_local(ast.def_id id, @t ty);
fn unify_expected_param(ast.def_id id, @t expected, @t actual)
-> unify_result;
fn unify_actual_param(ast.def_id id, @t expected, @t actual)
-> unify_result;
};
tag type_err {
terr_mismatch;
terr_box_mutability;
terr_vec_mutability;
terr_tuple_size(uint, uint);
terr_tuple_mutability;
terr_record_size(uint, uint);
terr_record_mutability;
terr_record_fields(ast.ident,ast.ident);
terr_meth_count;
terr_obj_meths(ast.ident,ast.ident);
terr_arg_count;
}
tag unify_result {
ures_ok(@ty.t);
ures_err(type_err, @ty.t, @ty.t);
}
// Stringification
fn path_to_str(&ast.path pth) -> str {
auto result = _str.connect(pth.node.idents, ".");
if (_vec.len[@ast.ty](pth.node.types) > 0u) {
auto f = pretty.pprust.ty_to_str;
result += "[";
result += _str.connect(_vec.map[@ast.ty,str](f, pth.node.types), ",");
result += "]";
}
ret result;
}
fn ty_to_str(&@t typ) -> str {
fn fn_input_to_str(&rec(ast.mode mode, @t ty) input) -> str {
auto s;
if (mode_is_alias(input.mode)) {
s = "&";
} else {
s = "";
}
ret s + ty_to_str(input.ty);
}
fn fn_to_str(ast.proto proto,
option.t[ast.ident] ident,
vec[arg] inputs, @t output) -> str {
auto f = fn_input_to_str;
auto s = "fn";
if (proto == ast.proto_iter) {
s = "iter";
}
alt (ident) {
case (some[ast.ident](?i)) {
s += " ";
s += i;
}
case (_) { }
}
s += "(";
s += _str.connect(_vec.map[arg,str](f, inputs), ", ");
s += ")";
if (output.struct != ty_nil) {
s += " -> " + ty_to_str(output);
}
ret s;
}
fn method_to_str(&method m) -> str {
ret fn_to_str(m.proto, some[ast.ident](m.ident),
m.inputs, m.output) + ";";
}
fn field_to_str(&field f) -> str {
ret mt_to_str(f.mt) + " " + f.ident;
}
fn mt_to_str(&mt m) -> str {
auto mstr;
alt (m.mut) {
case (ast.mut) { mstr = "mutable "; }
case (ast.imm) { mstr = ""; }
case (ast.maybe_mut) { mstr = "mutable? "; }
}
ret mstr + ty_to_str(m.ty);
}
auto s = "";
alt (typ.struct) {
case (ty_native) { s += "native"; }
case (ty_nil) { s += "()"; }
case (ty_bool) { s += "bool"; }
case (ty_int) { s += "int"; }
case (ty_float) { s += "float"; }
case (ty_uint) { s += "uint"; }
case (ty_machine(?tm)) { s += common.ty_mach_to_str(tm); }
case (ty_char) { s += "char"; }
case (ty_str) { s += "str"; }
case (ty_box(?tm)) { s += "@" + mt_to_str(tm); }
case (ty_vec(?tm)) { s += "vec[" + mt_to_str(tm) + "]"; }
case (ty_port(?t)) { s += "port[" + ty_to_str(t) + "]"; }
case (ty_chan(?t)) { s += "chan[" + ty_to_str(t) + "]"; }
case (ty_type) { s += "type"; }
case (ty_tup(?elems)) {
auto f = mt_to_str;
auto strs = _vec.map[mt,str](f, elems);
s += "tup(" + _str.connect(strs, ",") + ")";
}
case (ty_rec(?elems)) {
auto f = field_to_str;
auto strs = _vec.map[field,str](f, elems);
s += "rec(" + _str.connect(strs, ",") + ")";
}
case (ty_tag(?id, ?tps)) {
// The user should never see this if the cname is set properly!
