812 lines
33 KiB
Rust
812 lines
33 KiB
Rust
use std::cell::RefCell;
|
|
use std::collections::HashSet;
|
|
use std::rc::Rc;
|
|
use std::fmt;
|
|
use std::num::NonZeroU64;
|
|
|
|
use rustc::ty::{self, layout::Size};
|
|
use rustc::hir::{Mutability, MutMutable, MutImmutable};
|
|
use rustc::mir::RetagKind;
|
|
|
|
use crate::{
|
|
EvalResult, InterpError, MiriEvalContext, HelpersEvalContextExt, Evaluator, MutValueVisitor,
|
|
MemoryKind, MiriMemoryKind, RangeMap, Allocation, AllocationExtra,
|
|
Pointer, Immediate, ImmTy, PlaceTy, MPlaceTy,
|
|
};
|
|
|
|
pub type PtrId = NonZeroU64;
|
|
pub type CallId = u64;
|
|
|
|
/// Tracking pointer provenance
|
|
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
|
|
pub enum Tag {
|
|
Tagged(PtrId),
|
|
Untagged,
|
|
}
|
|
|
|
impl fmt::Display for Tag {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self {
|
|
Tag::Tagged(id) => write!(f, "{}", id),
|
|
Tag::Untagged => write!(f, "<untagged>"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicates which permission is granted (by this item to some pointers)
|
|
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
|
|
pub enum Permission {
|
|
/// Grants unique mutable access.
|
|
Unique,
|
|
/// Grants shared mutable access.
|
|
SharedReadWrite,
|
|
/// Greants shared read-only access.
|
|
SharedReadOnly,
|
|
}
|
|
|
|
/// An item in the per-location borrow stack.
|
|
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
|
|
pub enum Item {
|
|
/// Grants the given permission for pointers with this tag.
|
|
Permission(Permission, Tag),
|
|
/// A barrier, tracking the function it belongs to by its index on the call stack.
|
|
FnBarrier(CallId),
|
|
}
|
|
|
|
impl fmt::Display for Item {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self {
|
|
Item::Permission(perm, tag) => write!(f, "[{:?} for {}]", perm, tag),
|
|
Item::FnBarrier(call) => write!(f, "[barrier {}]", call),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Extra per-location state.
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
pub struct Stack {
|
|
/// Used *mostly* as a stack; never empty.
|
|
/// We sometimes push into the middle but never remove from the middle.
|
|
/// The same tag may occur multiple times, e.g. from a two-phase borrow.
|
|
/// Invariants:
|
|
/// * Above a `SharedReadOnly` there can only be barriers and more `SharedReadOnly`.
|
|
borrows: Vec<Item>,
|
|
}
|
|
|
|
|
|
/// Extra per-allocation state.
|
|
#[derive(Clone, Debug)]
|
|
pub struct Stacks {
|
|
// Even reading memory can have effects on the stack, so we need a `RefCell` here.
|
|
stacks: RefCell<RangeMap<Stack>>,
|
|
// Pointer to global state
|
|
global: MemoryState,
|
|
}
|
|
|
|
/// Extra global state, available to the memory access hooks.
|
|
#[derive(Debug)]
|
|
pub struct GlobalState {
|
|
next_ptr_id: PtrId,
|
|
next_call_id: CallId,
|
|
active_calls: HashSet<CallId>,
|
|
}
|
|
pub type MemoryState = Rc<RefCell<GlobalState>>;
|
|
|
|
/// Indicates which kind of access is being performed.
|
|
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
|
|
pub enum AccessKind {
|
|
Read,
|
|
Write { dealloc: bool },
|
|
}
|
|
|
|
// "Fake" constructors
|
|
impl AccessKind {
|
|
fn write() -> AccessKind {
|
|
AccessKind::Write { dealloc: false }
|
|
}
|
|
|
|
fn dealloc() -> AccessKind {
|
|
AccessKind::Write { dealloc: true }
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for AccessKind {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self {
|
|
AccessKind::Read => write!(f, "read"),
|
|
AccessKind::Write { dealloc: false } => write!(f, "write"),
|
|
AccessKind::Write { dealloc: true } => write!(f, "deallocation"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicates which kind of reference is being created.
|
|
/// Used by `reborrow` to compute which permissions to grant to the
|
|
/// new pointer.
|
|
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
|
|
pub enum RefKind {
|
|
/// `&mut`.
|
|
Mutable,
|
|
/// `&` with or without interior mutability.
|
|
Shared { frozen: bool },
|
|
/// `*` (raw pointer).
|
|
Raw,
|
|
}
|
|
|
|
impl fmt::Display for RefKind {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self {
|
|
RefKind::Mutable => write!(f, "mutable"),
|
|
RefKind::Shared { frozen: true } => write!(f, "shared (frozen)"),
|
|
RefKind::Shared { frozen: false } => write!(f, "shared (mutable)"),
|
|
RefKind::Raw => write!(f, "raw"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Utilities for initialization and ID generation
|
|
impl Default for GlobalState {
|
|
fn default() -> Self {
|
|
GlobalState {
|
|
next_ptr_id: NonZeroU64::new(1).unwrap(),
|
|
next_call_id: 0,
|
|
active_calls: HashSet::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl GlobalState {
|
|
pub fn new_ptr(&mut self) -> PtrId {
|
|
let id = self.next_ptr_id;
|
|
self.next_ptr_id = NonZeroU64::new(id.get() + 1).unwrap();
|
|
id
|
|
}
|
|
|
|
pub fn new_call(&mut self) -> CallId {
|
|
let id = self.next_call_id;
|
|
trace!("new_call: Assigning ID {}", id);
|
|
self.active_calls.insert(id);
|
|
self.next_call_id = id+1;
|
|
id
|
|
}
|
|
|
|
pub fn end_call(&mut self, id: CallId) {
|
|
assert!(self.active_calls.remove(&id));
|
|
}
|
|
|
|
fn is_active(&self, id: CallId) -> bool {
|
|
self.active_calls.contains(&id)
|
|
}
|
|
}
|
|
|
|
// # Stacked Borrows Core Begin
|
|
|
|
/// We need to make at least the following things true:
|
|
///
|
|
/// U1: After creating a `Uniq`, it is at the top.
|
|
/// U2: If the top is `Uniq`, accesses must be through that `Uniq` or remove it it.
|
|
/// U3: If an access happens with a `Uniq`, it requires the `Uniq` to be in the stack.
|
|
///
|
|
/// F1: After creating a `&`, the parts outside `UnsafeCell` have our `SharedReadOnly` on top.
|
|
/// F2: If a write access happens, it pops the `SharedReadOnly`. This has three pieces:
|
|
/// F2a: If a write happens granted by an item below our `SharedReadOnly`, the `SharedReadOnly`
|
|
/// gets popped.
|
|
/// F2b: No `SharedReadWrite` or `Unique` will ever be added on top of our `SharedReadOnly`.
|
|
/// F3: If an access happens with an `&` outside `UnsafeCell`,
|
|
/// it requires the `SharedReadOnly` to still be in the stack.
|
|
|
|
impl Default for Tag {
|
|
#[inline(always)]
|
|
fn default() -> Tag {
|
|
Tag::Untagged
|
|
}
|
|
}
|
|
|
|
/// Core relations on `Permission` define which accesses are allowed:
|
|
/// On every access, we try to find a *granting* item, and then we remove all
|
|
/// *incompatible* items above it.
|
|
impl Permission {
|
|
/// This defines for a given permission, whether it permits the given kind of access.
|
|
fn grants(self, access: AccessKind) -> bool {
|
|
match (self, access) {
|
|
// Unique and SharedReadWrite allow any kind of access.
|
|
(Permission::Unique, _) |
|
|
(Permission::SharedReadWrite, _) =>
|
|
true,
|
|
// SharedReadOnly only permits read access.
|
|
(Permission::SharedReadOnly, AccessKind::Read) =>
|
|
true,
|
|
(Permission::SharedReadOnly, AccessKind::Write { .. }) =>
|
|
false,
|
|
}
|
|
}
|
|
|
|
/// This defines for a given permission, which other permissions it can tolerate "above" itself
|
|
/// for which kinds of accesses.
|
|
/// If true, then `other` is allowed to remain on top of `self` when `access` happens.
|
|
fn compatible_with(self, access: AccessKind, other: Permission) -> bool {
|
|
use self::Permission::*;
|
|
|
|
match (self, access, other) {
|
|
// Some cases are impossible.
|
|
(SharedReadOnly, _, SharedReadWrite) |
|
|
(SharedReadOnly, _, Unique) =>
|
|
bug!("There can never be a SharedReadWrite or a Unique on top of a SharedReadOnly"),
|
|
// When `other` is `SharedReadOnly`, that is NEVER compatible with
|
|
// write accesses.
