Dylan DPC a1c34493d4
Rollup merge of #73945 - est31:unused_externs, r=Mark-Simulacrum
Add an unstable --json=unused-externs flag to print unused externs

This adds an unstable flag to print a list of the extern names not used by cargo.

This PR will enable cargo to collect unused dependencies from all units and provide warnings.
The companion PR to cargo is: https://github.com/rust-lang/cargo/pull/8437

The goal is eventual stabilization of this flag in rustc as well as in cargo.

Discussion of this feature is mostly contained inside these threads: #57274 #72342 #72603

The feature builds upon the internal datastructures added by #72342

Externs are uniquely identified by name and the information is sufficient for cargo.
If the mode is enabled, rustc will print json messages like:

```
{"unused_extern_names":["byteorder","openssl","webpki"]}
```

For a crate that got passed byteorder, openssl and webpki dependencies but needed none of them.

### Q: Why not pass -Wunused-crate-dependencies?
A: See [ehuss's comment here](https://github.com/rust-lang/rust/issues/57274#issuecomment-624839355)
   TLDR: it's cleaner. Rust's warning system wasn't built to be filtered or edited by cargo.
   Even a basic implementation of the feature would have to change the "n warnings emitted" line that rustc prints at the end.
   Cargo ideally wants to synthesize its own warnings anyways. For example, it would be hard for rustc to emit warnings like
   "dependency foo is only used by dev targets", suggesting to make it a dev-dependency instead.

### Q: Make rustc emit used or unused externs?
A: Emitting used externs has the advantage that it simplifies cargo's collection job.
   However, emitting unused externs creates less data to be communicated between rustc and cargo.
   Often you want to paste a cargo command obtained from `cargo build -vv` for doing something
   completely unrelated. The message is emitted always, even if no warning or error is emitted.
   At that point, even this tiny difference in "noise" matters. That's why I went with emitting unused externs.

### Q: One json msg per extern or a collective json msg?
A: Same as above, the data format should be concise. Having 30 lines for the 30 crates a crate uses would be disturbing to readers.
   Also it helps the cargo implementation to know that there aren't more unused deps coming.

### Q: Why use names of externs instead of e.g. paths?
A: Names are both sufficient as well as neccessary to uniquely identify a passed `--extern` arg.
   Names are sufficient because you *must* pass a name when passing an `--extern` arg.
   Passing a path is optional on the other hand so rustc might also figure out a crate's location from the file system.
   You can also put multiple paths for the same extern name, via e.g. `--extern hello=/usr/lib/hello.rmeta --extern hello=/usr/local/lib/hello.rmeta`,
   but rustc will only ever use one of those paths.
   Also, paths don't identify a dependency uniquely as it is possible to have multiple different extern names point to the same path.
   So paths are ill-suited for identification.

### Q: What about 2015 edition crates?
A: They are fully supported.
   Even on the 2015 edition, an explicit `--extern` flag is is required to enable `extern crate foo;` to work (outside of sysroot crates, which this flag doesn't warn about anyways).
   So the lint would still fire on 2015 edition crates if you haven't included a dependency specified in Cargo.toml using `extern crate foo;` or similar.
   The lint won't fire if your sole use in the crate is through a `extern crate foo;`   statement, but that's not its job.
   For detecting unused `extern crate foo` statements, there is the `unused_extern_crates` lint
   which can be enabled by `#![warn(unused_extern_crates)]` or similar.

cc ```@jsgf``` ```@ehuss``` ```@petrochenkov``` ```@estebank```
2021-04-04 19:19:58 +02:00

1067 lines
40 KiB
Rust

//! Validates all used crates and extern libraries and loads their metadata
use crate::dynamic_lib::DynamicLibrary;
use crate::locator::{CrateError, CrateLocator, CratePaths};
use crate::rmeta::{CrateDep, CrateMetadata, CrateNumMap, CrateRoot, MetadataBlob};
use rustc_ast::expand::allocator::AllocatorKind;
use rustc_ast::{self as ast, *};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::svh::Svh;
use rustc_data_structures::sync::Lrc;
use rustc_expand::base::SyntaxExtension;
use rustc_hir::def_id::{CrateNum, LocalDefId, StableCrateId, LOCAL_CRATE};
use rustc_hir::definitions::Definitions;
use rustc_index::vec::IndexVec;
use rustc_middle::middle::cstore::{CrateDepKind, CrateSource, ExternCrate};
use rustc_middle::middle::cstore::{ExternCrateSource, MetadataLoaderDyn};
use rustc_middle::ty::TyCtxt;
use rustc_serialize::json::ToJson;
use rustc_session::config::{self, CrateType, ExternLocation};
use rustc_session::lint::{self, BuiltinLintDiagnostics, ExternDepSpec};
use rustc_session::output::validate_crate_name;
use rustc_session::search_paths::PathKind;
use rustc_session::{CrateDisambiguator, Session};
use rustc_span::edition::Edition;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_target::spec::{PanicStrategy, TargetTriple};
use proc_macro::bridge::client::ProcMacro;
use std::collections::BTreeMap;
use std::path::Path;
use std::{cmp, env};
use tracing::{debug, info};
#[derive(Clone)]
pub struct CStore {
metas: IndexVec<CrateNum, Option<Lrc<CrateMetadata>>>,
injected_panic_runtime: Option<CrateNum>,
/// This crate needs an allocator and either provides it itself, or finds it in a dependency.
/// If the above is true, then this field denotes the kind of the found allocator.
allocator_kind: Option<AllocatorKind>,
/// This crate has a `#[global_allocator]` item.
has_global_allocator: bool,
/// This map is used to verify we get no hash conflicts between
/// `StableCrateId` values.
stable_crate_ids: FxHashMap<StableCrateId, CrateNum>,
/// Unused externs of the crate
unused_externs: Vec<Symbol>,
}
pub struct CrateLoader<'a> {
// Immutable configuration.
sess: &'a Session,
metadata_loader: &'a MetadataLoaderDyn,
local_crate_name: Symbol,
// Mutable output.
cstore: CStore,
used_extern_options: FxHashSet<Symbol>,
}
pub enum LoadedMacro {
MacroDef(ast::Item, Edition),
ProcMacro(SyntaxExtension),
}
crate struct Library {
pub source: CrateSource,
pub metadata: MetadataBlob,
}
enum LoadResult {
Previous(CrateNum),
Loaded(Library),
}
/// A reference to `CrateMetadata` that can also give access to whole crate store when necessary.
#[derive(Clone, Copy)]
crate struct CrateMetadataRef<'a> {
pub cdata: &'a CrateMetadata,
pub cstore: &'a CStore,
}
impl std::ops::Deref for CrateMetadataRef<'_> {
type Target = CrateMetadata;
fn deref(&self) -> &Self::Target {
self.cdata
}
}
struct CrateDump<'a>(&'a CStore);
impl<'a> std::fmt::Debug for CrateDump<'a> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(fmt, "resolved crates:")?;
// `iter_crate_data` does not allow returning values. Thus we use a mutable variable here
// that aggregates the value (and any errors that could happen).
let mut res = Ok(());
self.0.iter_crate_data(|cnum, data| {
res = res.and(
try {
writeln!(fmt, " name: {}", data.name())?;
writeln!(fmt, " cnum: {}", cnum)?;
writeln!(fmt, " hash: {}", data.hash())?;
writeln!(fmt, " reqd: {:?}", data.dep_kind())?;
let CrateSource { dylib, rlib, rmeta } = data.source();
if let Some(dylib) = dylib {
writeln!(fmt, " dylib: {}", dylib.0.display())?;
}
if let Some(rlib) = rlib {
writeln!(fmt, " rlib: {}", rlib.0.display())?;
}
if let Some(rmeta) = rmeta {
writeln!(fmt, " rmeta: {}", rmeta.0.display())?;
}
},
);
});
res
}
}
impl CStore {
crate fn from_tcx(tcx: TyCtxt<'_>) -> &CStore {
tcx.cstore_as_any().downcast_ref::<CStore>().expect("`tcx.cstore` is not a `CStore`")
}
fn alloc_new_crate_num(&mut self) -> CrateNum {
self.metas.push(None);
CrateNum::new(self.metas.len() - 1)
}
crate fn get_crate_data(&self, cnum: CrateNum) -> CrateMetadataRef<'_> {
let cdata = self.metas[cnum]
.as_ref()
.unwrap_or_else(|| panic!("Failed to get crate data for {:?}", cnum));
CrateMetadataRef { cdata, cstore: self }
}
fn set_crate_data(&mut self, cnum: CrateNum, data: CrateMetadata) {
assert!(self.metas[cnum].is_none(), "Overwriting crate metadata entry");
self.metas[cnum] = Some(Lrc::new(data));
}
crate fn iter_crate_data(&self, mut f: impl FnMut(CrateNum, &CrateMetadata)) {
for (cnum, data) in self.metas.iter_enumerated() {
if let Some(data) = data {
f(cnum, data);
}
}
}
fn push_dependencies_in_postorder(&self, deps: &mut Vec<CrateNum>, cnum: CrateNum) {
if !deps.contains(&cnum) {
let data = self.get_crate_data(cnum);
for &dep in data.dependencies().iter() {
if dep != cnum {
self.push_dependencies_in_postorder(deps, dep);
}
}
deps.push(cnum);
}
}
crate fn crate_dependencies_in_postorder(&self, cnum: CrateNum) -> Vec<CrateNum> {
let mut deps = Vec::new();
if cnum == LOCAL_CRATE {
self.iter_crate_data(|cnum, _| self.push_dependencies_in_postorder(&mut deps, cnum));
} else {
self.push_dependencies_in_postorder(&mut deps, cnum);
}
deps
}
fn crate_dependencies_in_reverse_postorder(&self, cnum: CrateNum) -> Vec<CrateNum> {
let mut deps = self.crate_dependencies_in_postorder(cnum);
deps.reverse();
deps
}
crate fn injected_panic_runtime(&self) -> Option<CrateNum> {
self.injected_panic_runtime
}
crate fn allocator_kind(&self) -> Option<AllocatorKind> {
self.allocator_kind
}
crate fn has_global_allocator(&self) -> bool {
self.has_global_allocator
}
pub fn report_unused_deps(&self, tcx: TyCtxt<'_>) {
// We put the check for the option before the lint_level_at_node call
// because the call mutates internal state and introducing it
// leads to some ui tests failing.
if !tcx.sess.opts.json_unused_externs {
return;
}
let level = tcx
.lint_level_at_node(lint::builtin::UNUSED_CRATE_DEPENDENCIES, rustc_hir::CRATE_HIR_ID)
.0;
if level != lint::Level::Allow {
let unused_externs =
self.unused_externs.iter().map(|ident| ident.to_ident_string()).collect::<Vec<_>>();
let unused_externs = unused_externs.iter().map(String::as_str).collect::<Vec<&str>>();
tcx.sess
.parse_sess
.span_diagnostic
.emit_unused_externs(level.as_str(), &unused_externs);
}
}
}
impl<'a> CrateLoader<'a> {
pub fn new(
sess: &'a Session,
metadata_loader: &'a MetadataLoaderDyn,
local_crate_name: &str,
) -> Self {
let local_crate_stable_id =
StableCrateId::new(local_crate_name, sess.local_crate_disambiguator());
let mut stable_crate_ids = FxHashMap::default();
stable_crate_ids.insert(local_crate_stable_id, LOCAL_CRATE);
CrateLoader {
sess,
metadata_loader,
local_crate_name: Symbol::intern(local_crate_name),
cstore: CStore {
// We add an empty entry for LOCAL_CRATE (which maps to zero) in
// order to make array indices in `metas` match with the
// corresponding `CrateNum`. This first entry will always remain
// `None`.
metas: IndexVec::from_elem_n(None, 1),
injected_panic_runtime: None,
allocator_kind: None,
has_global_allocator: false,
stable_crate_ids,
unused_externs: Vec::new(),
},
used_extern_options: Default::default(),
}
}
pub fn cstore(&self) -> &CStore {
&self.cstore
}
pub fn into_cstore(self) -> CStore {
self.cstore
}
fn existing_match(&self, name: Symbol, hash: Option<Svh>, kind: PathKind) -> Option<CrateNum> {
let mut ret = None;
self.cstore.iter_crate_data(|cnum, data| {
if data.name() != name {
tracing::trace!("{} did not match {}", data.name(), name);
return;
}
match hash {
Some(hash) if hash == data.hash() => {
ret = Some(cnum);
return;
}
Some(hash) => {
debug!("actual hash {} did not match expected {}", hash, data.hash());
return;
}
None => {}
}
// When the hash is None we're dealing with a top-level dependency
// in which case we may have a specification on the command line for
// this library. Even though an upstream library may have loaded
// something of the same name, we have to make sure it was loaded
// from the exact same location as well.
//
// We're also sure to compare *paths*, not actual byte slices. The
// `source` stores paths which are normalized which may be different
// from the strings on the command line.
let source = self.cstore.get_crate_data(cnum).cdata.source();
if let Some(entry) = self.sess.opts.externs.get(&name.as_str()) {
// Only use `--extern crate_name=path` here, not `--extern crate_name`.
if let Some(mut files) = entry.files() {
if files.any(|l| {
let l = l.canonicalized();
source.dylib.as_ref().map(|(p, _)| p) == Some(l)
|| source.rlib.as_ref().map(|(p, _)| p) == Some(l)
|| source.rmeta.as_ref().map(|(p, _)| p) == Some(l)
}) {
ret = Some(cnum);
}
}
return;
}
// Alright, so we've gotten this far which means that `data` has the
// right name, we don't have a hash, and we don't have a --extern