s += "<tag#" + util.common.istr(id._0) + ":" +
util.common.istr(id._1) + ">";
if (_vec.len[@t](tps) > 0u) {
auto f = ty_to_str;
auto strs = _vec.map[@t,str](f, tps);
s += "[" + _str.connect(strs, ",") + "]";
}
}
case (ty_fn(?proto, ?inputs, ?output)) {
s += fn_to_str(proto, none[ast.ident], inputs, output);
}
case (ty_native_fn(_, ?inputs, ?output)) {
s += fn_to_str(ast.proto_fn, none[ast.ident], inputs, output);
}
case (ty_obj(?meths)) {
auto f = method_to_str;
auto m = _vec.map[method,str](f, meths);
s += "obj {\n\t" + _str.connect(m, "\n\t") + "\n}";
}
case (ty_var(?v)) {
s += "<T" + util.common.istr(v) + ">";
}
case (ty_local(?id)) {
s += "<L" + util.common.istr(id._0) + ":" +
util.common.istr(id._1) + ">";
}
case (ty_param(?id)) {
s += "<P" + util.common.istr(id._0) + ":" +
util.common.istr(id._1) + ">";
}
}
ret s;
}
// Type folds
type ty_fold = state obj {
fn fold_simple_ty(@t ty) -> @t;
};
fn fold_ty(ty_fold fld, @t ty) -> @t {
fn rewrap(@t orig, &sty new) -> @t {
ret @rec(struct=new, cname=orig.cname);
}
alt (ty.struct) {
case (ty_nil) { ret fld.fold_simple_ty(ty); }
case (ty_bool) { ret fld.fold_simple_ty(ty); }
case (ty_int) { ret fld.fold_simple_ty(ty); }
case (ty_uint) { ret fld.fold_simple_ty(ty); }
case (ty_float) { ret fld.fold_simple_ty(ty); }
case (ty_machine(_)) { ret fld.fold_simple_ty(ty); }
case (ty_char) { ret fld.fold_simple_ty(ty); }
case (ty_str) { ret fld.fold_simple_ty(ty); }
case (ty_type) { ret fld.fold_simple_ty(ty); }
case (ty_native) { ret fld.fold_simple_ty(ty); }
case (ty_box(?tm)) {
ret rewrap(ty, ty_box(rec(ty=fold_ty(fld, tm.ty), mut=tm.mut)));
}
case (ty_vec(?tm)) {
ret rewrap(ty, ty_vec(rec(ty=fold_ty(fld, tm.ty), mut=tm.mut)));
}
case (ty_port(?subty)) {
ret rewrap(ty, ty_port(fold_ty(fld, subty)));
}
case (ty_chan(?subty)) {
ret rewrap(ty, ty_chan(fold_ty(fld, subty)));
}
case (ty_tag(?tid, ?subtys)) {
let vec[@t] new_subtys = vec();
for (@t subty in subtys) {
new_subtys += vec(fold_ty(fld, subty));
}
ret rewrap(ty, ty_tag(tid, new_subtys));
}
case (ty_tup(?mts)) {
let vec[mt] new_mts = vec();
for (mt tm in mts) {
auto new_subty = fold_ty(fld, tm.ty);
new_mts += vec(rec(ty=new_subty, mut=tm.mut));
}
ret rewrap(ty, ty_tup(new_mts));
}
case (ty_rec(?fields)) {
let vec[field] new_fields = vec();
for (field fl in fields) {
auto new_ty = fold_ty(fld, fl.mt.ty);
auto new_mt = rec(ty=new_ty, mut=fl.mt.mut);
new_fields += vec(rec(ident=fl.ident, mt=new_mt));
}
ret rewrap(ty, ty_rec(new_fields));
}
case (ty_fn(?proto, ?args, ?ret_ty)) {
let vec[arg] new_args = vec();
for (arg a in args) {
auto new_ty = fold_ty(fld, a.ty);
new_args += vec(rec(mode=a.mode, ty=new_ty));
}
ret rewrap(ty, ty_fn(proto, new_args, fold_ty(fld, ret_ty)));
}
case (ty_native_fn(?abi, ?args, ?ret_ty)) {
let vec[arg] new_args = vec();
for (arg a in args) {
auto new_ty = fold_ty(fld, a.ty);
new_args += vec(rec(mode=a.mode, ty=new_ty));
}
ret rewrap(ty, ty_native_fn(abi, new_args, fold_ty(fld, ret_ty)));
}
case (ty_obj(?methods)) {
let vec[method] new_methods = vec();
for (method m in methods) {
let vec[arg] new_args = vec();
for (arg a in m.inputs) {
new_args += vec(rec(mode=a.mode, ty=fold_ty(fld, a.ty)));
}
new_methods += vec(rec(proto=m.proto, ident=m.ident,
inputs=new_args,
output=fold_ty(fld, m.output)));
}
ret rewrap(ty, ty_obj(new_methods));
}
case (ty_var(_)) { ret fld.fold_simple_ty(ty); }
case (ty_local(_)) { ret fld.fold_simple_ty(ty); }
case (ty_param(_)) { ret fld.fold_simple_ty(ty); }
}
fail;
}
// Type utilities
// FIXME: remove me when == works on these tags.
fn mode_is_alias(ast.mode m) -> bool {
alt (m) {
case (ast.val) { ret false; }
case (ast.alias) { ret true; }
}
fail;
}
fn type_is_nil(@t ty) -> bool {
alt (ty.struct) {
case (ty_nil) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_structural(@t ty) -> bool {
alt (ty.struct) {
case (ty_tup(_)) { ret true; }
case (ty_rec(_)) { ret true; }
case (ty_tag(_,_)) { ret true; }
case (ty_fn(_,_,_)) { ret true; }
case (ty_obj(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_sequence(@t ty) -> bool {
alt (ty.struct) {
case (ty_str) { ret true; }
case (ty_vec(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn sequence_element_type(@t ty) -> @t {
alt (ty.struct) {
case (ty_str) { ret plain_ty(ty_machine(common.ty_u8)); }
case (ty_vec(?mt)) { ret mt.ty; }
}
fail;
}
fn type_is_tup_like(@t ty) -> bool {
alt (ty.struct) {
case (ty_box(_)) { ret true; }
case (ty_tup(_)) { ret true; }
case (ty_rec(_)) { ret true; }
case (ty_tag(_,_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn get_element_type(@t ty, uint i) -> @t {
check (type_is_tup_like(ty));
alt (ty.struct) {
case (ty_tup(?mts)) {
ret mts.(i).ty;
}
case (ty_rec(?flds)) {
ret flds.(i).mt.ty;
}
}
fail;
}
fn type_is_box(@t ty) -> bool {
alt (ty.struct) {
case (ty_box(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_boxed(@t ty) -> bool {
alt (ty.struct) {
case (ty_str) { ret true; }
case (ty_vec(_)) { ret true; }
case (ty_box(_)) { ret true; }
case (ty_port(_)) { ret true; }
case (ty_chan(_)) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_scalar(@t ty) -> bool {
alt (ty.struct) {
case (ty_nil) { ret true; }
case (ty_bool) { ret true; }
case (ty_int) { ret true; }
case (ty_float) { ret true; }
case (ty_uint) { ret true; }
case (ty_machine(_)) { ret true; }
case (ty_char) { ret true; }
case (ty_type) { ret true; }
case (ty_native) { ret true; }
case (_) { ret false; }
}
fail;
}
// FIXME: should we just return true for native types in
// type_is_scalar?