|
|
// This makes sure read-only pointers become invalid on write accesses (ensures F2a).
|
|
(_, AccessKind::Write { .. }, SharedReadOnly) =>
|
|
false,
|
|
// When `other` is `Unique`, that is compatible with nothing.
|
|
// This makes sure unique pointers become invalid on incompatible accesses (ensures U2).
|
|
(_, _, Unique) =>
|
|
false,
|
|
// When we are unique and this is a write/dealloc, we tolerate nothing.
|
|
// This makes sure we re-assert uniqueness ("being on top") on write accesses.
|
|
// (This is particularily important such that when a new mutable ref gets created, it gets
|
|
// pushed into the right item -- this behaves like a write and we assert uniqueness of the
|
|
// pointer from which this comes, *if* it was a unique pointer.)
|
|
(Unique, AccessKind::Write { .. }, _) =>
|
|
false,
|
|
// `SharedReadWrite` items can tolerate any other akin items for any kind of access.
|
|
(SharedReadWrite, _, SharedReadWrite) =>
|
|
true,
|
|
// Any item can tolerate read accesses for shared items.
|
|
// This includes unique items! Reads from unique pointers do not invalidate
|
|
// other pointers.
|
|
(_, AccessKind::Read, SharedReadWrite) |
|
|
(_, AccessKind::Read, SharedReadOnly) =>
|
|
true,
|
|
// That's it.
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> RefKind {
|
|
/// Defines which kind of access the "parent" must grant to create this reference.
|
|
fn access(self) -> AccessKind {
|
|
match self {
|
|
RefKind::Mutable | RefKind::Shared { frozen: false } => AccessKind::write(),
|
|
RefKind::Raw | RefKind::Shared { frozen: true } => AccessKind::Read,
|
|
// FIXME: Just requiring read-only access for raw means that a raw ptr might not be writeable
|
|
// even when we think it should be! Think about this some more.
|
|
}
|
|
}
|
|
|
|
/// This defines the new permission used when a pointer gets created: For raw pointers, whether these are read-only
|
|
/// or read-write depends on the permission from which they derive.
|
|
fn new_perm(self, derived_from: Permission) -> EvalResult<'tcx, Permission> {
|
|
Ok(match (self, derived_from) {
|
|
// Do not derive writable safe pointer from read-only pointer!
|
|
(RefKind::Mutable, Permission::SharedReadOnly) =>
|
|
return err!(MachineError(format!(
|
|
"deriving mutable reference from read-only pointer"
|
|
))),
|
|
(RefKind::Shared { frozen: false }, Permission::SharedReadOnly) =>
|
|
return err!(MachineError(format!(
|
|
"deriving shared reference with interior mutability from read-only pointer"
|
|
))),
|
|
// Safe pointer cases.
|
|
(RefKind::Mutable, _) => Permission::Unique,
|
|
(RefKind::Shared { frozen: true }, _) => Permission::SharedReadOnly,
|
|
(RefKind::Shared { frozen: false }, _) => Permission::SharedReadWrite,
|
|
// Raw pointer cases.
|
|
(RefKind::Raw, Permission::SharedReadOnly) => Permission::SharedReadOnly,
|
|
(RefKind::Raw, _) => Permission::SharedReadWrite,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Core per-location operations: access, create.
|
|
impl<'tcx> Stack {
|
|
/// Find the item granting the given kind of access to the given tag, and where that item is in the stack.
|
|
fn find_granting(&self, access: AccessKind, tag: Tag) -> Option<(usize, Permission)> {
|
|
self.borrows.iter()
|
|
.enumerate() // we also need to know *where* in the stack
|
|
.rev() // search top-to-bottom
|
|
// Return permission of first item that grants access.
|
|
// We require a permission with the right tag, ensuring U3 and F3.
|
|
.filter_map(|(idx, item)| match item {
|
|
&Item::Permission(perm, item_tag) if perm.grants(access) && tag == item_tag =>
|
|
Some((idx, perm)),
|
|
_ => None,
|
|
})
|
|
.next()
|
|
}
|
|
|
|
/// Test if a memory `access` using pointer tagged `tag` is granted.
|
|
/// If yes, return the index of the item that granted it.
|
|
fn access(
|
|
&mut self,
|
|
access: AccessKind,
|
|
tag: Tag,
|
|
global: &GlobalState,
|
|
) -> EvalResult<'tcx, usize> {
|
|
// Two main steps: Find granting item, remove all incompatible items above.
|
|
// The second step is where barriers get implemented: they "protect" the items
|
|
// below them, meaning that if we remove an item and then further up encounter a barrier,
|
|
// we raise an error.
|
|
// Afterwards we just do some post-processing for deallocation accesses.
|
|
|
|
// Step 1: Find granting item.
|
|
let (granting_idx, granting_perm) = self.find_granting(access, tag)
|
|
.ok_or_else(|| InterpError::MachineError(format!(
|
|
"no item granting {} access to tag {} found in borrow stack",
|
|
access, tag,
|
|
)))?;
|
|
|
|
// Step 2: Remove everything incompatible above them.
|
|
// Items below an active barrier however may not be removed, so we check that as well.
|
|
// We do *not* maintain a stack discipline here. We could, in principle, decide to only
|
|
// keep the items immediately above `granting_idx` that are compatible, and then pop the rest.
|
|
// However, that kills off entire "branches" of pointer derivation too easily:
|
|
// in `let raw = &mut *x as *mut _; let _val = *x;`, the second statement would pop the `Unique`
|
|
// from the reborrow of the first statement, and subequently also pop the `SharedReadWrite` for `raw`.
|
|
{
|
|
// Implemented with indices because there does not seem to be a nice iterator and range-based
|
|
// API for this.
|
|
let mut cur = granting_idx + 1;
|
|
let mut removed_item = None;
|
|
while let Some(item) = self.borrows.get(cur) {
|
|
match *item {
|
|
Item::Permission(perm, _) => {
|
|
if granting_perm.compatible_with(access, perm) {
|
|
// Keep this, check next.
|
|
cur += 1;
|
|
} else {
|
|
// Aha! This is a bad one, remove it.
|
|
let item = self.borrows.remove(cur);
|
|
trace!("access: popping item {}", item);
|
|
removed_item = Some(item);
|
|
}
|
|
}
|
|
Item::FnBarrier(call) if !global.is_active(call) => {
|
|
// An inactive barrier, just get rid of it. (Housekeeping.)
|
|
self.borrows.remove(cur);
|
|
}
|
|
Item::FnBarrier(call) => {
|
|
// We hit an active barrier! If we have already removed an item,
|
|
// we got a problem! The barrier was supposed to protect this item.
|
|
if let Some(removed_item) = removed_item {
|
|
return err!(MachineError(format!(
|
|
"not granting {} access to tag {} because barrier ({}) protects incompatible item {}",
|
|
access, tag, call, removed_item
|
|
)));
|
|
}
|
|
// Keep this, check next.
|
|
cur += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Post-processing.
|
|
// If we got here, we found a matching item. Congratulations!
|
|
// However, we are not done yet: If this access is deallocating, we must make sure
|
|
// there are no active barriers remaining on the stack.
|
|
if access == AccessKind::dealloc() {
|
|
for &itm in self.borrows.iter().rev() {
|
|
match itm {
|
|
Item::FnBarrier(call) if global.is_active(call) => {
|
|
return err!(MachineError(format!(
|
|
"deallocating with active barrier ({})", call
|
|
)))
|
|
}
|
|
_ => {},
|
|
}
|
|
}
|
|
}
|
|
|
|
// Done.
|
|
return Ok(granting_idx);
|
|
}
|
|
|
|
/// `reborrow` helper function.
|
|
/// Grant `permisson` to new pointer tagged `tag`, added at `position` in the stack.
|
|
fn grant(&mut self, perm: Permission, tag: Tag, position: usize) {
|
|
// Simply add it to the "stack" -- this might add in the middle.
|
|
// As an optimization, do nothing if the new item is identical to one of its neighbors.
|
|
let item = Item::Permission(perm, tag);
|
|
if self.borrows[position-1] == item || self.borrows.get(position) == Some(&item) {
|
|
// Optimization applies, done.
|
|
trace!("reborrow: avoiding redundant item {}", item);
|
|
return;
|
|
}
|
|
trace!("reborrow: pushing item {}", item);
|
|
self.borrows.insert(position, item);
|
|
}
|
|
|
|
/// `reborrow` helper function.
|
|
/// Adds a barrier.
|
|
fn barrier(&mut self, call: CallId) {
|
|
let itm = Item::FnBarrier(call);
|
|
if *self.borrows.last().unwrap() == itm {
|
|
// This is just an optimization, no functional change: Avoid stacking
|
|
// multiple identical barriers on top of each other.
|
|
// This can happen when a function receives several shared references
|
|
// that overlap.
|
|
trace!("reborrow: avoiding redundant extra barrier");
|
|
} else {
|
|
trace!("reborrow: pushing barrier for call {}", call);
|
|
self.borrows.push(itm);
|
|
}
|
|
}
|
|
|
|
/// `reborrow` helper function: test that the stack invariants are still maintained.
|
|
fn test_invariants(&self) {
|
|
let mut saw_shared_read_only = false;
|
|
for item in self.borrows.iter() {
|
|
match item {
|
|
Item::Permission(Permission::SharedReadOnly, _) => {
|
|
saw_shared_read_only = true;
|
|
}
|
|
Item::Permission(perm, _) if saw_shared_read_only => {
|
|
panic!("Found {:?} on top of a SharedReadOnly!", perm);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Derived a new pointer from one with the given tag.
|
|
fn reborrow(
|
|
&mut self,
|
|
derived_from: Tag,
|
|
barrier: Option<CallId>,
|
|
new_kind: RefKind,
|
|
new_tag: Tag,
|
|
global: &GlobalState,
|
|
) -> EvalResult<'tcx> {
|
|
// Find the permission "from which we derive". To this end we first have to decide
|
|
// if we derive from a permission that grants writes or just reads.
|
|
let access = new_kind.access();
|
|
// Now we figure out which item grants our parent (`derived_from`) permission.
|
|
// We use that to determine (a) where to put the new item, and for raw pointers
|
|
// (b) whether to given read-only or read-write access.
|
|
// FIXME: This handling of raw pointers is fragile, very fragile. What if we do
|
|
// not get "the right one", like when there are multiple items granting `derived_from`
|
|
// and we accidentally create a read-only pointer? This can happen for two-phase borrows
|
|
// (then there's a `Unique` and a `SharedReadOnly` for the same tag), and for raw pointers
|
|
// (which currently all are `Untagged`).
|
|
let (derived_from_idx, derived_from_perm) = self.find_granting(access, derived_from)
|
|
.ok_or_else(|| InterpError::MachineError(format!(
|
|
"no item to reborrow as {} from tag {} found in borrow stack", new_kind, derived_from,
|
|
)))?;
|
|
// With this we can compute the permission for the new pointer.
|
|
let new_perm = new_kind.new_perm(derived_from_perm).expect("this should never fail");
|
|
|
|
// We behave very differently for the "unsafe" case of a shared-read-write pointer
|
|
// ("unsafe" because this also applies to shared references with interior mutability).
|
|
// This is because such pointers may be reborrowed to unique pointers that actually
|
|
// remain valid when their "parents" get further reborrows!
|
|
// However, either way, we ensure that we insert the new item in a way that between
|
|
// `derived_from` and the new one, there are only items *compatible with* `derived_from`.
|
|
if new_perm == Permission::SharedReadWrite {
|
|
// A very liberal reborrow because the new pointer does not expect any kind of aliasing guarantee.
|
|
// Just insert new permission as child of old permission, and maintain everything else.
|
|
// This inserts "as far down as possible", which is good because it makes this pointer as
|
|
// long-lived as possible *and* we want all the items that are incompatible with this
|
|
// to actually get removed from the stack. If we pushed a `SharedReadWrite` on top of
|
|
// a `SharedReadOnly`, we'd violate the invariant that `SaredReadOnly` are at the top
|
|
// and we'd allow write access without invalidating frozen shared references!
|
|
// This ensures F2b for `SharedReadWrite` by adding the new item below any
|
|
// potentially existing `SharedReadOnly`.
|
|
self.grant(new_perm, new_tag, derived_from_idx+1);
|
|
|
|
// No barrier. They can rightfully alias with `&mut`.
|
|
// FIXME: This means that the `dereferencable` attribute on non-frozen shared references
|
|
// is incorrect! They are dereferencable when the function is called, but might become
|
|
// non-dereferencable during the course of execution.
|
|
// Also see [1], [2].
|
|
//
|
|
// [1]: <https://internals.rust-lang.org/t/
|
|
// is-it-possible-to-be-memory-safe-with-deallocated-self/8457/8>,
|
|
// [2]: <https://lists.llvm.org/pipermail/llvm-dev/2018-July/124555.html>
|
|
} else {
|
|
// A "safe" reborrow for a pointer that actually expects some aliasing guarantees.
|
|
// Here, creating a reference actually counts as an access, and pops incompatible
|
|
// stuff off the stack.
|
|
// This ensures F2b for `Unique`, by removing offending `SharedReadOnly`.
|
|
let check_idx = self.access(access, derived_from, global)?;
|
|
assert_eq!(check_idx, derived_from_idx, "somehow we saw different items??");
|
|
|
|
// We insert "as far up as possible": We know only compatible items are remaining
|
|
// on top of `derived_from`, and we want the new item at the top so that we
|
|
// get the strongest possible guarantees.
|
|
// This ensures U1 and F1.
|
|
self.grant(new_perm, new_tag, self.borrows.len());
|
|
|
|
// Now is a good time to add the barrier, protecting the item we just added.
|
|
if let Some(call) = barrier {
|
|
self.barrier(call);
|
|
}
|
|
}
|
|
|
|
// Make sure that after all this, the stack's invariant is still maintained.
|
|
if cfg!(debug_assertions) {
|
|
self.test_invariants();
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Higher-level per-location operations: deref, access, reborrow.
|
|
impl<'tcx> Stacks {
|
|
/// Creates new stack with initial tag.
|
|
pub(crate) fn new(
|
|
size: Size,
|
|
tag: Tag,
|
|
extra: MemoryState,
|
|
) -> Self {
|
|
let item = Item::Permission(Permission::Unique, tag);
|
|
let stack = Stack {
|
|
borrows: vec![item],
|
|
};
|
|
Stacks {
|
|
stacks: RefCell::new(RangeMap::new(size, stack)),
|
|
global: extra,
|
|
}
|
|
}
|
|
|
|
/// `ptr` got used, reflect that in the stack.
|
|
fn access(
|
|
&self,
|
|
ptr: Pointer<Tag>,
|
|
size: Size,
|
|
kind: AccessKind,
|
|
) -> EvalResult<'tcx> {
|
|
trace!("{} access of tag {}: {:?}, size {}", kind, ptr.tag, ptr, size.bytes());
|
|
// Even reads can have a side-effect, by invalidating other references.
|
|
// This is fundamentally necessary since `&mut` asserts that there
|
|
// are no accesses through other references, not even reads.
|
|
let global = self.global.borrow();
|
|
let mut stacks = self.stacks.borrow_mut();
|
|
for stack in stacks.iter_mut(ptr.offset, size) {
|
|
stack.access(kind, ptr.tag, &*global)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Reborrow the given pointer to the new tag for the given kind of reference.
|
|
/// This works on `&self` because we might encounter references to constant memory.
|
|
fn reborrow(
|
|
&self,
|
|
ptr: Pointer<Tag>,
|
|
size: Size,
|
|
barrier: Option<CallId>,
|
|
new_kind: RefKind,
|
|
new_tag: Tag,
|
|
) -> EvalResult<'tcx> {
|
|
trace!(
|
|
"{} reborrow for tag {} to {}: {:?}, size {}",
|
|
new_kind, ptr.tag, new_tag, ptr, size.bytes(),
|
|
);
|
|
let global = self.global.borrow();
|
|
let mut stacks = self.stacks.borrow_mut();
|
|
for stack in stacks.iter_mut(ptr.offset, size) {
|
|
stack.reborrow(ptr.tag, barrier, new_kind, new_tag, &*global)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
// # Stacked Borrows Core End
|
|
|
|
// Glue code to connect with Miri Machine Hooks
|
|
|
|
impl Stacks {
|
|
pub fn new_allocation(
|
|
size: Size,
|
|
extra: &MemoryState,
|
|
kind: MemoryKind<MiriMemoryKind>,
|
|
) -> (Self, Tag) {
|
|
let tag = match kind {
|
|
MemoryKind::Stack => {
|
|
// New unique borrow. This `Uniq` is not accessible by the program,
|
|
// so it will only ever be used when using the local directly (i.e.,
|
|
// not through a pointer). That is, whenever we directly use a local, this will pop
|
|
// everything else off the stack, invalidating all previous pointers,
|
|
// and in particular, *all* raw pointers. This subsumes the explicit
|
|
// `reset` which the blog post [1] says to perform when accessing a local.
|
|
//
|
|
// [1]: <https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html>
|
|
Tag::Tagged(extra.borrow_mut().new_ptr())
|
|
}
|
|
_ => {
|
|
Tag::Untagged
|
|
}
|
|
};
|
|
let stack = Stacks::new(size, tag, Rc::clone(extra));
|
|
(stack, tag)
|
|
}
|
|
}
|
|
|
|
impl AllocationExtra<Tag> for Stacks {
|
|
#[inline(always)]
|
|
fn memory_read<'tcx>(
|
|
alloc: &Allocation<Tag, Stacks>,
|
|
ptr: Pointer<Tag>,
|
|
size: Size,
|
|
) -> EvalResult<'tcx> {
|
|
alloc.extra.access(ptr, size, AccessKind::Read)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn memory_written<'tcx>(
|
|
alloc: &mut Allocation<Tag, Stacks>,
|
|
ptr: Pointer<Tag>,
|
|
size: Size,
|
|
) -> EvalResult<'tcx> {
|
|
alloc.extra.access(ptr, size, AccessKind::write())
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn memory_deallocated<'tcx>(
|
|
alloc: &mut Allocation<Tag, Stacks>,
|
|
ptr: Pointer<Tag>,
|
|
size: Size,
|
|
) -> EvalResult<'tcx> {
|
|
alloc.extra.access(ptr, size, AccessKind::dealloc())
|
|
}
|
|
}
|
|
|
|
impl<'a, 'mir, 'tcx> EvalContextPrivExt<'a, 'mir, 'tcx> for crate::MiriEvalContext<'a, 'mir, 'tcx> {}
|
|
trait EvalContextPrivExt<'a, 'mir, 'tcx: 'a+'mir>: crate::MiriEvalContextExt<'a, 'mir, 'tcx> {
|
|
fn reborrow(
|
|
&mut self,
|
|
place: MPlaceTy<'tcx, Tag>,
|
|
size: Size,
|
|
mutbl: Option<Mutability>,
|
|
new_tag: Tag,
|
|
fn_barrier: bool,
|
|
) -> EvalResult<'tcx> {
|
|
let this = self.eval_context_mut();
|
|
let barrier = if fn_barrier { Some(this.frame().extra) } else { None };
|
|
let ptr = place.ptr.to_ptr()?;
|
|
trace!("reborrow: creating new reference for {:?} (pointee {}): {:?}",
|
|
ptr, place.layout.ty, new_tag);
|
|
|
|
// Get the allocation. It might not be mutable, so we cannot use `get_mut`.
|
|
let alloc = this.memory().get(ptr.alloc_id)?;
|
|
alloc.check_bounds(this, ptr, size)?;
|
|
// Update the stacks.
|
|
if mutbl == Some(MutImmutable) {
|
|
// Reference that cares about freezing. We need a frozen-sensitive reborrow.
|
|
this.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| {
|
|
let new_kind = RefKind::Shared { frozen };
|
|
alloc.extra.reborrow(cur_ptr, size, barrier, new_kind, new_tag)
|
|
})?;
|
|
} else {
|
|
// Just treat this as one big chunk.
|
|
let new_kind = if mutbl == Some(MutMutable) { RefKind::Mutable } else { RefKind::Raw };
|
|
alloc.extra.reborrow(ptr, size, barrier, new_kind, new_tag)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Retags an indidual pointer, returning the retagged version.
|
|
/// `mutbl` can be `None` to make this a raw pointer.
|
|
fn retag_reference(
|
|
&mut self,
|
|
val: ImmTy<'tcx, Tag>,
|
|
mutbl: Option<Mutability>,
|
|
fn_barrier: bool,
|
|
two_phase: bool,
|
|
) -> EvalResult<'tcx, Immediate<Tag>> {
|
|
let this = self.eval_context_mut();
|
|
// We want a place for where the ptr *points to*, so we get one.
|
|
let place = this.ref_to_mplace(val)?;
|
|
let size = this.size_and_align_of_mplace(place)?
|
|
.map(|(size, _)| size)
|
|
.unwrap_or_else(|| place.layout.size);
|
|
if size == Size::ZERO {
|
|
// Nothing to do for ZSTs.
|
|
return Ok(*val);
|
|
}
|
|
|
|
// Compute new borrow.
|
|
let new_tag = match mutbl {
|
|
Some(_) => Tag::Tagged(this.memory().extra.borrow_mut().new_ptr()),
|
|
None => Tag::Untagged,
|
|
};
|
|
|
|
// Reborrow.
|
|
this.reborrow(place, size, mutbl, new_tag, fn_barrier)?;
|
|
let new_place = place.replace_tag(new_tag);
|
|
// Handle two-phase borrows.
