rust/src/libextra/dlist.rs
blake2-ppc 92842d6516 dlist: Expose ListInsertion trait with insert_before and peek_next
An iterator that allows mutating the list is very useful but needs care
to not be unsound. ListIteration exposes only insert_before (used for
insert_ordered) and peek_next so far.
2013-07-11 15:54:35 +02:00

948 lines
26 KiB
Rust

//! A doubly-linked list with owned nodes.
//!
//! The List allows pushing and popping elements at either end.
// List is constructed like a singly-linked list over the field `next`.
// including the last link being None; each Node owns its `next` field.
//
// Backlinks over List::prev are raw pointers that form a full chain in
// the reverse direction.
use std::cast;
use std::cmp;
use std::ptr;
use std::util;
use std::iterator::FromIterator;
/// A doubly-linked list
pub struct List<T> {
priv length: uint,
priv list_head: Link<T>,
priv list_tail: Rawlink<Node<T>>,
}
type Link<T> = Option<~Node<T>>;
struct Rawlink<T> { priv p: *mut T }
struct Node<T> {
priv next: Link<T>,
priv prev: Rawlink<Node<T>>,
priv value: T,
}
/// List iterator
pub struct ForwardIterator<'self, T> {
priv list: &'self List<T>,
priv next: &'self Link<T>,
priv nelem: uint,
}
/// List reverse iterator
pub struct ReverseIterator<'self, T> {
priv list: &'self List<T>,
priv next: Rawlink<Node<T>>,
priv nelem: uint,
}
/// List mutable iterator
pub struct MutForwardIterator<'self, T> {
priv list: &'self mut List<T>,
priv curs: Rawlink<Node<T>>,
priv nelem: uint,
}
/// List mutable reverse iterator
pub struct MutReverseIterator<'self, T> {
priv list: &'self mut List<T>,
priv next: Rawlink<Node<T>>,
priv nelem: uint,
}
/// List consuming iterator
pub struct ConsumeIterator<T> {
priv list: List<T>
}
/// List reverse consuming iterator
pub struct ConsumeRevIterator<T> {
priv list: List<T>
}
/// Rawlink is a type like Option<T> but for holding a raw pointer
impl<T> Rawlink<T> {
/// Like Option::None for Rawlink
fn none() -> Rawlink<T> {
Rawlink{p: ptr::mut_null()}
}
/// Like Option::Some for Rawlink
fn some(n: &mut T) -> Rawlink<T> {
Rawlink{p: ptr::to_mut_unsafe_ptr(n)}
}
/// Convert the `Rawlink` into an Option value
fn resolve_immut(&self) -> Option<&T> {
unsafe { self.p.to_option() }
}
/// Convert the `Rawlink` into an Option value
fn resolve(&mut self) -> Option<&mut T> {
if self.p.is_null() {
None
} else {
Some(unsafe { cast::transmute(self.p) })
}
}
}
/// Set the .prev field on `next`, then return `Some(next)`
fn link_with_prev<T>(mut next: ~Node<T>, prev: Rawlink<Node<T>>) -> Link<T> {
next.prev = prev;
Some(next)
}
impl<T> Container for List<T> {
/// O(1)
fn is_empty(&self) -> bool {
self.list_head.is_none()
}
/// O(1)
fn len(&self) -> uint {
self.length
}
}
impl<T> Mutable for List<T> {
/// Remove all elements from the List
///
/// O(N)
fn clear(&mut self) {
*self = List::new()
}
}
impl<T> List<T> {
/// Create an empty List
#[inline]
pub fn new() -> List<T> {
List{list_head: None, list_tail: Rawlink::none(), length: 0}
}
/// Provide a reference to the front element, or None if the list is empty
pub fn peek_front<'a>(&'a self) -> Option<&'a T> {
self.list_head.chain_ref(|x| Some(&x.value))
}
/// Provide a mutable reference to the front element, or None if the list is empty