fn type_is_native(@t ty) -> bool {
alt (ty.struct) {
case (ty_native) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_has_dynamic_size(@t ty) -> bool {
alt (ty.struct) {
case (ty_tup(?mts)) {
auto i = 0u;
while (i < _vec.len[mt](mts)) {
if (type_has_dynamic_size(mts.(i).ty)) { ret true; }
i += 1u;
}
}
case (ty_rec(?fields)) {
auto i = 0u;
while (i < _vec.len[field](fields)) {
if (type_has_dynamic_size(fields.(i).mt.ty)) { ret true; }
i += 1u;
}
}
case (ty_tag(_, ?subtys)) {
auto i = 0u;
while (i < _vec.len[@t](subtys)) {
if (type_has_dynamic_size(subtys.(i))) { ret true; }
i += 1u;
}
}
case (ty_param(_)) { ret true; }
case (_) { /* fall through */ }
}
ret false;
}
fn type_is_integral(@t ty) -> bool {
alt (ty.struct) {
case (ty_int) { ret true; }
case (ty_uint) { ret true; }
case (ty_machine(?m)) {
alt (m) {
case (common.ty_i8) { ret true; }
case (common.ty_i16) { ret true; }
case (common.ty_i32) { ret true; }
case (common.ty_i64) { ret true; }
case (common.ty_u8) { ret true; }
case (common.ty_u16) { ret true; }
case (common.ty_u32) { ret true; }
case (common.ty_u64) { ret true; }
case (_) { ret false; }
}
}
case (ty_char) { ret true; }
case (_) { ret false; }
}
fail;
}
fn type_is_fp(@t ty) -> bool {
alt (ty.struct) {
case (ty_machine(?tm)) {
alt (tm) {
case (common.ty_f32) { ret true; }
case (common.ty_f64) { ret true; }
case (_) { ret false; }
}
}
case (ty_float) {
ret true;
}
case (_) { ret false; }
}
fail;
}
fn type_is_signed(@t ty) -> bool {
alt (ty.struct) {
case (ty_int) { ret true; }
case (ty_machine(?tm)) {
alt (tm) {
case (common.ty_i8) { ret true; }
case (common.ty_i16) { ret true; }
case (common.ty_i32) { ret true; }
case (common.ty_i64) { ret true; }
case (_) { ret false; }
}
}
case (_) { ret false; }
}
fail;
}
fn type_param(@t ty) -> option.t[ast.def_id] {
alt (ty.struct) {
case (ty_param(?id)) { ret some[ast.def_id](id); }
case (_) { /* fall through */ }
}
ret none[ast.def_id];
}
fn plain_ty(&sty st) -> @t {
ret @rec(struct=st, cname=none[str]);
}
fn plain_box_ty(@t subty) -> @t {
ret plain_ty(ty_box(rec(ty=subty, mut=ast.imm)));
}
fn plain_tup_ty(vec[@t] elem_tys) -> @t {
let vec[ty.mt] mts = vec();
for (@ty.t typ in elem_tys) {
mts += vec(rec(ty=typ, mut=ast.imm));
}
ret plain_ty(ty_tup(mts));
}
fn hash_ty(&@t ty) -> uint {
ret _str.hash(ty_to_str(ty));
}
fn eq_ty(&@t a, &@t b) -> bool {
// FIXME: this is gross, but I think it's safe, and I don't think writing
// a giant function to handle all the cases is necessary when structural
// equality will someday save the day.
ret _str.eq(ty_to_str(a), ty_to_str(b));
}
fn ann_to_type(&ast.ann ann) -> @t {
alt (ann) {
case (ast.ann_none) {
log "ann_to_type() called on node with no type";
fail;
}
case (ast.ann_type(?ty, _)) {
ret ty;
}
}
}
fn count_ty_params(@t ty) -> uint {
state obj ty_param_counter(@mutable vec[ast.def_id] param_ids) {
fn fold_simple_ty(@t ty) -> @t {
alt (ty.struct) {
case (ty_param(?param_id)) {
for (ast.def_id other_param_id in *param_ids) {
if (param_id._0 == other_param_id._0 &&
param_id._1 == other_param_id._1) {
ret ty;
}
}
*param_ids += vec(param_id);
}
case (_) { /* fall through */ }
}
ret ty;
}
}
let vec[ast.def_id] param_ids_inner = vec();
let @mutable vec[ast.def_id] param_ids = @mutable param_ids_inner;
fold_ty(ty_param_counter(param_ids), ty);
ret _vec.len[ast.def_id](*param_ids);
}
// Type accessors for substructures of types
fn ty_fn_args(@t fty) -> vec[arg] {
alt (fty.struct) {
case (ty.ty_fn(_, ?a, _)) { ret a; }
case (ty.ty_native_fn(_, ?a, _)) { ret a; }
}
fail;
}
fn ty_fn_proto(@t fty) -> ast.proto {
alt (fty.struct) {
case (ty.ty_fn(?p, _, _)) { ret p; }
}
fail;
}
fn ty_fn_abi(@t fty) -> ast.native_abi {
alt (fty.struct) {
case (ty.ty_native_fn(?a, _, _)) { ret a; }
}
fail;
}
fn ty_fn_ret(@t fty) -> @t {
alt (fty.struct) {
case (ty.ty_fn(_, _, ?r)) { ret r; }
case (ty.ty_native_fn(_, _, ?r)) { ret r; }
}
fail;
}
fn is_fn_ty(@t fty) -> bool {
alt (fty.struct) {
case (ty.ty_fn(_, _, _)) { ret true; }
case (ty.ty_native_fn(_, _, _)) { ret true; }
case (_) { ret false; }
}
ret false;
}
// Type accessors for AST nodes
// Given an item, returns the associated type as well as a list of the IDs of
// its type parameters.