|
|
if two_phase {
|
|
assert!(mutbl == Some(MutMutable), "two-phase shared borrows make no sense");
|
|
// Grant read access *to the parent pointer* with the old tag. This means the same pointer
|
|
// has multiple items in the stack now!
|
|
// FIXME: Think about this some more, in particular about the interaction with cast-to-raw.
|
|
// Maybe find a better way to express 2-phase, now that we have a "more expressive language"
|
|
// in the stack.
|
|
let old_tag = place.ptr.to_ptr().unwrap().tag;
|
|
this.reborrow(new_place, size, Some(MutImmutable), old_tag, /* fn_barrier: */ false)?;
|
|
}
|
|
|
|
// Return new pointer.
|
|
Ok(new_place.to_ref())
|
|
}
|
|
}
|
|
|
|
impl<'a, 'mir, 'tcx> EvalContextExt<'a, 'mir, 'tcx> for crate::MiriEvalContext<'a, 'mir, 'tcx> {}
|
|
pub trait EvalContextExt<'a, 'mir, 'tcx: 'a+'mir>: crate::MiriEvalContextExt<'a, 'mir, 'tcx> {
|
|
fn retag(
|
|
&mut self,
|
|
kind: RetagKind,
|
|
place: PlaceTy<'tcx, Tag>
|
|
) -> EvalResult<'tcx> {
|
|
let this = self.eval_context_mut();
|
|
// Determine mutability and whether to add a barrier.
|
|
// Cannot use `builtin_deref` because that reports *immutable* for `Box`,
|
|
// making it useless.
|
|
fn qualify(ty: ty::Ty<'_>, kind: RetagKind) -> Option<(Option<Mutability>, bool)> {
|
|
match ty.sty {
|
|
// References are simple.
|
|
ty::Ref(_, _, mutbl) => Some((Some(mutbl), kind == RetagKind::FnEntry)),
|
|
// Raw pointers need to be enabled.
|
|
ty::RawPtr(..) if kind == RetagKind::Raw => Some((None, false)),
|
|
// Boxes do not get a barrier: barriers reflect that references outlive the call
|
|
// they were passed in to; that's just not the case for boxes.
|
|
ty::Adt(..) if ty.is_box() => Some((Some(MutMutable), false)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
// We need a visitor to visit all references. However, that requires
|
|
// a `MemPlace`, so we have a fast path for reference types that
|
|
// avoids allocating.
|
|
if let Some((mutbl, barrier)) = qualify(place.layout.ty, kind) {
|
|
// Fast path.
|
|
let val = this.read_immediate(this.place_to_op(place)?)?;
|
|
let val = this.retag_reference(val, mutbl, barrier, kind == RetagKind::TwoPhase)?;
|
|
this.write_immediate(val, place)?;
|
|
return Ok(());
|
|
}
|
|
let place = this.force_allocation(place)?;
|
|
|
|
let mut visitor = RetagVisitor { ecx: this, kind };
|
|
visitor.visit_value(place)?;
|
|
|
|
// The actual visitor.
|
|
struct RetagVisitor<'ecx, 'a, 'mir, 'tcx> {
|
|
ecx: &'ecx mut MiriEvalContext<'a, 'mir, 'tcx>,
|
|
kind: RetagKind,
|
|
}
|
|
impl<'ecx, 'a, 'mir, 'tcx>
|
|
MutValueVisitor<'a, 'mir, 'tcx, Evaluator<'tcx>>
|
|
for
|
|
RetagVisitor<'ecx, 'a, 'mir, 'tcx>
|
|
{
|
|
type V = MPlaceTy<'tcx, Tag>;
|
|
|
|
#[inline(always)]
|
|
fn ecx(&mut self) -> &mut MiriEvalContext<'a, 'mir, 'tcx> {
|
|
&mut self.ecx
|
|
}
|
|
|
|
// Primitives of reference type, that is the one thing we are interested in.
|
|
fn visit_primitive(&mut self, place: MPlaceTy<'tcx, Tag>) -> EvalResult<'tcx>
|
|
{
|
|
// Cannot use `builtin_deref` because that reports *immutable* for `Box`,
|
|
// making it useless.
|
|
if let Some((mutbl, barrier)) = qualify(place.layout.ty, self.kind) {
|
|
let val = self.ecx.read_immediate(place.into())?;
|
|
let val = self.ecx.retag_reference(
|
|
val,
|
|
mutbl,
|
|
barrier,
|
|
self.kind == RetagKind::TwoPhase
|
|
)?;
|
|
self.ecx.write_immediate(val, place.into())?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|