// pointing for ourselves. We're still not quite yet done because we
// have to make sure that this crate was found in the crate lookup
// path (this is a top-level dependency) as we don't want to
// implicitly load anything inside the dependency lookup path.
let prev_kind = source
.dylib
.as_ref()
.or(source.rlib.as_ref())
.or(source.rmeta.as_ref())
.expect("No sources for crate")
.1;
if kind.matches(prev_kind) {
ret = Some(cnum);
} else {
debug!(
"failed to load existing crate {}; kind {:?} did not match prev_kind {:?}",
name, kind, prev_kind
);
}
});
ret
}
fn verify_no_symbol_conflicts(&self, root: &CrateRoot<'_>) -> Result<(), CrateError> {
// Check for (potential) conflicts with the local crate
if self.local_crate_name == root.name()
&& self.sess.local_crate_disambiguator() == root.disambiguator()
{
return Err(CrateError::SymbolConflictsCurrent(root.name()));
}
// Check for conflicts with any crate loaded so far
let mut res = Ok(());
self.cstore.iter_crate_data(|_, other| {
if other.name() == root.name() && // same crate-name
other.disambiguator() == root.disambiguator() && // same crate-disambiguator
other.hash() != root.hash()
{
// but different SVH
res = Err(CrateError::SymbolConflictsOthers(root.name()));
}
});
res
}
fn verify_no_stable_crate_id_hash_conflicts(
&mut self,
root: &CrateRoot<'_>,
cnum: CrateNum,
) -> Result<(), CrateError> {
if let Some(existing) = self.cstore.stable_crate_ids.insert(root.stable_crate_id(), cnum) {
let crate_name0 = root.name();
let crate_name1 = self.cstore.get_crate_data(existing).name();
return Err(CrateError::StableCrateIdCollision(crate_name0, crate_name1));
}
Ok(())
}
fn register_crate(
&mut self,
host_lib: Option<Library>,
root: Option<&CratePaths>,
lib: Library,
dep_kind: CrateDepKind,
name: Symbol,
) -> Result<CrateNum, CrateError> {
let _prof_timer = self.sess.prof.generic_activity("metadata_register_crate");
let Library { source, metadata } = lib;
let crate_root = metadata.get_root();
let host_hash = host_lib.as_ref().map(|lib| lib.metadata.get_root().hash());
let private_dep =
self.sess.opts.externs.get(&name.as_str()).map_or(false, |e| e.is_private_dep);
// Claim this crate number and cache it
let cnum = self.cstore.alloc_new_crate_num();
info!(
"register crate `{}` (cnum = {}. private_dep = {})",
crate_root.name(),
cnum,
private_dep
);
// Maintain a reference to the top most crate.
// Stash paths for top-most crate locally if necessary.
let crate_paths;
let root = if let Some(root) = root {
root
} else {
crate_paths = CratePaths::new(crate_root.name(), source.clone());
&crate_paths
};
let cnum_map = self.resolve_crate_deps(root, &crate_root, &metadata, cnum, dep_kind)?;
let raw_proc_macros = if crate_root.is_proc_macro_crate() {
let temp_root;
let (dlsym_source, dlsym_root) = match &host_lib {
Some(host_lib) => (&host_lib.source, {
temp_root = host_lib.metadata.get_root();
&temp_root
}),
None => (&source, &crate_root),
};
let dlsym_dylib = dlsym_source.dylib.as_ref().expect("no dylib for a proc-macro crate");
Some(self.dlsym_proc_macros(&dlsym_dylib.0, dlsym_root.disambiguator())?)
} else {
None
};
// Perform some verification *after* resolve_crate_deps() above is
// known to have been successful. It seems that - in error cases - the
// cstore can be in a temporarily invalid state between cnum allocation
// and dependency resolution and the verification code would produce
// ICEs in that case (see #83045).
self.verify_no_symbol_conflicts(&crate_root)?;
self.verify_no_stable_crate_id_hash_conflicts(&crate_root, cnum)?;
let crate_metadata = CrateMetadata::new(
self.sess,
metadata,
crate_root,
raw_proc_macros,
cnum,
cnum_map,
dep_kind,
source,
private_dep,
host_hash,
);
self.cstore.set_crate_data(cnum, crate_metadata);
Ok(cnum)
}
fn load_proc_macro<'b>(
&self,
locator: &mut CrateLocator<'b>,
path_kind: PathKind,
) -> Result<Option<(LoadResult, Option<Library>)>, CrateError>
where
'a: 'b,
{
// Use a new crate locator so trying to load a proc macro doesn't affect the error
// message we emit
let mut proc_macro_locator = locator.clone();
// Try to load a proc macro
proc_macro_locator.is_proc_macro = Some(true);
// Load the proc macro crate for the target
let (locator, target_result) = if self.sess.opts.debugging_opts.dual_proc_macros {
proc_macro_locator.reset();
let result = match self.load(&mut proc_macro_locator)? {
Some(LoadResult::Previous(cnum)) => {
return Ok(Some((LoadResult::Previous(cnum), None)));
}
Some(LoadResult::Loaded(library)) => Some(LoadResult::Loaded(library)),
None => return Ok(None),
};
locator.hash = locator.host_hash;
// Use the locator when looking for the host proc macro crate, as that is required
// so we want it to affect the error message
(locator, result)
} else {
(&mut proc_macro_locator, None)
};
// Load the proc macro crate for the host
locator.reset();
locator.is_proc_macro = Some(true);
locator.target = &self.sess.host;
locator.triple = TargetTriple::from_triple(config::host_triple());
locator.filesearch = self.sess.host_filesearch(path_kind);
let host_result = match self.load(locator)? {
Some(host_result) => host_result,
None => return Ok(None),
};
Ok(Some(if self.sess.opts.debugging_opts.dual_proc_macros {
let host_result = match host_result {
LoadResult::Previous(..) => {
panic!("host and target proc macros must be loaded in lock-step")
}
LoadResult::Loaded(library) => library,
};
(target_result.unwrap(), Some(host_result))
} else {
(host_result, None)
}))
}
fn resolve_crate<'b>(
&'b mut self,
name: Symbol,
span: Span,
dep_kind: CrateDepKind,
dep: Option<(&'b CratePaths, &'b CrateDep)>,
) -> CrateNum {
if dep.is_none() {
self.used_extern_options.insert(name);
}
self.maybe_resolve_crate(name, dep_kind, dep)
.unwrap_or_else(|err| err.report(self.sess, span))
}
fn maybe_resolve_crate<'b>(
&'b mut self,
name: Symbol,
mut dep_kind: CrateDepKind,
dep: Option<(&'b CratePaths, &'b CrateDep)>,
) -> Result<CrateNum, CrateError> {
info!("resolving crate `{}`", name);
if !name.as_str().is_ascii() {
return Err(CrateError::NonAsciiName(name));
}
let (root, hash, host_hash, extra_filename, path_kind) = match dep {
Some((root, dep)) => (
Some(root),
Some(dep.hash),
dep.host_hash,
Some(&dep.extra_filename[..]),
PathKind::Dependency,
),
None => (None, None, None, None, PathKind::Crate),
};
let result = if let Some(cnum) = self.existing_match(name, hash, path_kind) {
(LoadResult::Previous(cnum), None)
} else {
info!("falling back to a load");
let mut locator = CrateLocator::new(
self.sess,
self.metadata_loader,
name,
hash,
host_hash,
extra_filename,
false, // is_host
path_kind,
root,
Some(false), // is_proc_macro
);
match self.load(&mut locator)? {
Some(res) => (res, None),
None => {
dep_kind = CrateDepKind::MacrosOnly;
match self.load_proc_macro(&mut locator, path_kind)? {
Some(res) => res,
None => return Err(locator.into_error()),
}
}
}
};
match result {
(LoadResult::Previous(cnum), None) => {
let data = self.cstore.get_crate_data(cnum);
if data.is_proc_macro_crate() {
dep_kind = CrateDepKind::MacrosOnly;
}
data.update_dep_kind(|data_dep_kind| cmp::max(data_dep_kind, dep_kind));
Ok(cnum)
}
(LoadResult::Loaded(library), host_library) => {
self.register_crate(host_library, root, library, dep_kind, name)
}
_ => panic!(),
}
}
fn load(&self, locator: &mut CrateLocator<'_>) -> Result<Option<LoadResult>, CrateError> {
let library = match locator.maybe_load_library_crate()? {
Some(library) => library,
None => return Ok(None),
};
// In the case that we're loading a crate, but not matching
// against a hash, we could load a crate which has the same hash
// as an already loaded crate. If this is the case prevent
// duplicates by just using the first crate.
//
// Note that we only do this for target triple crates, though, as we
// don't want to match a host crate against an equivalent target one
// already loaded.
let root = library.metadata.get_root();
Ok(Some(if locator.triple == self.sess.opts.target_triple {
let mut result = LoadResult::Loaded(library);
self.cstore.iter_crate_data(|cnum, data| {
if data.name() == root.name() && root.hash() == data.hash() {
assert!(locator.hash.is_none());
info!("load success, going to previous cnum: {}", cnum);
result = LoadResult::Previous(cnum);
}
});
result
} else {
LoadResult::Loaded(library)
}))
}
fn update_extern_crate(&self, cnum: CrateNum, extern_crate: ExternCrate) {
let cmeta = self.cstore.get_crate_data(cnum);
if cmeta.update_extern_crate(extern_crate) {
// Propagate the extern crate info to dependencies if it was updated.
let extern_crate = ExternCrate { dependency_of: cnum, ..extern_crate };
for &dep_cnum in cmeta.dependencies().iter() {
self.update_extern_crate(dep_cnum, extern_crate);
}
}
}
// Go through the crate metadata and load any crates that it references
fn resolve_crate_deps(
&mut self,
root: &CratePaths,
crate_root: &CrateRoot<'_>,
metadata: &MetadataBlob,
krate: CrateNum,
dep_kind: CrateDepKind,
) -> Result<CrateNumMap, CrateError> {
debug!("resolving deps of external crate");
if crate_root.is_proc_macro_crate() {
return Ok(CrateNumMap::new());
}
// The map from crate numbers in the crate we're resolving to local crate numbers.
// We map 0 and all other holes in the map to our parent crate. The "additional"
// self-dependencies should be harmless.
let deps = crate_root.decode_crate_deps(metadata);
let mut crate_num_map = CrateNumMap::with_capacity(1 + deps.len());
crate_num_map.push(krate);
for dep in deps {
info!(
"resolving dep crate {} hash: `{}` extra filename: `{}`",
dep.name, dep.hash, dep.extra_filename
);
let dep_kind = match dep_kind {
CrateDepKind::MacrosOnly => CrateDepKind::MacrosOnly,
_ => dep.kind,
};
let cnum = self.maybe_resolve_crate(dep.name, dep_kind, Some((root, &dep)))?;
crate_num_map.push(cnum);
}
debug!("resolve_crate_deps: cnum_map for {:?} is {:?}", krate, crate_num_map);
Ok(crate_num_map)
}
fn dlsym_proc_macros(
&self,
path: &Path,
disambiguator: CrateDisambiguator,
) -> Result<&'static [ProcMacro], CrateError> {
// Make sure the path contains a / or the linker will search for it.
let path = env::current_dir().unwrap().join(path);
let lib = match DynamicLibrary::open(&path) {
Ok(lib) => lib,
Err(s) => return Err(CrateError::DlOpen(s)),
};
let sym = self.sess.generate_proc_macro_decls_symbol(disambiguator);
let decls = unsafe {
let sym = match lib.symbol(&sym) {
Ok(f) => f,
Err(s) => return Err(CrateError::DlSym(s)),
};
*(sym as *const &[ProcMacro])
};
// Intentionally leak the dynamic library. We can't ever unload it
// since the library can make things that will live arbitrarily long.
std::mem::forget(lib);
Ok(decls)
}
fn inject_panic_runtime(&mut self, krate: &ast::Crate) {
// If we're only compiling an rlib, then there's no need to select a
// panic runtime, so we just skip this section entirely.
let any_non_rlib = self.sess.crate_types().iter().any(|ct| *ct != CrateType::Rlib);
if !any_non_rlib {
info!("panic runtime injection skipped, only generating rlib");
return;
}
// If we need a panic runtime, we try to find an existing one here. At
// the same time we perform some general validation of the DAG we've got
// going such as ensuring everything has a compatible panic strategy.
//
// The logic for finding the panic runtime here is pretty much the same
// as the allocator case with the only addition that the panic strategy
// compilation mode also comes into play.
let desired_strategy = self.sess.panic_strategy();
let mut runtime_found = false;
let mut needs_panic_runtime =
self.sess.contains_name(&krate.attrs, sym::needs_panic_runtime);
self.cstore.iter_crate_data(|cnum, data| {
needs_panic_runtime = needs_panic_runtime || data.needs_panic_runtime();
if data.is_panic_runtime() {
// Inject a dependency from all #![needs_panic_runtime] to this
// #![panic_runtime] crate.
self.inject_dependency_if(cnum, "a panic runtime", &|data| {
data.needs_panic_runtime()
});
runtime_found = runtime_found || data.dep_kind() == CrateDepKind::Explicit;
}
});
// If an explicitly linked and matching panic runtime was found, or if
// we just don't need one at all, then we're done here and there's
// nothing else to do.
if !needs_panic_runtime || runtime_found {
return;
}
// By this point we know that we (a) need a panic runtime and (b) no
// panic runtime was explicitly linked. Here we just load an appropriate
// default runtime for our panic strategy and then inject the
// dependencies.
//
// We may resolve to an already loaded crate (as the crate may not have
// been explicitly linked prior to this) and we may re-inject
// dependencies again, but both of those situations are fine.
//
// Also note that we have yet to perform validation of the crate graph
// in terms of everyone has a compatible panic runtime format, that's
// performed later as part of the `dependency_format` module.
let name = match desired_strategy {
PanicStrategy::Unwind => sym::panic_unwind,
PanicStrategy::Abort => sym::panic_abort,
};
info!("panic runtime not found -- loading {}", name);
let cnum = self.resolve_crate(name, DUMMY_SP, CrateDepKind::Implicit, None);
let data = self.cstore.get_crate_data(cnum);
// Sanity check the loaded crate to ensure it is indeed a panic runtime
// and the panic strategy is indeed what we thought it was.
if !data.is_panic_runtime() {
self.sess.err(&format!("the crate `{}` is not a panic runtime", name));
}
if data.panic_strategy() != desired_strategy {
self.sess.err(&format!(
"the crate `{}` does not have the panic \
strategy `{}`",
name,
desired_strategy.desc()
));
}
self.cstore.injected_panic_runtime = Some(cnum);
self.inject_dependency_if(cnum, "a panic runtime", &|data| data.needs_panic_runtime());
}
fn inject_profiler_runtime(&mut self, krate: &ast::Crate) {
if (self.sess.instrument_coverage()
|| self.sess.opts.debugging_opts.profile
|| self.sess.opts.cg.profile_generate.enabled())
&& !self.sess.opts.debugging_opts.no_profiler_runtime
{
info!("loading profiler");
if self.sess.contains_name(&krate.attrs, sym::no_core) {
self.sess.err(
"`profiler_builtins` crate (required by compiler options) \
is not compatible with crate attribute `#![no_core]`",
);
}
let name = sym::profiler_builtins;
let cnum = self.resolve_crate(name, DUMMY_SP, CrateDepKind::Implicit, None);
let data = self.cstore.get_crate_data(cnum);
// Sanity check the loaded crate to ensure it is indeed a profiler runtime
if !data.is_profiler_runtime() {
self.sess.err("the crate `profiler_builtins` is not a profiler runtime");
}
}
}
fn inject_allocator_crate(&mut self, krate: &ast::Crate) {
self.cstore.has_global_allocator = match &*global_allocator_spans(&self.sess, krate) {
[span1, span2, ..] => {
self.sess
.struct_span_err(*span2, "cannot define multiple global allocators")
.span_label(*span2, "cannot define a new global allocator")
.span_label(*span1, "previous global allocator defined here")
.emit();
true
}
spans => !spans.is_empty(),
};
// Check to see if we actually need an allocator. This desire comes
// about through the `#![needs_allocator]` attribute and is typically
// written down in liballoc.
let mut needs_allocator = self.sess.contains_name(&krate.attrs, sym::needs_allocator);
self.cstore.iter_crate_data(|_, data| {
needs_allocator = needs_allocator || data.needs_allocator();
});
if !needs_allocator {
return;
}
// At this point we've determined that we need an allocator. Let's see
// if our compilation session actually needs an allocator based on what
// we're emitting.
let all_rlib = self.sess.crate_types().iter().all(|ct| matches!(*ct, CrateType::Rlib));
if all_rlib {
return;
}
// Ok, we need an allocator. Not only that but we're actually going to
// create an artifact that needs one linked in. Let's go find the one
// that we're going to link in.
//
// First up we check for global allocators. Look at the crate graph here
// and see what's a global allocator, including if we ourselves are a
// global allocator.
let mut global_allocator =
self.cstore.has_global_allocator.then(|| Symbol::intern("this crate"));
self.cstore.iter_crate_data(|_, data| {
if !data.has_global_allocator() {
return;
}
match global_allocator {
Some(other_crate) => {
self.sess.err(&format!(
"the `#[global_allocator]` in {} \
conflicts with global \
allocator in: {}",
other_crate,
data.name()
));
}
None => global_allocator = Some(data.name()),
}
});
if global_allocator.is_some() {
self.cstore.allocator_kind = Some(AllocatorKind::Global);
return;
}
// Ok we haven't found a global allocator but we still need an
// allocator. At this point our allocator request is typically fulfilled
// by the standard library, denoted by the `#![default_lib_allocator]`
// attribute.
let mut has_default = self.sess.contains_name(&krate.attrs, sym::default_lib_allocator);
self.cstore.iter_crate_data(|_, data| {
if data.has_default_lib_allocator() {
has_default = true;
}
});
if !has_default {
self.sess.err(
"no global memory allocator found but one is \
required; link to std or \
add `#[global_allocator]` to a static item \
that implements the GlobalAlloc trait.",
);
}
self.cstore.allocator_kind = Some(AllocatorKind::Default);
}
fn inject_dependency_if(
&self,
krate: CrateNum,
what: &str,
needs_dep: &dyn Fn(&CrateMetadata) -> bool,
) {
// don't perform this validation if the session has errors, as one of
// those errors may indicate a circular dependency which could cause
// this to stack overflow.
if self.sess.has_errors() {
return;
}
// Before we inject any dependencies, make sure we don't inject a
// circular dependency by validating that this crate doesn't
// transitively depend on any crates satisfying `needs_dep`.
for dep in self.cstore.crate_dependencies_in_reverse_postorder(krate) {
let data = self.cstore.get_crate_data(dep);
if needs_dep(&data) {
self.sess.err(&format!(
"the crate `{}` cannot depend \
on a crate that needs {}, but \
it depends on `{}`",
self.cstore.get_crate_data(krate).name(),
what,
data.name()
));
}
}
// All crates satisfying `needs_dep` do not explicitly depend on the
// crate provided for this compile, but in order for this compilation to
// be successfully linked we need to inject a dependency (to order the
// crates on the command line correctly).
self.cstore.iter_crate_data(|cnum, data| {
if !needs_dep(data) {
return;
}
info!("injecting a dep from {} to {}", cnum, krate);
data.add_dependency(krate);
});
}
fn report_unused_deps(&mut self, krate: &ast::Crate) {
// Make a point span rather than covering the whole file
let span = krate.span.shrink_to_lo();
// Complain about anything left over
for (name, entry) in self.sess.opts.externs.iter() {
if let ExternLocation::FoundInLibrarySearchDirectories = entry.location {
// Don't worry about pathless `--extern foo` sysroot references
continue;
}
let name_interned = Symbol::intern(name);
if self.used_extern_options.contains(&name_interned) {
continue;
}
// Got a real unused --extern
if self.sess.opts.json_unused_externs {
self.cstore.unused_externs.push(name_interned);
continue;
}
let diag = match self.sess.opts.extern_dep_specs.get(name) {
Some(loc) => BuiltinLintDiagnostics::ExternDepSpec(name.clone(), loc.into()),
None => {
// If we don't have a specific location, provide a json encoding of the `--extern`
// option.
let meta: BTreeMap<String, String> =
std::iter::once(("name".to_string(), name.to_string())).collect();
BuiltinLintDiagnostics::ExternDepSpec(
name.clone(),
ExternDepSpec::Json(meta.to_json()),
)
}
};
self.sess.parse_sess.buffer_lint_with_diagnostic(
lint::builtin::UNUSED_CRATE_DEPENDENCIES,
span,
ast::CRATE_NODE_ID,
&format!(
"external crate `{}` unused in `{}`: remove the dependency or add `use {} as _;`",
name,
self.local_crate_name,
name),
diag,
);
}
}
pub fn postprocess(&mut self, krate: &ast::Crate) {
self.inject_profiler_runtime(krate);
self.inject_allocator_crate(krate);
self.inject_panic_runtime(krate);
self.report_unused_deps(krate);
info!("{:?}", CrateDump(&self.cstore));
}
pub fn process_extern_crate(
&mut self,
item: &ast::Item,
definitions: &Definitions,
def_id: LocalDefId,
) -> CrateNum {
match item.kind {
ast::ItemKind::ExternCrate(orig_name) => {
debug!(
"resolving extern crate stmt. ident: {} orig_name: {:?}",
item.ident, orig_name
);
let name = match orig_name {
Some(orig_name) => {
validate_crate_name(self.sess, &orig_name.as_str(), Some(item.span));
orig_name
}
None => item.ident.name,
};
let dep_kind = if self.sess.contains_name(&item.attrs, sym::no_link) {
CrateDepKind::MacrosOnly
} else {
CrateDepKind::Explicit
};
let cnum = self.resolve_crate(name, item.span, dep_kind, None);
let path_len = definitions.def_path(def_id).data.len();
self.update_extern_crate(
cnum,
ExternCrate {
src: ExternCrateSource::Extern(def_id.to_def_id()),
span: item.span,
path_len,
dependency_of: LOCAL_CRATE,
},
);
cnum
}
_ => bug!(),
}
}
pub fn process_path_extern(&mut self, name: Symbol, span: Span) -> CrateNum {
let cnum = self.resolve_crate(name, span, CrateDepKind::Explicit, None);
self.update_extern_crate(
cnum,
ExternCrate {
src: ExternCrateSource::Path,
span,
// to have the least priority in `update_extern_crate`
path_len: usize::MAX,
dependency_of: LOCAL_CRATE,
},
);
cnum
}
pub fn maybe_process_path_extern(&mut self, name: Symbol) -> Option<CrateNum> {
self.maybe_resolve_crate(name, CrateDepKind::Explicit, None).ok()
}
}
fn global_allocator_spans(sess: &Session, krate: &ast::Crate) -> Vec<Span> {
struct Finder<'a> {
sess: &'a Session,
name: Symbol,
spans: Vec<Span>,
}
impl<'ast, 'a> visit::Visitor<'ast> for Finder<'a> {
fn visit_item(&mut self, item: &'ast ast::Item) {
if item.ident.name == self.name
&& self.sess.contains_name(&item.attrs, sym::rustc_std_internal_symbol)
{
self.spans.push(item.span);
}
visit::walk_item(self, item)
}
}
let name = Symbol::intern(&AllocatorKind::Global.fn_name(sym::alloc));
let mut f = Finder { sess, name, spans: Vec::new() };
visit::walk_crate(&mut f, krate);
f.spans
}