type ty_params_and_ty = tup(vec[ast.def_id], @t);
fn native_item_ty(@ast.native_item it) -> ty_params_and_ty {
auto ty_params;
auto result_ty;
alt (it.node) {
case (ast.native_item_fn(_, _, _, ?tps, _, ?ann)) {
ty_params = tps;
result_ty = ann_to_type(ann);
}
}
let vec[ast.def_id] ty_param_ids = vec();
for (ast.ty_param tp in ty_params) {
ty_param_ids += vec(tp.id);
}
ret tup(ty_param_ids, result_ty);
}
fn item_ty(@ast.item it) -> ty_params_and_ty {
let vec[ast.ty_param] ty_params;
auto result_ty;
alt (it.node) {
case (ast.item_const(_, _, _, _, ?ann)) {
ty_params = vec();
result_ty = ann_to_type(ann);
}
case (ast.item_fn(_, _, ?tps, _, ?ann)) {
ty_params = tps;
result_ty = ann_to_type(ann);
}
case (ast.item_mod(_, _, _)) {
fail; // modules are typeless
}
case (ast.item_ty(_, _, ?tps, _, ?ann)) {
ty_params = tps;
result_ty = ann_to_type(ann);
}
case (ast.item_tag(_, _, ?tps, ?did)) {
// Create a new generic polytype.
ty_params = tps;
let vec[@t] subtys = vec();
for (ast.ty_param tp in tps) {
subtys += vec(plain_ty(ty_param(tp.id)));
}
result_ty = plain_ty(ty_tag(did, subtys));
}
case (ast.item_obj(_, _, ?tps, _, ?ann)) {
ty_params = tps;
result_ty = ann_to_type(ann);
}
}
let vec[ast.def_id] ty_param_ids = vec();
for (ast.ty_param tp in ty_params) {
ty_param_ids += vec(tp.id);
}
ret tup(ty_param_ids, result_ty);
}
fn stmt_ty(@ast.stmt s) -> @t {
alt (s.node) {
case (ast.stmt_expr(?e)) {
ret expr_ty(e);
}
case (_) {
ret plain_ty(ty_nil);
}
}
}
fn block_ty(&ast.block b) -> @t {
alt (b.node.expr) {
case (some[@ast.expr](?e)) { ret expr_ty(e); }
case (none[@ast.expr]) { ret plain_ty(ty_nil); }
}
}
fn pat_ty(@ast.pat pat) -> @t {
alt (pat.node) {
case (ast.pat_wild(?ann)) { ret ann_to_type(ann); }
case (ast.pat_lit(_, ?ann)) { ret ann_to_type(ann); }
case (ast.pat_bind(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.pat_tag(_, _, _, ?ann)) { ret ann_to_type(ann); }
}
fail; // not reached
}
fn expr_ty(@ast.expr expr) -> @t {
alt (expr.node) {
case (ast.expr_vec(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_tup(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_rec(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_bind(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_call(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_binary(_, _, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_unary(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_lit(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_cast(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_if(_, _, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_for(_, _, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_for_each(_, _, _, ?ann))
{ ret ann_to_type(ann); }
case (ast.expr_while(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_do_while(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_alt(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_block(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_assign(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_assign_op(_, _, _, ?ann))
{ ret ann_to_type(ann); }
case (ast.expr_field(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_index(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_path(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_ext(_, _, _, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_port(?ann)) { ret ann_to_type(ann); }
case (ast.expr_chan(_, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_send(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_recv(_, _, ?ann)) { ret ann_to_type(ann); }
case (ast.expr_fail) { ret plain_ty(ty_nil); }
case (ast.expr_log(_)) { ret plain_ty(ty_nil); }
case (ast.expr_check_expr(_)) { ret plain_ty(ty_nil); }
case (ast.expr_ret(_)) { ret plain_ty(ty_nil); }
case (ast.expr_put(_)) { ret plain_ty(ty_nil); }
case (ast.expr_be(_)) { ret plain_ty(ty_nil); }
}
fail;
}
// Expression utilities
fn field_num(session.session sess, &span sp, &ast.ident id) -> uint {
let uint accum = 0u;
let uint i = 0u;
for (u8 c in id) {
if (i == 0u) {
if (c != ('_' as u8)) {
sess.span_err(sp,
"bad numeric field on tuple: "
+ "missing leading underscore");
}
} else {
if (('0' as u8) <= c && c <= ('9' as u8)) {
accum *= 10u;
accum += (c as uint) - ('0' as uint);
} else {
auto s = "";
s += _str.unsafe_from_byte(c);
sess.span_err(sp,
"bad numeric field on tuple: "
+ " non-digit character: "
+ s);
}
}
i += 1u;
}
ret accum;
}
fn field_idx(session.session sess, &span sp,
&ast.ident id, vec[field] fields) -> uint {
let uint i = 0u;
for (field f in fields) {
if (_str.eq(f.ident, id)) {
ret i;
}
i += 1u;
}
sess.span_err(sp, "unknown field '" + id + "' of record");
fail;
}
fn method_idx(session.session sess, &span sp,
&ast.ident id, vec[method] meths) -> uint {
let uint i = 0u;
for (method m in meths) {
if (_str.eq(m.ident, id)) {
ret i;
}
i += 1u;
}
sess.span_err(sp, "unknown method '" + id + "' of obj");
fail;
}
fn sort_methods(vec[method] meths) -> vec[method] {
fn method_lteq(&method a, &method b) -> bool {
ret _str.lteq(a.ident, b.ident);
}
ret std.sort.merge_sort[method](bind method_lteq(_,_), meths);
}
fn is_lval(@ast.expr expr) -> bool {
alt (expr.node) {
case (ast.expr_field(_,_,_)) { ret true; }
case (ast.expr_index(_,_,_)) { ret true; }
case (ast.expr_path(_,_,_)) { ret true; }
case (_) { ret false; }
}
}
// Type unification via Robinson's algorithm (Robinson 1965). Implemented as
// described in Hoder and Voronkov:
//
// http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf
fn unify(@ty.t expected, @ty.t actual, &unify_handler handler)
-> unify_result {
// Wraps the given type in an appropriate cname.