pub fn peek_front_mut<'a>(&'a mut self) -> Option<&'a mut T> {
match self.list_head {
None => None,
Some(ref mut head) => Some(&mut head.value),
}
}
/// Provide a reference to the back element, or None if the list is empty
pub fn peek_back<'a>(&'a self) -> Option<&'a T> {
match self.list_tail.resolve_immut() {
None => None,
Some(tail) => Some(&tail.value),
}
}
/// Provide a mutable reference to the back element, or None if the list is empty
pub fn peek_back_mut<'a>(&'a mut self) -> Option<&'a mut T> {
match self.list_tail.resolve() {
None => None,
Some(tail) => Some(&mut tail.value),
}
}
/// Add an element last in the list
///
/// O(1)
pub fn push_back(&mut self, elt: T) {
match self.list_tail.resolve() {
None => return self.push_front(elt),
Some(tail) => {
let mut new_tail = ~Node{value: elt, next: None, prev: self.list_tail};
self.list_tail = Rawlink::some(new_tail);
tail.next = Some(new_tail);
}
}
self.length += 1;
}
/// Remove the last element and return it, or None if the list is empty
///
/// O(1)
#[inline]
pub fn pop_back(&mut self) -> Option<T> {
match self.list_tail.resolve() {
None => None,
Some(tail) => {
self.length -= 1;
let tail_own = match tail.prev.resolve() {
None => {
self.list_tail = Rawlink::none();
self.list_head.swap_unwrap()
},
Some(tail_prev) => {
self.list_tail = tail.prev;
tail_prev.next.swap_unwrap()
}
};
Some(tail_own.value)
}
}
}
/// Add an element first in the list
///
/// O(1)
pub fn push_front(&mut self, elt: T) {
let mut new_head = ~Node{value: elt, next: None, prev: Rawlink::none()};
match self.list_head {
None => {
self.list_tail = Rawlink::some(new_head);
self.list_head = Some(new_head);
}
Some(ref mut head) => {
head.prev = Rawlink::some(new_head);
util::swap(head, &mut new_head);
head.next = Some(new_head);
}
}
self.length += 1;
}
/// Remove the first element and return it, or None if the list is empty
///
/// O(1)
pub fn pop_front(&mut self) -> Option<T> {
match util::replace(&mut self.list_head, None) {
None => None,
Some(old_head) => {
self.length -= 1;
match *old_head {
Node{value: value, next: Some(next), prev: _} => {
self.list_head = link_with_prev(next, Rawlink::none());
Some(value)
}
Node{value: value, next: None, prev: _} => {
self.list_tail = Rawlink::none();
Some(value)
}
}
}
}
}
/// Add all elements from `other` to the end of the list
///
/// O(1)
pub fn append(&mut self, other: List<T>) {
match self.list_tail.resolve() {
None => *self = other,
Some(tail) => {
match other {
List{list_head: None, list_tail: _, length: _} => return,
List{list_head: Some(node), list_tail: o_tail, length: o_length} => {
tail.next = link_with_prev(node, self.list_tail);
self.list_tail = o_tail;
self.length += o_length;
}
}
}
}
}
/// Add all elements from `other` to the beginning of the list
///
/// O(1)
pub fn prepend(&mut self, mut other: List<T>) {
util::swap(self, &mut other);
self.append(other);
}
/// Insert `elt` before the first `x` in the list where `f(x, elt)` is true,
/// or at the end.
///
/// O(N)
#[inline]
pub fn insert_when(&mut self, elt: T, f: &fn(&T, &T) -> bool) {
{
let mut it = self.mut_iter();
loop {
match it.next() {
None => break,
Some(x) => if f(x, &elt) { it.insert_before(elt); return }
}
}
}
self.push_back(elt);
}
/// Merge, using the function `f`; take `a` if `f(a, b)` is true, else `b`.