//
// TODO: This doesn't do anything yet. We should carry the cname up from
// the expected and/or actual types when unification results in a type
// identical to one or both of the two. The precise algorithm for this is
// something we'll probably need to develop over time.
// Simple structural type comparison.
fn struct_cmp(@ty.t expected, @ty.t actual) -> unify_result {
if (expected.struct == actual.struct) {
ret ures_ok(expected);
}
ret ures_err(terr_mismatch, expected, actual);
}
// Unifies two mutability flags.
fn unify_mut(ast.mutability expected, ast.mutability actual)
-> option.t[ast.mutability] {
if (expected == actual) {
ret some[ast.mutability](expected);
}
if (expected == ast.maybe_mut) {
ret some[ast.mutability](actual);
}
if (actual == ast.maybe_mut) {
ret some[ast.mutability](expected);
}
ret none[ast.mutability];
}
tag fn_common_res {
fn_common_res_err(unify_result);
fn_common_res_ok(vec[arg], @t);
}
fn unify_fn_common(@hashmap[int,@ty.t] bindings,
@ty.t expected,
@ty.t actual,
&unify_handler handler,
vec[arg] expected_inputs, @t expected_output,
vec[arg] actual_inputs, @t actual_output)
-> fn_common_res {
auto expected_len = _vec.len[arg](expected_inputs);
auto actual_len = _vec.len[arg](actual_inputs);
if (expected_len != actual_len) {
ret fn_common_res_err(ures_err(terr_arg_count,
expected, actual));
}
// TODO: as above, we should have an iter2 iterator.
let vec[arg] result_ins = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_input = expected_inputs.(i);
auto actual_input = actual_inputs.(i);
// This should be safe, I think?
auto result_mode;
if (mode_is_alias(expected_input.mode) ||
mode_is_alias(actual_input.mode)) {
result_mode = ast.alias;
} else {
result_mode = ast.val;
}
auto result = unify_step(bindings,
actual_input.ty,
expected_input.ty,
handler);
alt (result) {
case (ures_ok(?rty)) {
result_ins += vec(rec(mode=result_mode,
ty=rty));
}
case (_) {
ret fn_common_res_err(result);
}
}
i += 1u;
}
// Check the output.
auto result = unify_step(bindings,
expected_output,
actual_output,
handler);
alt (result) {
case (ures_ok(?rty)) {
ret fn_common_res_ok(result_ins, rty);
}
case (_) {
ret fn_common_res_err(result);
}
}
}
fn unify_fn(@hashmap[int,@ty.t] bindings,
ast.proto e_proto,
ast.proto a_proto,
@ty.t expected,
@ty.t actual,
&unify_handler handler,
vec[arg] expected_inputs, @t expected_output,
vec[arg] actual_inputs, @t actual_output)
-> unify_result {
if (e_proto != a_proto) {
ret ures_err(terr_mismatch, expected, actual);
}
auto t = unify_fn_common(bindings, expected, actual,
handler, expected_inputs, expected_output,
actual_inputs, actual_output);
alt (t) {
case (fn_common_res_err(?r)) {
ret r;
}
case (fn_common_res_ok(?result_ins, ?result_out)) {
auto t2 = plain_ty(ty.ty_fn(e_proto, result_ins, result_out));
ret ures_ok(t2);
}
}
}
fn unify_native_fn(@hashmap[int,@ty.t] bindings,
ast.native_abi e_abi,
ast.native_abi a_abi,
@ty.t expected,
@ty.t actual,
&unify_handler handler,
vec[arg] expected_inputs, @t expected_output,
vec[arg] actual_inputs, @t actual_output)
-> unify_result {
if (e_abi != a_abi) {
ret ures_err(terr_mismatch, expected, actual);
}
auto t = unify_fn_common(bindings, expected, actual,
handler, expected_inputs, expected_output,
actual_inputs, actual_output);
alt (t) {
case (fn_common_res_err(?r)) {
ret r;
}
case (fn_common_res_ok(?result_ins, ?result_out)) {
auto t2 = plain_ty(ty.ty_native_fn(e_abi, result_ins,
result_out));
ret ures_ok(t2);
}
}
}
fn unify_obj(@hashmap[int,@ty.t] bindings,
@ty.t expected,
@ty.t actual,
&unify_handler handler,
vec[method] expected_meths,
vec[method] actual_meths) -> unify_result {
let vec[method] result_meths = vec();
let uint i = 0u;
let uint expected_len = _vec.len[method](expected_meths);
let uint actual_len = _vec.len[method](actual_meths);
if (expected_len != actual_len) {
ret ures_err(terr_meth_count, expected, actual);
}
while (i < expected_len) {
auto e_meth = expected_meths.(i);
auto a_meth = actual_meths.(i);
if (! _str.eq(e_meth.ident, a_meth.ident)) {
ret ures_err(terr_obj_meths(e_meth.ident, a_meth.ident),
expected, actual);
}
auto r = unify_fn(bindings,
e_meth.proto, a_meth.proto,
expected, actual, handler,
e_meth.inputs, e_meth.output,
a_meth.inputs, a_meth.output);
alt (r) {
case (ures_ok(?tfn)) {
alt (tfn.struct) {
case (ty_fn(?proto, ?ins, ?out)) {
result_meths += vec(rec(inputs = ins,
output = out
with e_meth));
}
}
}
case (_) {
ret r;
}
}
i += 1u;
}
auto t = plain_ty(ty_obj(result_meths));
ret ures_ok(t);
}
fn resolve(@hashmap[int,@t] bindings, @t typ) -> @t {
alt (typ.struct) {
case (ty_var(?id)) {
alt (bindings.find(id)) {
case (some[@t](?typ2)) {
ret resolve(bindings, typ2);
}
case (none[@t]) {
// fall through
}
}
}
case (_) {
// fall through
}
}
ret typ;
}
fn unify_step(@hashmap[int,@ty.t] bindings, @ty.t in_expected,
@ty.t in_actual, &unify_handler handler) -> unify_result {
// Resolve any bindings.
auto expected = resolve(bindings, in_expected);
auto actual = resolve(bindings, in_actual);
// TODO: rewrite this using tuple pattern matching when available, to
// avoid all this rightward drift and spikiness.
// TODO: occurs check, to make sure we don't loop forever when
// unifying e.g. 'a and option['a]
alt (actual.struct) {
// If the RHS is a variable type, then just do the appropriate
// binding.
case (ty.ty_var(?actual_id)) {
bindings.insert(actual_id, expected);
ret ures_ok(expected);
}
case (ty.ty_local(?actual_id)) {
auto actual_ty = handler.resolve_local(actual_id);
auto result = unify_step(bindings,
expected,
actual_ty,
handler);
alt (result) {
case (ures_ok(?result_ty)) {
handler.record_local(actual_id, result_ty);
}
case (_) { /* empty */ }
}
ret result;
}
case (ty.ty_param(?actual_id)) {
alt (expected.struct) {
// These two unify via logic lower down. Fall through.
case (ty.ty_local(_)) { }
case (ty.ty_var(_)) { }
// More-concrete types can unify against params here.
case (_) {
ret handler.unify_actual_param(actual_id,
expected,
actual);
}
}
}
case (_) { /* empty */ }
}
alt (expected.struct) {
case (ty.ty_nil) { ret struct_cmp(expected, actual); }
case (ty.ty_bool) { ret struct_cmp(expected, actual); }
case (ty.ty_int) { ret struct_cmp(expected, actual); }
case (ty.ty_uint) { ret struct_cmp(expected, actual); }
case (ty.ty_machine(_)) { ret struct_cmp(expected, actual); }
case (ty.ty_float) { ret struct_cmp(expected, actual); }
case (ty.ty_char) { ret struct_cmp(expected, actual); }
case (ty.ty_str) { ret struct_cmp(expected, actual); }
case (ty.ty_type) { ret struct_cmp(expected, actual); }
case (ty.ty_native) { ret struct_cmp(expected, actual); }
case (ty.ty_tag(?expected_id, ?expected_tps)) {
alt (actual.struct) {
case (ty.ty_tag(?actual_id, ?actual_tps)) {
if (expected_id._0 != actual_id._0 ||
expected_id._1 != actual_id._1) {
ret ures_err(terr_mismatch, expected, actual);
}
// TODO: factor this cruft out, see the TODO in the
// ty.ty_tup case
let vec[@ty.t] result_tps = vec();
auto i = 0u;
auto expected_len = _vec.len[@ty.t](expected_tps);
while (i < expected_len) {
auto expected_tp = expected_tps.(i);
auto actual_tp = actual_tps.(i);
auto result = unify_step(bindings,
expected_tp,
actual_tp,
handler);
alt (result) {
case (ures_ok(?rty)) {
_vec.push[@ty.t](result_tps, rty);
}
case (_) {
ret result;
}
}
i += 1u;
}
ret ures_ok(plain_ty(ty.ty_tag(expected_id,
result_tps)));
}
case (_) { /* fall through */ }
}
ret ures_err(terr_mismatch, expected, actual);
}
case (ty.ty_box(?expected_mt)) {
alt (actual.struct) {
case (ty.ty_box(?actual_mt)) {
auto mut;
alt (unify_mut(expected_mt.mut, actual_mt.mut)) {
case (none[ast.mutability]) {
ret ures_err(terr_box_mutability, expected,
actual);
}
case (some[ast.mutability](?m)) { mut = m; }
}
auto result = unify_step(bindings,
expected_mt.ty,
actual_mt.ty,
handler);
alt (result) {
case (ures_ok(?result_sub)) {
auto mt = rec(ty=result_sub, mut=mut);
ret ures_ok(plain_ty(ty.ty_box(mt)));
}
case (_) {
ret result;
}
}
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_vec(?expected_mt)) {
alt (actual.struct) {
case (ty.ty_vec(?actual_mt)) {
auto mut;
alt (unify_mut(expected_mt.mut, actual_mt.mut)) {
case (none[ast.mutability]) {
ret ures_err(terr_vec_mutability, expected,
actual);
}
case (some[ast.mutability](?m)) { mut = m; }
}
auto result = unify_step(bindings,
expected_mt.ty,
actual_mt.ty,