///
/// O(max(N, M))
pub fn merge(&mut self, mut other: List<T>, f: &fn(&T, &T) -> bool) {
{
let mut it = self.mut_iter();
loop {
match (it.next(), other.peek_front()) {
(None , _ ) => break,
(_ , None ) => return,
(Some(x), Some(y)) => if f(x, y) { loop }
}
it.insert_before(other.pop_front().unwrap());
}
}
self.append(other);
}
/// Provide a forward iterator
pub fn iter<'a>(&'a self) -> ForwardIterator<'a, T> {
ForwardIterator{nelem: self.len(), list: self, next: &self.list_head}
}
/// Provide a reverse iterator
pub fn rev_iter<'a>(&'a self) -> ReverseIterator<'a, T> {
ReverseIterator{nelem: self.len(), list: self, next: self.list_tail}
}
/// Provide a forward iterator with mutable references
pub fn mut_iter<'a>(&'a mut self) -> MutForwardIterator<'a, T> {
MutForwardIterator{nelem: self.len(), list: self, curs: Rawlink::none()}
}
/// Provide a reverse iterator with mutable references
pub fn mut_rev_iter<'a>(&'a mut self) -> MutReverseIterator<'a, T> {
MutReverseIterator{nelem: self.len(), list: self, next: self.list_tail}
}
/// Consume the list into an iterator yielding elements by value
pub fn consume_iter(self) -> ConsumeIterator<T> {
ConsumeIterator{list: self}
}
/// Consume the list into an iterator yielding elements by value, in reverse
pub fn consume_rev_iter(self) -> ConsumeRevIterator<T> {
ConsumeRevIterator{list: self}
}
}
/// Insert sorted in ascending order
///
/// O(N)
impl<T: cmp::TotalOrd> List<T> {
fn insert_ordered(&mut self, elt: T) {
self.insert_when(elt, |a, b| a.cmp(b) != cmp::Less);
}
}
impl<'self, A> Iterator<&'self A> for ForwardIterator<'self, A> {
#[inline]
fn next(&mut self) -> Option<&'self A> {
match *self.next {
None => None,
Some(ref next) => {
self.nelem -= 1;
self.next = &next.next;
Some(&next.value)
}
}
}
fn size_hint(&self) -> (uint, Option<uint>) {
(self.nelem, Some(self.nelem))
}
}
// MutForwardIterator is different because it implements ListInsertion,
// and can modify the list during traversal, used in insert_when and merge.
impl<'self, A> Iterator<&'self mut A> for MutForwardIterator<'self, A> {
#[inline]
fn next(&mut self) -> Option<&'self mut A> {
match self.curs.resolve() {
None => {
match self.list.list_head {
None => None,
Some(ref mut head) => {
self.nelem -= 1;
self.curs = Rawlink::some(*head);
Some(&mut head.value)
}
}
}
Some(curs) => {
match curs.next {
None => None,
Some(ref mut head) => {
self.nelem -= 1;
self.curs = Rawlink::some(*head);
Some(&mut head.value)
}
}
}
}
}
fn size_hint(&self) -> (uint, Option<uint>) {
(self.nelem, Some(self.nelem))
}
}
impl<'self, A> Iterator<&'self A> for ReverseIterator<'self, A> {
#[inline]
fn next(&mut self) -> Option<&'self A> {
match self.next.resolve() {
None => None,
Some(prev) => {
self.nelem -= 1;
self.next = prev.prev;
Some(&prev.value)
}
}
}
fn size_hint(&self) -> (uint, Option<uint>) {
(self.nelem, Some(self.nelem))
}
}
impl<'self, A> Iterator<&'self mut A> for MutReverseIterator<'self, A> {
#[inline]
fn next(&mut self) -> Option<&'self mut A> {
match self.next.resolve() {
None => None,
Some(prev) => {
self.nelem -= 1;
self.next = prev.prev;
Some(&mut prev.value)
}
}
}
fn size_hint(&self) -> (uint, Option<uint>) {
(self.nelem, Some(self.nelem))
}
}
/// Allow mutating the List while iterating
pub trait ListInsertion<A> {
/// Insert `elt` just previous to the most recently yielded element
fn insert_before(&mut self, elt: A);
/// Provide a reference to the next element, without changing the iterator
fn peek_next<'a>(&'a mut self) -> Option<&'a mut A>;
}
impl<'self, A> ListInsertion<A> for MutForwardIterator<'self, A> {
fn insert_before(&mut self, elt: A) {
match self.curs.resolve() {
None => { self.list.push_front(elt); self.next(); }
Some(node) => {
let prev_node = match node.prev.resolve() {
None => return self.list.push_front(elt),
Some(prev) => prev,
};
let mut ins_node = ~Node{value: elt, next: None, prev: Rawlink::none()};
let node_own = prev_node.next.swap_unwrap();
ins_node.next = link_with_prev(node_own, Rawlink::some(ins_node));
prev_node.next = link_with_prev(ins_node, Rawlink::some(prev_node));
self.list.length += 1;
}
}
}
fn peek_next<'a>(&'a mut self) -> Option<&'a mut A> {
match self.curs.resolve() {
None => self.list.peek_front_mut(),
Some(curs) => match curs.next {
None => None,
Some(ref mut node) => Some(&mut node.value),
}
}
}
}
impl<A> Iterator<A> for ConsumeIterator<A> {
fn next(&mut self) -> Option<A> { self.list.pop_front() }
fn size_hint(&self) -> (uint, Option<uint>) {
(self.list.length, Some(self.list.length))
}
}
impl<A> Iterator<A> for ConsumeRevIterator<A> {
fn next(&mut self) -> Option<A> { self.list.pop_back() }
fn size_hint(&self) -> (uint, Option<uint>) {
(self.list.length, Some(self.list.length))
}
}
impl<A, T: Iterator<A>> FromIterator<A, T> for List<A> {
fn from_iterator(iterator: &mut T) -> List<A> {
let mut ret = List::new();
for iterator.advance |elt| { ret.push_back(elt); }
ret
}
}
impl<A: Eq> Eq for List<A> {
fn eq(&self, other: &List<A>) -> bool {
self.len() == other.len() &&
self.iter().zip(other.iter()).all(|(a, b)| a.eq(b))
}
fn ne(&self, other: &List<A>) -> bool {
!self.eq(other)
}
}
impl<A: Clone> Clone for List<A> {
fn clone(&self) -> List<A> {
self.iter().transform(|x| x.clone()).collect()
}
}
#[cfg(test)]
pub fn check_links<T>(list: &List<T>) {
let mut len = 0u;
let mut last_ptr: Option<&Node<T>> = None;
let mut node_ptr: &Node<T>;
match list.list_head {
None => { assert_eq!(0u, list.length); return }
Some(ref node) => node_ptr = &**node,
}
loop {
match (last_ptr, node_ptr.prev.resolve_immut()) {
(None , None ) => {}
(None , _ ) => fail!("prev link for list_head"),
(Some(p), Some(pptr)) => {
assert_eq!(p as *Node<T>, pptr as *Node<T>);
}
_ => fail!("prev link is none, not good"),
}
match node_ptr.next {
Some(ref next) => {
last_ptr = Some(node_ptr);
node_ptr = &**next;
len += 1;
}
None => {
len += 1;
break;
}
}
}
assert_eq!(len, list.length);
}
#[cfg(test)]
mod tests {
use super::*;
use std::rand;
use std::int;
use extra::test;
#[test]
fn test_basic() {
let mut m = List::new::<~int>();
assert_eq!(m.pop_front(), None);
assert_eq!(m.pop_back(), None);
assert_eq!(m.pop_front(), None);
m.push_front(~1);
assert_eq!(m.pop_front(), Some(~1));
m.push_back(~2);
m.push_back(~3);
assert_eq!(m.len(), 2);
assert_eq!(m.pop_front(), Some(~2));
assert_eq!(m.pop_front(), Some(~3));
assert_eq!(m.len(), 0);
assert_eq!(m.pop_front(), None);
m.push_back(~1);
m.push_back(~3);
m.push_back(~5);
m.push_back(~7);
assert_eq!(m.pop_front(), Some(~1));
let mut n = List::new();
n.push_front(2);
n.push_front(3);
{
assert_eq!(n.peek_front().unwrap(), &3);
let x = n.peek_front_mut().unwrap();
assert_eq!(*x, 3);
*x = 0;
}
{
assert_eq!(n.peek_back().unwrap(), &2);
let y = n.peek_back_mut().unwrap();
assert_eq!(*y, 2);
*y = 1;
}
assert_eq!(n.pop_front(), Some(0));
assert_eq!(n.pop_front(), Some(1));
}
#[cfg(test)]
fn generate_test() -> List<int> {
list_from(&[0,1,2,3,4,5,6])
}
#[cfg(test)]
fn list_from<T: Copy>(v: &[T]) -> List<T> {
v.iter().transform(|x| copy *x).collect()
}
#[test]
fn test_append() {
{
let mut m = List::new();
let mut n = List::new();
n.push_back(2);
m.append(n);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
check_links(&m);
}
{
let mut m = List::new();
let n = List::new();
m.push_back(2);
m.append(n);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
check_links(&m);
}
let v = ~[1,2,3,4,5];
let u = ~[9,8,1,2,3,4,5];
let mut m = list_from(v);
m.append(list_from(u));
check_links(&m);
let sum = v + u;
assert_eq!(sum.len(), m.len());
for sum.consume_iter().advance |elt| {
assert_eq!(m.pop_front(), Some(elt))
}
}
#[test]
fn test_prepend() {
{
let mut m = List::new();
let mut n = List::new();
n.push_back(2);
m.prepend(n);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
check_links(&m);
}
let v = ~[1,2,3,4,5];
let u = ~[9,8,1,2,3,4,5];
let mut m = list_from(v);
m.prepend(list_from(u));
check_links(&m);
let sum = u + v;
assert_eq!(sum.len(), m.len());
for sum.consume_iter().advance |elt| {
assert_eq!(m.pop_front(), Some(elt))
}
}
#[test]
fn test_iterator() {
let m = generate_test();
for m.iter().enumerate().advance |(i, elt)| {
assert_eq!(i as int, *elt);
}
let mut n = List::new();
assert_eq!(n.iter().next(), None);
n.push_front(4);
let mut it = n.iter();
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next().unwrap(), &4);
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.next(), None);
}
#[test]
fn test_rev_iter() {
let m = generate_test();
for m.rev_iter().enumerate().advance |(i, elt)| {
assert_eq!((6 - i) as int, *elt);
}
let mut n = List::new();
assert_eq!(n.rev_iter().next(), None);
n.push_front(4);
let mut it = n.rev_iter();
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next().unwrap(), &4);
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.next(), None);
}
#[test]
fn test_mut_iter() {
let mut m = generate_test();
let mut len = m.len();
for m.mut_iter().enumerate().advance |(i, elt)| {
assert_eq!(i as int, *elt);
len -= 1;
}
assert_eq!(len, 0);
let mut n = List::new();
assert!(n.mut_iter().next().is_none());
n.push_front(4);
let mut it = n.mut_iter();
assert_eq!(it.size_hint(), (1, Some(1)));
assert!(it.next().is_some());
assert_eq!(it.size_hint(), (0, Some(0)));
assert!(it.next().is_none());
}
#[test]
fn test_insert_prev() {
let mut m = list_from(&[0,2,4,6,8]);
let len = m.len();
{
let mut it = m.mut_iter();
it.insert_before(-2);
loop {
match it.next() {
None => break,
Some(elt) => {
it.insert_before(*elt + 1);
match it.peek_next() {
Some(x) => assert_eq!(*x, *elt + 2),
None => assert_eq!(8, *elt),
}
}
}
}
it.insert_before(0);
it.insert_before(1);
}
check_links(&m);
assert_eq!(m.len(), 3 + len * 2);
assert_eq!(m.consume_iter().collect::<~[int]>(), ~[-2,1,0,3,2,5,4,7,6,9,0,1,8]);
}
#[test]
fn test_merge() {
let mut m = list_from([0, 1, 3, 5, 6, 7, 2]);
let n = list_from([-1, 0, 0, 7, 7, 9]);
let len = m.len() + n.len();
m.merge(n, |a, b| a <= b);
assert_eq!(m.len(), len);
check_links(&m);
let res = m.consume_iter().collect::<~[int]>();
assert_eq!(res, ~[-1, 0, 0, 1, 0, 3, 5, 6, 7, 2, 7, 7, 9]);
}
#[test]
fn test_insert_ordered() {
let mut n = List::new();
n.insert_ordered(1);
assert_eq!(n.len(), 1);
assert_eq!(n.pop_front(), Some(1));
let mut m = List::new();
m.push_back(2);
m.push_back(4);
m.insert_ordered(3);
check_links(&m);
assert_eq!(~[2,3,4], m.consume_iter().collect::<~[int]>());
}
#[test]
fn test_mut_rev_iter() {
let mut m = generate_test();
for m.mut_rev_iter().enumerate().advance |(i, elt)| {
assert_eq!((6-i) as int, *elt);
}
let mut n = List::new();
assert!(n.mut_rev_iter().next().is_none());
n.push_front(4);
let mut it = n.mut_rev_iter();
assert!(it.next().is_some());
assert!(it.next().is_none());
}
#[test]
fn test_send() {
let n = list_from([1,2,3]);
do spawn {
check_links(&n);
assert_eq!(~[&1,&2,&3], n.iter().collect::<~[&int]>());
}
}
#[test]
fn test_eq() {
let mut n: List<u8> = list_from([]);
let mut m = list_from([]);
assert_eq!(&n, &m);
n.push_front(1);
assert!(n != m);
m.push_back(1);
assert_eq!(&n, &m);
}
#[test]
fn test_fuzz() {
for 25.times {
fuzz_test(3);
fuzz_test(16);
fuzz_test(189);
}
}
#[cfg(test)]
fn fuzz_test(sz: int) {
let mut m = List::new::<int>();
let mut v = ~[];
for int::range(0i, sz) |i| {
check_links(&m);
let r: u8 = rand::random();
match r % 6 {
0 => {
m.pop_back();
if v.len() > 0 { v.pop(); }
}
1 => {
m.pop_front();
if v.len() > 0 { v.shift(); }
}
2 | 4 => {
m.push_front(-i);
v.unshift(-i);
}
3 | 5 | _ => {
m.push_back(i);
v.push(i);
}
}
}
check_links(&m);
let mut i = 0u;
for m.consume_iter().zip(v.iter()).advance |(a, &b)| {
i += 1;
assert_eq!(a, b);
}
assert_eq!(i, v.len());
}
#[bench]
fn bench_collect_into(b: &mut test::BenchHarness) {
let v = &[0, ..64];
do b.iter {
let _: List<int> = v.iter().transform(|&x|x).collect();
}
}
#[bench]
fn bench_collect_into_vec(b: &mut test::BenchHarness) {
let v = &[0, ..64];
do b.iter {
let _: ~[int] = v.iter().transform(|&x|x).collect();
}
}
#[bench]
fn bench_push_front(b: &mut test::BenchHarness) {
let mut m = List::new::<int>();
do b.iter {
m.push_front(0);
}
}
#[bench]
fn bench_push_front_vec_size10(b: &mut test::BenchHarness) {
let mut m = ~[0, ..10];
do b.iter {
m.unshift(0);
m.pop(); // to keep it fair, dont' grow the vec
}
}
#[bench]
fn bench_push_back(b: &mut test::BenchHarness) {
let mut m = List::new::<int>();
do b.iter {
m.push_back(0);
}
}
#[bench]
fn bench_push_back_vec(b: &mut test::BenchHarness) {
let mut m = ~[];
do b.iter {
m.push(0);
}
}
#[bench]
fn bench_push_back_pop_back(b: &mut test::BenchHarness) {
let mut m = List::new::<int>();
do b.iter {
m.push_back(0);
m.pop_back();
}
}
#[bench]
fn bench_push_back_pop_back_vec(b: &mut test::BenchHarness) {
let mut m = ~[];
do b.iter {
m.push(0);
m.pop();
}
}
#[bench]
fn bench_iter(b: &mut test::BenchHarness) {
let v = &[0, ..128];
let m: List<int> = v.iter().transform(|&x|x).collect();
do b.iter {
for m.iter().advance |_| {}
}
}
#[bench]
fn bench_iter_mut(b: &mut test::BenchHarness) {
let v = &[0, ..128];
let mut m: List<int> = v.iter().transform(|&x|x).collect();
do b.iter {
for m.mut_iter().advance |_| {}
}
}
#[bench]
fn bench_iter_rev(b: &mut test::BenchHarness) {
let v = &[0, ..128];
let m: List<int> = v.iter().transform(|&x|x).collect();
do b.iter {
for m.rev_iter().advance |_| {}
}
}
#[bench]
fn bench_iter_mut_rev(b: &mut test::BenchHarness) {
let v = &[0, ..128];
let mut m: List<int> = v.iter().transform(|&x|x).collect();
do b.iter {
for m.mut_rev_iter().advance |_| {}
}
}
#[bench]
fn bench_iter_vec(b: &mut test::BenchHarness) {
let v = &[0, ..128];
do b.iter {
for v.iter().advance |_| {}
}
}
}