handler);
alt (result) {
case (ures_ok(?result_sub)) {
auto mt = rec(ty=result_sub, mut=mut);
ret ures_ok(plain_ty(ty.ty_vec(mt)));
}
case (_) {
ret result;
}
}
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_port(?expected_sub)) {
alt (actual.struct) {
case (ty.ty_port(?actual_sub)) {
auto result = unify_step(bindings,
expected_sub,
actual_sub,
handler);
alt (result) {
case (ures_ok(?result_sub)) {
ret ures_ok(plain_ty(ty.ty_port(result_sub)));
}
case (_) {
ret result;
}
}
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_chan(?expected_sub)) {
alt (actual.struct) {
case (ty.ty_chan(?actual_sub)) {
auto result = unify_step(bindings,
expected_sub,
actual_sub,
handler);
alt (result) {
case (ures_ok(?result_sub)) {
ret ures_ok(plain_ty(ty.ty_chan(result_sub)));
}
case (_) {
ret result;
}
}
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_tup(?expected_elems)) {
alt (actual.struct) {
case (ty.ty_tup(?actual_elems)) {
auto expected_len = _vec.len[ty.mt](expected_elems);
auto actual_len = _vec.len[ty.mt](actual_elems);
if (expected_len != actual_len) {
auto err = terr_tuple_size(expected_len,
actual_len);
ret ures_err(err, expected, actual);
}
// TODO: implement an iterator that can iterate over
// two arrays simultaneously.
let vec[ty.mt] result_elems = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_elem = expected_elems.(i);
auto actual_elem = actual_elems.(i);
auto mut;
alt (unify_mut(expected_elem.mut,
actual_elem.mut)) {
case (none[ast.mutability]) {
auto err = terr_tuple_mutability;
ret ures_err(err, expected, actual);
}
case (some[ast.mutability](?m)) { mut = m; }
}
auto result = unify_step(bindings,
expected_elem.ty,
actual_elem.ty,
handler);
alt (result) {
case (ures_ok(?rty)) {
auto mt = rec(ty=rty, mut=mut);
result_elems += vec(mt);
}
case (_) {
ret result;
}
}
i += 1u;
}
ret ures_ok(plain_ty(ty.ty_tup(result_elems)));
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_rec(?expected_fields)) {
alt (actual.struct) {
case (ty.ty_rec(?actual_fields)) {
auto expected_len = _vec.len[field](expected_fields);
auto actual_len = _vec.len[field](actual_fields);
if (expected_len != actual_len) {
auto err = terr_record_size(expected_len,
actual_len);
ret ures_err(err, expected, actual);
}
// TODO: implement an iterator that can iterate over
// two arrays simultaneously.
let vec[field] result_fields = vec();
auto i = 0u;
while (i < expected_len) {
auto expected_field = expected_fields.(i);
auto actual_field = actual_fields.(i);
auto mut;
alt (unify_mut(expected_field.mt.mut,
actual_field.mt.mut)) {
case (none[ast.mutability]) {
ret ures_err(terr_record_mutability,
expected, actual);
}
case (some[ast.mutability](?m)) { mut = m; }
}
if (!_str.eq(expected_field.ident,
actual_field.ident)) {
auto err =
terr_record_fields(expected_field.ident,
actual_field.ident);
ret ures_err(err, expected, actual);
}
auto result = unify_step(bindings,
expected_field.mt.ty,
actual_field.mt.ty,
handler);
alt (result) {
case (ures_ok(?rty)) {
auto mt = rec(ty=rty, mut=mut);
_vec.push[field]
(result_fields,
rec(mt=mt with expected_field));
}
case (_) {
ret result;
}
}
i += 1u;
}
ret ures_ok(plain_ty(ty.ty_rec(result_fields)));
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_fn(?ep, ?expected_inputs, ?expected_output)) {
alt (actual.struct) {
case (ty.ty_fn(?ap, ?actual_inputs, ?actual_output)) {
ret unify_fn(bindings, ep, ap,
expected, actual, handler,
expected_inputs, expected_output,
actual_inputs, actual_output);
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_native_fn(?e_abi, ?expected_inputs,
?expected_output)) {
alt (actual.struct) {
case (ty.ty_native_fn(?a_abi, ?actual_inputs,
?actual_output)) {
ret unify_native_fn(bindings, e_abi, a_abi,
expected, actual, handler,
expected_inputs, expected_output,
actual_inputs, actual_output);
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_obj(?expected_meths)) {
alt (actual.struct) {
case (ty.ty_obj(?actual_meths)) {
ret unify_obj(bindings, expected, actual, handler,
expected_meths, actual_meths);
}
case (_) {
ret ures_err(terr_mismatch, expected, actual);
}
}
}
case (ty.ty_var(?expected_id)) {
// Add a binding.
bindings.insert(expected_id, actual);
ret ures_ok(actual);
}
case (ty.ty_local(?expected_id)) {
auto expected_ty = handler.resolve_local(expected_id);
auto result = unify_step(bindings,
expected_ty,
actual,
handler);
alt (result) {
case (ures_ok(?result_ty)) {
handler.record_local(expected_id, result_ty);
}
case (_) { /* empty */ }
}
ret result;
}
case (ty.ty_param(?expected_id)) {
ret handler.unify_expected_param(expected_id, expected,
actual);
}
}
// TODO: remove me once match-exhaustiveness checking works
fail;
}
// Performs type binding substitution.
fn substitute(@hashmap[int,@t] bindings, @t typ) -> @t {
state obj folder(@hashmap[int,@t] bindings) {
fn fold_simple_ty(@t typ) -> @t {
alt (typ.struct) {
case (ty_var(?id)) {
alt (bindings.find(id)) {
case (some[@t](?typ2)) {
ret substitute(bindings, typ2);
}
case (none[@t]) {
ret typ;
}
}
}
case (_) {
ret typ;
}
}
}
}
ret ty.fold_ty(folder(bindings), typ);
}
fn hash_int(&int x) -> uint { ret x as uint; }
fn eq_int(&int a, &int b) -> bool { ret a == b; }
auto hasher = hash_int;
auto eqer = eq_int;
auto bindings = @map.mk_hashmap[int,@ty.t](hasher, eqer);
auto ures = unify_step(bindings, expected, actual, handler);
alt (ures) {
case (ures_ok(?t)) { ret ures_ok(substitute(bindings, t)); }
case (_) { ret ures; }
}
fail; // not reached
}
fn type_err_to_str(&ty.type_err err) -> str {
alt (err) {
case (terr_mismatch) {
ret "types differ";
}
case (terr_box_mutability) {
ret "boxed values differ in mutability";
}
case (terr_vec_mutability) {
ret "vectors differ in mutability";
}
case (terr_tuple_size(?e_sz, ?a_sz)) {
ret "expected a tuple with " + _uint.to_str(e_sz, 10u) +
" elements but found one with " + _uint.to_str(a_sz, 10u) +
" elements";
}
case (terr_tuple_mutability) {
ret "tuple elements differ in mutability";
}
case (terr_record_size(?e_sz, ?a_sz)) {
ret "expected a record with " + _uint.to_str(e_sz, 10u) +
" fields but found one with " + _uint.to_str(a_sz, 10u) +
" fields";
}
case (terr_record_mutability) {
ret "record elements differ in mutability";
}
case (terr_record_fields(?e_fld, ?a_fld)) {
ret "expected a record with field '" + e_fld +
"' but found one with field '" + a_fld +
"'";
}
case (terr_arg_count) {
ret "incorrect number of function parameters";
}
case (terr_meth_count) {
ret "incorrect number of object methods";
}
case (terr_obj_meths(?e_meth, ?a_meth)) {
ret "expected an obj with method '" + e_meth +
"' but found one with method '" + a_meth +
"'";
}
}
}
// Type parameter resolution, used in translation and typechecking
fn resolve_ty_params(ty_params_and_ty ty_params_and_polyty,
@t monoty) -> vec[@t] {
obj resolve_ty_params_handler(@hashmap[ast.def_id,@t] bindings) {
fn resolve_local(ast.def_id id) -> @t { log "resolve local"; fail; }
fn record_local(ast.def_id id, @t ty) { log "record local"; fail; }
fn unify_expected_param(ast.def_id id, @t expected, @t actual)
-> unify_result {
bindings.insert(id, actual);
ret ures_ok(actual);
}
fn unify_actual_param(ast.def_id id, @t expected, @t actual)
-> unify_result {
bindings.insert(id, expected);
ret ures_ok(expected);
}
}
auto bindings = @new_def_hash[@t]();
auto handler = resolve_ty_params_handler(bindings);
auto unify_res = unify(ty_params_and_polyty._1, monoty, handler);
alt (unify_res) {
case (ures_ok(_)) { /* fall through */ }
case (ures_err(_,?exp,?act)) {
log "resolve_ty_params mismatch: " + ty_to_str(exp) + " " +
ty_to_str(act);
fail;
}
}
let vec[@t] result_tys = vec();
auto ty_param_ids = ty_params_and_polyty._0;
for (ast.def_id tp in ty_param_ids) {
check (bindings.contains_key(tp));
result_tys += vec(bindings.get(tp));
}
ret result_tys;
}
// Performs type parameter replacement using the supplied mapping from
// parameter IDs to types.
fn replace_type_params(@t typ, hashmap[ast.def_id,@t] param_map) -> @t {
state obj param_replacer(hashmap[ast.def_id,@t] param_map) {
fn fold_simple_ty(@t typ) -> @t {
alt (typ.struct) {
case (ty_param(?param_def)) {
if (param_map.contains_key(param_def)) {
ret param_map.get(param_def);
} else {
ret typ;
}
}
case (_) {
ret typ;
}
}
}
}
auto replacer = param_replacer(param_map);
ret fold_ty(replacer, typ);
}
// Substitutes the type parameters specified by @ty_params with the
// corresponding types in @bound in the given type. The two vectors must have
// the same length.
fn substitute_ty_params(vec[ast.ty_param] ty_params, vec[@t] bound, @t ty)
-> @t {
auto ty_param_len = _vec.len[ast.ty_param](ty_params);
check (ty_param_len == _vec.len[@t](bound));
auto bindings = common.new_def_hash[@t]();
auto i = 0u;
while (i < ty_param_len) {
bindings.insert(ty_params.(i).id, bound.(i));
i += 1u;
}
ret replace_type_params(ty, bindings);
}
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C ../.. 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End: