rust/src/libserialize/json.rs
2014-04-18 17:25:34 -07:00

2617 lines
84 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Rust JSON serialization library
// Copyright (c) 2011 Google Inc.
#![forbid(non_camel_case_types)]
#![allow(missing_doc)]
/*!
JSON parsing and serialization
# What is JSON?
JSON (JavaScript Object Notation) is a way to write data in Javascript.
Like XML it allows one to encode structured data in a text format that can be read by humans easily.
Its native compatibility with JavaScript and its simple syntax make it used widely.
Json data are encoded in a form of "key":"value".
Data types that can be encoded are JavaScript types :
boolean (`true` or `false`), number (`f64`), string, array, object, null.
An object is a series of string keys mapping to values, in `"key": value` format.
Arrays are enclosed in square brackets ([ ... ]) and objects in curly brackets ({ ... }).
A simple JSON document encoding a person, his/her age, address and phone numbers could look like:
```ignore
{
"FirstName": "John",
"LastName": "Doe",
"Age": 43,
"Address": {
"Street": "Downing Street 10",
"City": "London",
"Country": "Great Britain"
},
"PhoneNumbers": [
"+44 1234567",
"+44 2345678"
]
}
```
# Rust Type-based Encoding and Decoding
Rust provides a mechanism for low boilerplate encoding & decoding
of values to and from JSON via the serialization API.
To be able to encode a piece of data, it must implement the `serialize::Encodable` trait.
To be able to decode a piece of data, it must implement the `serialize::Decodable` trait.
The Rust compiler provides an annotation to automatically generate
the code for these traits: `#[deriving(Decodable, Encodable)]`
To encode using Encodable :
```rust
use std::io;
use serialize::{json, Encodable};
#[deriving(Encodable)]
pub struct TestStruct {
data_str: ~str,
}
fn main() {
let to_encode_object = TestStruct{data_str:"example of string to encode".to_owned()};
let mut m = io::MemWriter::new();
{
let mut encoder = json::Encoder::new(&mut m as &mut std::io::Writer);
match to_encode_object.encode(&mut encoder) {
Ok(()) => (),
Err(e) => fail!("json encoding error: {}", e)
};
}
}
```
Two wrapper functions are provided to encode a Encodable object
into a string (~str) or buffer (~[u8]): `str_encode(&m)` and `buffer_encode(&m)`.
```rust
use serialize::json;
let to_encode_object = "example of string to encode".to_owned();
let encoded_str: ~str = json::Encoder::str_encode(&to_encode_object);
```
JSON API provide an enum `json::Json` and a trait `ToJson` to encode object.
The trait `ToJson` encode object into a container `json::Json` and the API provide writer
to encode them into a stream or a string ...
When using `ToJson` the `Encodable` trait implementation is not mandatory.
A basic `ToJson` example using a TreeMap of attribute name / attribute value:
```rust
extern crate collections;
extern crate serialize;
use serialize::json;
use serialize::json::ToJson;
use collections::TreeMap;
pub struct MyStruct {
attr1: u8,
attr2: ~str,
}
impl ToJson for MyStruct {
fn to_json( &self ) -> json::Json {
let mut d = ~TreeMap::new();
d.insert("attr1".to_owned(), self.attr1.to_json());
d.insert("attr2".to_owned(), self.attr2.to_json());
json::Object(d)
}
}
fn main() {
let test2: MyStruct = MyStruct {attr1: 1, attr2:"test".to_owned()};
let tjson: json::Json = test2.to_json();
let json_str: ~str = tjson.to_str();
}
```
To decode a JSON string using `Decodable` trait :
```rust
extern crate serialize;
use serialize::{json, Decodable};
#[deriving(Decodable)]
pub struct MyStruct {
attr1: u8,
attr2: ~str,
}
fn main() {
let json_str_to_decode: ~str =
"{\"attr1\":1,\"attr2\":\"toto\"}".to_owned();
let json_object = json::from_str(json_str_to_decode);
let mut decoder = json::Decoder::new(json_object.unwrap());
let decoded_object: MyStruct = match Decodable::decode(&mut decoder) {
Ok(v) => v,
Err(e) => fail!("Decoding error: {}", e)
}; // create the final object
}
```
# Examples of use
## Using Autoserialization
Create a struct called TestStruct1 and serialize and deserialize it to and from JSON
using the serialization API, using the derived serialization code.
```rust
extern crate serialize;
use serialize::{json, Encodable, Decodable};
#[deriving(Decodable, Encodable)] //generate Decodable, Encodable impl.
pub struct TestStruct1 {
data_int: u8,
data_str: ~str,
data_vector: ~[u8],
}
// To serialize use the `json::str_encode` to encode an object in a string.
// It calls the generated `Encodable` impl.
fn main() {
let to_encode_object = TestStruct1
{data_int: 1, data_str:"toto".to_owned(), data_vector:~[2,3,4,5]};
let encoded_str: ~str = json::Encoder::str_encode(&to_encode_object);
// To deserialize use the `json::from_str` and `json::Decoder`
let json_object = json::from_str(encoded_str);
let mut decoder = json::Decoder::new(json_object.unwrap());
let decoded1: TestStruct1 = Decodable::decode(&mut decoder).unwrap(); // create the final object
}
```
## Using `ToJson`
This example use the ToJson impl to deserialize the JSON string.
Example of `ToJson` trait implementation for TestStruct1.
```rust
extern crate serialize;
extern crate collections;
use serialize::json::ToJson;
use serialize::{json, Encodable, Decodable};
use collections::TreeMap;
#[deriving(Decodable, Encodable)] // generate Decodable, Encodable impl.
pub struct TestStruct1 {
data_int: u8,
data_str: ~str,
data_vector: ~[u8],
}
impl ToJson for TestStruct1 {
fn to_json( &self ) -> json::Json {
let mut d = ~TreeMap::new();
d.insert("data_int".to_owned(), self.data_int.to_json());
d.insert("data_str".to_owned(), self.data_str.to_json());
d.insert("data_vector".to_owned(), self.data_vector.to_json());
json::Object(d)
}
}
fn main() {
// Serialization using our impl of to_json
let test2: TestStruct1 = TestStruct1 {data_int: 1, data_str:"toto".to_owned(),
data_vector:~[2,3,4,5]};
let tjson: json::Json = test2.to_json();
let json_str: ~str = tjson.to_str();
// Deserialize like before.
let mut decoder = json::Decoder::new(json::from_str(json_str).unwrap());
// create the final object
let decoded2: TestStruct1 = Decodable::decode(&mut decoder).unwrap();
}
```
*/
use collections::HashMap;
use std::char;
use std::f64;
use std::fmt;
use std::io::MemWriter;
use std::io;
use std::num;
use std::str;
use std::str::ScalarValue;
use std::strbuf::StrBuf;
use Encodable;
use collections::TreeMap;
/// Represents a json value
#[deriving(Clone, Eq)]
pub enum Json {
Number(f64),
String(~str),
Boolean(bool),
List(List),
Object(~Object),
Null,
}
pub type List = ~[Json];
pub type Object = TreeMap<~str, Json>;
#[deriving(Eq, Show)]
pub enum Error {
/// msg, line, col
ParseError(~str, uint, uint),
ExpectedError(~str, ~str),
MissingFieldError(~str),
UnknownVariantError(~str),
IoError(io::IoError)
}
pub type EncodeResult = io::IoResult<()>;
pub type DecodeResult<T> = Result<T, Error>;
fn escape_str(s: &str) -> ~str {
let mut escaped = StrBuf::from_str("\"");
for c in s.chars() {
match c {
'"' => escaped.push_str("\\\""),
'\\' => escaped.push_str("\\\\"),
'\x08' => escaped.push_str("\\b"),
'\x0c' => escaped.push_str("\\f"),
'\n' => escaped.push_str("\\n"),
'\r' => escaped.push_str("\\r"),
'\t' => escaped.push_str("\\t"),
_ => escaped.push_char(c),
}
};
escaped.push_char('"');
escaped.into_owned()
}
fn spaces(n: uint) -> ~str {
let mut ss = StrBuf::new();
for _ in range(0, n) {
ss.push_str(" ");
}
return ss.into_owned();
}
/// A structure for implementing serialization to JSON.
pub struct Encoder<'a> {
wr: &'a mut io::Writer,
}
impl<'a> Encoder<'a> {
/// Creates a new JSON encoder whose output will be written to the writer
/// specified.
pub fn new<'a>(wr: &'a mut io::Writer) -> Encoder<'a> {
Encoder { wr: wr }
}
/// Encode the specified struct into a json [u8]
pub fn buffer_encode<T:Encodable<Encoder<'a>, io::IoError>>(to_encode_object: &T) -> Vec<u8> {
//Serialize the object in a string using a writer
let mut m = MemWriter::new();
{
let mut encoder = Encoder::new(&mut m as &mut io::Writer);
// MemWriter never Errs
let _ = to_encode_object.encode(&mut encoder);
}
m.unwrap()
}
/// Encode the specified struct into a json str
pub fn str_encode<T:Encodable<Encoder<'a>, io::IoError>>(to_encode_object: &T) -> ~str {
let buff = Encoder::buffer_encode(to_encode_object);
str::from_utf8(buff.as_slice()).unwrap().to_owned()
}
}
impl<'a> ::Encoder<io::IoError> for Encoder<'a> {
fn emit_nil(&mut self) -> EncodeResult { write!(self.wr, "null") }
fn emit_uint(&mut self, v: uint) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_u64(&mut self, v: u64) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_u32(&mut self, v: u32) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_u16(&mut self, v: u16) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_u8(&mut self, v: u8) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_int(&mut self, v: int) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_i64(&mut self, v: i64) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_i32(&mut self, v: i32) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_i16(&mut self, v: i16) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_i8(&mut self, v: i8) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_bool(&mut self, v: bool) -> EncodeResult {
if v {
write!(self.wr, "true")
} else {
write!(self.wr, "false")
}
}
fn emit_f64(&mut self, v: f64) -> EncodeResult {
write!(self.wr, "{}", f64::to_str_digits(v, 6u))
}
fn emit_f32(&mut self, v: f32) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_char(&mut self, v: char) -> EncodeResult { self.emit_str(str::from_char(v)) }
fn emit_str(&mut self, v: &str) -> EncodeResult {
write!(self.wr, "{}", escape_str(v))
}
fn emit_enum(&mut self,
_name: &str,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult { f(self) }
fn emit_enum_variant(&mut self,
name: &str,
_id: uint,
cnt: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
// enums are encoded as strings or objects
// Bunny => "Bunny"
// Kangaroo(34,"William") => {"variant": "Kangaroo", "fields": [34,"William"]}
if cnt == 0 {
write!(self.wr, "{}", escape_str(name))
} else {
try!(write!(self.wr, "\\{\"variant\":"));
try!(write!(self.wr, "{}", escape_str(name)));
try!(write!(self.wr, ",\"fields\":["));
try!(f(self));
write!(self.wr, "]\\}")
}
}
fn emit_enum_variant_arg(&mut self,
idx: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
if idx != 0 {
try!(write!(self.wr, ","));
}
f(self)
}
fn emit_enum_struct_variant(&mut self,
name: &str,
id: uint,
cnt: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_enum_variant(name, id, cnt, f)
}
fn emit_enum_struct_variant_field(&mut self,
_: &str,
idx: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_enum_variant_arg(idx, f)
}
fn emit_struct(&mut self,
_: &str,
_: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
try!(write!(self.wr, r"\{"));
try!(f(self));
write!(self.wr, r"\}")
}
fn emit_struct_field(&mut self,
name: &str,
idx: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
if idx != 0 { try!(write!(self.wr, ",")); }
try!(write!(self.wr, "{}:", escape_str(name)));
f(self)
}
fn emit_tuple(&mut self, len: uint, f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_seq(len, f)
}
fn emit_tuple_arg(&mut self,
idx: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_seq_elt(idx, f)
}
fn emit_tuple_struct(&mut self,
_name: &str,
len: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_seq(len, f)
}
fn emit_tuple_struct_arg(&mut self,
idx: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_seq_elt(idx, f)
}
fn emit_option(&mut self, f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
f(self)
}
fn emit_option_none(&mut self) -> EncodeResult { self.emit_nil() }
fn emit_option_some(&mut self, f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
f(self)
}
fn emit_seq(&mut self, _len: uint, f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
try!(write!(self.wr, "["));
try!(f(self));
write!(self.wr, "]")
}
fn emit_seq_elt(&mut self, idx: uint, f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
if idx != 0 {
try!(write!(self.wr, ","));
}
f(self)
}
fn emit_map(&mut self, _len: uint, f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
try!(write!(self.wr, r"\{"));
try!(f(self));
write!(self.wr, r"\}")
}
fn emit_map_elt_key(&mut self,
idx: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
use std::str::from_utf8;
if idx != 0 { try!(write!(self.wr, ",")) }
// ref #12967, make sure to wrap a key in double quotes,
// in the event that its of a type that omits them (eg numbers)
let mut buf = MemWriter::new();
let mut check_encoder = Encoder::new(&mut buf);
try!(f(&mut check_encoder));
let buf = buf.unwrap();
let out = from_utf8(buf.as_slice()).unwrap();
let needs_wrapping = out.char_at(0) != '"' &&
out.char_at_reverse(out.len()) != '"';
if needs_wrapping { try!(write!(self.wr, "\"")); }
try!(f(self));
if needs_wrapping { try!(write!(self.wr, "\"")); }
Ok(())
}
fn emit_map_elt_val(&mut self,
_idx: uint,
f: |&mut Encoder<'a>| -> EncodeResult) -> EncodeResult {
try!(write!(self.wr, ":"));
f(self)
}
}
/// Another encoder for JSON, but prints out human-readable JSON instead of
/// compact data
pub struct PrettyEncoder<'a> {
wr: &'a mut io::Writer,
indent: uint,
}
impl<'a> PrettyEncoder<'a> {
/// Creates a new encoder whose output will be written to the specified writer
pub fn new<'a>(wr: &'a mut io::Writer) -> PrettyEncoder<'a> {
PrettyEncoder {
wr: wr,
indent: 0,
}
}
}
impl<'a> ::Encoder<io::IoError> for PrettyEncoder<'a> {
fn emit_nil(&mut self) -> EncodeResult { write!(self.wr, "null") }
fn emit_uint(&mut self, v: uint) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_u64(&mut self, v: u64) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_u32(&mut self, v: u32) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_u16(&mut self, v: u16) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_u8(&mut self, v: u8) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_int(&mut self, v: int) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_i64(&mut self, v: i64) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_i32(&mut self, v: i32) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_i16(&mut self, v: i16) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_i8(&mut self, v: i8) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_bool(&mut self, v: bool) -> EncodeResult {
if v {
write!(self.wr, "true")
} else {
write!(self.wr, "false")
}
}
fn emit_f64(&mut self, v: f64) -> EncodeResult {
write!(self.wr, "{}", f64::to_str_digits(v, 6u))
}
fn emit_f32(&mut self, v: f32) -> EncodeResult { self.emit_f64(v as f64) }
fn emit_char(&mut self, v: char) -> EncodeResult { self.emit_str(str::from_char(v)) }
fn emit_str(&mut self, v: &str) -> EncodeResult {
write!(self.wr, "{}", escape_str(v))
}
fn emit_enum(&mut self,
_name: &str,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
f(self)
}
fn emit_enum_variant(&mut self,
name: &str,
_: uint,
cnt: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
if cnt == 0 {
write!(self.wr, "{}", escape_str(name))
} else {
self.indent += 2;
try!(write!(self.wr, "[\n{}{},\n", spaces(self.indent),
escape_str(name)));
try!(f(self));
self.indent -= 2;
write!(self.wr, "\n{}]", spaces(self.indent))
}
}
fn emit_enum_variant_arg(&mut self,
idx: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
if idx != 0 {
try!(write!(self.wr, ",\n"));
}
try!(write!(self.wr, "{}", spaces(self.indent)));
f(self)
}
fn emit_enum_struct_variant(&mut self,
name: &str,
id: uint,
cnt: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_enum_variant(name, id, cnt, f)
}
fn emit_enum_struct_variant_field(&mut self,
_: &str,
idx: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_enum_variant_arg(idx, f)
}
fn emit_struct(&mut self,
_: &str,
len: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
if len == 0 {
write!(self.wr, "\\{\\}")
} else {
try!(write!(self.wr, "\\{"));
self.indent += 2;
try!(f(self));
self.indent -= 2;
write!(self.wr, "\n{}\\}", spaces(self.indent))
}
}
fn emit_struct_field(&mut self,
name: &str,
idx: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
if idx == 0 {
try!(write!(self.wr, "\n"));
} else {
try!(write!(self.wr, ",\n"));
}
try!(write!(self.wr, "{}{}: ", spaces(self.indent), escape_str(name)));
f(self)
}
fn emit_tuple(&mut self,
len: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_seq(len, f)
}
fn emit_tuple_arg(&mut self,
idx: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_seq_elt(idx, f)
}
fn emit_tuple_struct(&mut self,
_: &str,
len: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_seq(len, f)
}
fn emit_tuple_struct_arg(&mut self,
idx: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
self.emit_seq_elt(idx, f)
}
fn emit_option(&mut self, f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
f(self)
}
fn emit_option_none(&mut self) -> EncodeResult { self.emit_nil() }
fn emit_option_some(&mut self, f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
f(self)
}
fn emit_seq(&mut self,
len: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
if len == 0 {
write!(self.wr, "[]")
} else {
try!(write!(self.wr, "["));
self.indent += 2;
try!(f(self));
self.indent -= 2;
write!(self.wr, "\n{}]", spaces(self.indent))
}
}
fn emit_seq_elt(&mut self,
idx: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
if idx == 0 {
try!(write!(self.wr, "\n"));
} else {
try!(write!(self.wr, ",\n"));
}
try!(write!(self.wr, "{}", spaces(self.indent)));
f(self)
}
fn emit_map(&mut self,
len: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
if len == 0 {
write!(self.wr, "\\{\\}")
} else {
try!(write!(self.wr, "\\{"));
self.indent += 2;
try!(f(self));
self.indent -= 2;
write!(self.wr, "\n{}\\}", spaces(self.indent))
}
}
fn emit_map_elt_key(&mut self,
idx: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
use std::str::from_utf8;
if idx == 0 {
try!(write!(self.wr, "\n"));
} else {
try!(write!(self.wr, ",\n"));
}
try!(write!(self.wr, "{}", spaces(self.indent)));
// ref #12967, make sure to wrap a key in double quotes,
// in the event that its of a type that omits them (eg numbers)
let mut buf = MemWriter::new();
let mut check_encoder = PrettyEncoder::new(&mut buf);
try!(f(&mut check_encoder));
let buf = buf.unwrap();
let out = from_utf8(buf.as_slice()).unwrap();
let needs_wrapping = out.char_at(0) != '"' &&
out.char_at_reverse(out.len()) != '"';
if needs_wrapping { try!(write!(self.wr, "\"")); }
try!(f(self));
if needs_wrapping { try!(write!(self.wr, "\"")); }
Ok(())
}
fn emit_map_elt_val(&mut self,
_idx: uint,
f: |&mut PrettyEncoder<'a>| -> EncodeResult) -> EncodeResult {
try!(write!(self.wr, ": "));
f(self)
}
}
impl<E: ::Encoder<S>, S> Encodable<E, S> for Json {
fn encode(&self, e: &mut E) -> Result<(), S> {
match *self {
Number(v) => v.encode(e),
String(ref v) => v.encode(e),
Boolean(v) => v.encode(e),
List(ref v) => v.encode(e),
Object(ref v) => v.encode(e),
Null => e.emit_nil(),
}
}
}
impl Json {
/// Encodes a json value into a io::writer. Uses a single line.
pub fn to_writer(&self, wr: &mut io::Writer) -> EncodeResult {
let mut encoder = Encoder::new(wr);
self.encode(&mut encoder)
}
/// Encodes a json value into a io::writer.
/// Pretty-prints in a more readable format.
pub fn to_pretty_writer(&self, wr: &mut io::Writer) -> EncodeResult {
let mut encoder = PrettyEncoder::new(wr);
self.encode(&mut encoder)
}
/// Encodes a json value into a string
pub fn to_pretty_str(&self) -> ~str {
let mut s = MemWriter::new();
self.to_pretty_writer(&mut s as &mut io::Writer).unwrap();
str::from_utf8(s.unwrap().as_slice()).unwrap().to_owned()
}
/// If the Json value is an Object, returns the value associated with the provided key.
/// Otherwise, returns None.
pub fn find<'a>(&'a self, key: &~str) -> Option<&'a Json>{
match self {
&Object(ref map) => map.find(key),
_ => None
}
}
/// Attempts to get a nested Json Object for each key in `keys`.
/// If any key is found not to exist, find_path will return None.
/// Otherwise, it will return the Json value associated with the final key.
pub fn find_path<'a>(&'a self, keys: &[&~str]) -> Option<&'a Json>{
let mut target = self;
for key in keys.iter() {
match target.find(*key) {
Some(t) => { target = t; },
None => return None
}
}
Some(target)
}
/// If the Json value is an Object, performs a depth-first search until
/// a value associated with the provided key is found. If no value is found
/// or the Json value is not an Object, returns None.
pub fn search<'a>(&'a self, key: &~str) -> Option<&'a Json> {
match self {
&Object(ref map) => {
match map.find(key) {
Some(json_value) => Some(json_value),
None => {
let mut value : Option<&'a Json> = None;
for (_, v) in map.iter() {
value = v.search(key);
if value.is_some() {
break;
}
}
value
}
}
},
_ => None
}
}
/// Returns true if the Json value is an Object. Returns false otherwise.
pub fn is_object<'a>(&'a self) -> bool {
self.as_object().is_some()
}
/// If the Json value is an Object, returns the associated TreeMap.
/// Returns None otherwise.
pub fn as_object<'a>(&'a self) -> Option<&'a Object> {
match self {
&Object(ref map) => Some(&**map),
_ => None
}
}
/// Returns true if the Json value is a List. Returns false otherwise.
pub fn is_list<'a>(&'a self) -> bool {
self.as_list().is_some()
}
/// If the Json value is a List, returns the associated vector.
/// Returns None otherwise.
pub fn as_list<'a>(&'a self) -> Option<&'a List> {
match self {
&List(ref list) => Some(&*list),
_ => None
}
}
/// Returns true if the Json value is a String. Returns false otherwise.
pub fn is_string<'a>(&'a self) -> bool {
self.as_string().is_some()
}
/// If the Json value is a String, returns the associated str.
/// Returns None otherwise.
pub fn as_string<'a>(&'a self) -> Option<&'a str> {
match *self {
String(ref s) => Some(s.as_slice()),
_ => None
}
}
/// Returns true if the Json value is a Number. Returns false otherwise.
pub fn is_number(&self) -> bool {
self.as_number().is_some()
}
/// If the Json value is a Number, returns the associated f64.
/// Returns None otherwise.
pub fn as_number(&self) -> Option<f64> {
match self {
&Number(n) => Some(n),
_ => None
}
}
/// Returns true if the Json value is a Boolean. Returns false otherwise.
pub fn is_boolean(&self) -> bool {
self.as_boolean().is_some()
}
/// If the Json value is a Boolean, returns the associated bool.
/// Returns None otherwise.
pub fn as_boolean(&self) -> Option<bool> {
match self {
&Boolean(b) => Some(b),
_ => None
}
}
/// Returns true if the Json value is a Null. Returns false otherwise.
pub fn is_null(&self) -> bool {
self.as_null().is_some()
}
/// If the Json value is a Null, returns ().
/// Returns None otherwise.
pub fn as_null(&self) -> Option<()> {
match self {
&Null => Some(()),
_ => None
}
}
}
pub struct Parser<T> {
rdr: T,
ch: Option<char>,
line: uint,
col: uint,
}
impl<T: Iterator<char>> Parser<T> {
/// Decode a json value from an Iterator<char>
pub fn new(rdr: T) -> Parser<T> {
let mut p = Parser {
rdr: rdr,
ch: Some('\x00'),
line: 1,
col: 0,
};
p.bump();
p
}
}
impl<T: Iterator<char>> Parser<T> {
pub fn parse(&mut self) -> DecodeResult<Json> {
match self.parse_value() {
Ok(value) => {
// Skip trailing whitespaces.
self.parse_whitespace();
// Make sure there is no trailing characters.
if self.eof() {
Ok(value)
} else {
self.error("trailing characters".to_owned())
}
}
Err(e) => Err(e)
}
}
}
impl<T : Iterator<char>> Parser<T> {
fn eof(&self) -> bool { self.ch.is_none() }
fn ch_or_null(&self) -> char { self.ch.unwrap_or('\x00') }
fn bump(&mut self) {
self.ch = self.rdr.next();
if self.ch_is('\n') {
self.line += 1u;
self.col = 1u;
} else {
self.col += 1u;
}
}
fn next_char(&mut self) -> Option<char> {
self.bump();
self.ch
}
fn ch_is(&self, c: char) -> bool {
self.ch == Some(c)
}
fn error<T>(&self, msg: ~str) -> DecodeResult<T> {
Err(ParseError(msg, self.line, self.col))
}
fn parse_value(&mut self) -> DecodeResult<Json> {
self.parse_whitespace();
if self.eof() { return self.error("EOF while parsing value".to_owned()); }
match self.ch_or_null() {
'n' => self.parse_ident("ull", Null),
't' => self.parse_ident("rue", Boolean(true)),
'f' => self.parse_ident("alse", Boolean(false)),
'0' .. '9' | '-' => self.parse_number(),
'"' => {
match self.parse_str() {
Ok(s) => Ok(String(s)),
Err(e) => Err(e),
}
},
'[' => self.parse_list(),
'{' => self.parse_object(),
_ => self.error("invalid syntax".to_owned()),
}
}
fn parse_whitespace(&mut self) {
while self.ch_is(' ') ||
self.ch_is('\n') ||
self.ch_is('\t') ||
self.ch_is('\r') { self.bump(); }
}
fn parse_ident(&mut self, ident: &str, value: Json) -> DecodeResult<Json> {
if ident.chars().all(|c| Some(c) == self.next_char()) {
self.bump();
Ok(value)
} else {
self.error("invalid syntax".to_owned())
}
}
fn parse_number(&mut self) -> DecodeResult<Json> {
let mut neg = 1.0;
if self.ch_is('-') {
self.bump();
neg = -1.0;
}
let mut res = match self.parse_integer() {
Ok(res) => res,
Err(e) => return Err(e)
};
if self.ch_is('.') {
match self.parse_decimal(res) {
Ok(r) => res = r,
Err(e) => return Err(e)
}
}
if self.ch_is('e') || self.ch_is('E') {
match self.parse_exponent(res) {
Ok(r) => res = r,
Err(e) => return Err(e)
}
}
Ok(Number(neg * res))
}
fn parse_integer(&mut self) -> DecodeResult<f64> {
let mut res = 0.0;
match self.ch_or_null() {
'0' => {
self.bump();
// There can be only one leading '0'.
match self.ch_or_null() {
'0' .. '9' => return self.error("invalid number".to_owned()),
_ => ()
}
},
'1' .. '9' => {
while !self.eof() {
match self.ch_or_null() {
c @ '0' .. '9' => {
res *= 10.0;
res += ((c as int) - ('0' as int)) as f64;
self.bump();
}
_ => break,
}
}
}
_ => return self.error("invalid number".to_owned()),
}
Ok(res)
}
fn parse_decimal(&mut self, res: f64) -> DecodeResult<f64> {
self.bump();
// Make sure a digit follows the decimal place.
match self.ch_or_null() {
'0' .. '9' => (),
_ => return self.error("invalid number".to_owned())
}
let mut res = res;
let mut dec = 1.0;
while !self.eof() {
match self.ch_or_null() {
c @ '0' .. '9' => {
dec /= 10.0;
res += (((c as int) - ('0' as int)) as f64) * dec;
self.bump();
}
_ => break,
}
}
Ok(res)
}
fn parse_exponent(&mut self, mut res: f64) -> DecodeResult<f64> {
self.bump();
let mut exp = 0u;
let mut neg_exp = false;
if self.ch_is('+') {
self.bump();
} else if self.ch_is('-') {
self.bump();
neg_exp = true;
}
// Make sure a digit follows the exponent place.
match self.ch_or_null() {
'0' .. '9' => (),
_ => return self.error("invalid number".to_owned())
}
while !self.eof() {
match self.ch_or_null() {
c @ '0' .. '9' => {
exp *= 10;
exp += (c as uint) - ('0' as uint);
self.bump();
}
_ => break
}
}
let exp: f64 = num::pow(10u as f64, exp);
if neg_exp {
res /= exp;
} else {
res *= exp;
}
Ok(res)
}
fn decode_hex_escape(&mut self) -> DecodeResult<u16> {
let mut i = 0u;
let mut n = 0u16;
while i < 4u && !self.eof() {
self.bump();
n = match self.ch_or_null() {
c @ '0' .. '9' => n * 16_u16 + ((c as u16) - ('0' as u16)),
'a' | 'A' => n * 16_u16 + 10_u16,
'b' | 'B' => n * 16_u16 + 11_u16,
'c' | 'C' => n * 16_u16 + 12_u16,
'd' | 'D' => n * 16_u16 + 13_u16,
'e' | 'E' => n * 16_u16 + 14_u16,
'f' | 'F' => n * 16_u16 + 15_u16,
_ => return self.error(
"invalid \\u escape (unrecognized hex)".to_owned())
};
i += 1u;
}
// Error out if we didn't parse 4 digits.
if i != 4u {
return self.error(
"invalid \\u escape (not four digits)".to_owned());
}
Ok(n)
}
fn parse_str(&mut self) -> DecodeResult<~str> {
let mut escape = false;
let mut res = StrBuf::new();
loop {
self.bump();
if self.eof() {
return self.error("EOF while parsing string".to_owned());
}
if escape {
match self.ch_or_null() {
'"' => res.push_char('"'),
'\\' => res.push_char('\\'),
'/' => res.push_char('/'),
'b' => res.push_char('\x08'),
'f' => res.push_char('\x0c'),
'n' => res.push_char('\n'),
'r' => res.push_char('\r'),
't' => res.push_char('\t'),
'u' => match try!(self.decode_hex_escape()) {
0xDC00 .. 0xDFFF => return self.error(
"lone trailing surrogate in hex escape".to_owned()),
// Non-BMP characters are encoded as a sequence of
// two hex escapes, representing UTF-16 surrogates.
n1 @ 0xD800 .. 0xDBFF => {
let c1 = self.next_char();
let c2 = self.next_char();
match (c1, c2) {
(Some('\\'), Some('u')) => (),
_ => return self.error(
"unexpected end of non-BMP hex escape".to_owned()),
}
let buf = [n1, try!(self.decode_hex_escape())];
match str::utf16_items(buf.as_slice()).next() {
Some(ScalarValue(c)) => res.push_char(c),
_ => return self.error(
"lone leading surrogate in hex escape".to_owned()),
}
}
n => match char::from_u32(n as u32) {
Some(c) => res.push_char(c),
None => return self.error(
format!("invalid Unicode codepoint {:u}", n)),
},
},
_ => return self.error("invalid escape".to_owned()),
}
escape = false;
} else if self.ch_is('\\') {
escape = true;
} else {
match self.ch {
Some('"') => {
self.bump();
return Ok(res.into_owned());
},
Some(c) => res.push_char(c),
None => unreachable!()
}
}
}
}
fn parse_list(&mut self) -> DecodeResult<Json> {
self.bump();
self.parse_whitespace();
let mut values = Vec::new();
if self.ch_is(']') {
self.bump();
return Ok(List(values.move_iter().collect()));
}
loop {
match self.parse_value() {
Ok(v) => values.push(v),
Err(e) => return Err(e)
}
self.parse_whitespace();
if self.eof() {
return self.error("EOF while parsing list".to_owned());
}
if self.ch_is(',') {
self.bump();
} else if self.ch_is(']') {
self.bump();
return Ok(List(values.move_iter().collect()));
} else {
return self.error("expected `,` or `]`".to_owned())
}
};
}
fn parse_object(&mut self) -> DecodeResult<Json> {
self.bump();
self.parse_whitespace();
let mut values = ~TreeMap::new();
if self.ch_is('}') {
self.bump();
return Ok(Object(values));
}
while !self.eof() {
self.parse_whitespace();
if !self.ch_is('"') {
return self.error("key must be a string".to_owned());
}
let key = match self.parse_str() {
Ok(key) => key,
Err(e) => return Err(e)
};
self.parse_whitespace();
if !self.ch_is(':') {
if self.eof() { break; }
return self.error("expected `:`".to_owned());
}
self.bump();
match self.parse_value() {
Ok(value) => { values.insert(key, value); }
Err(e) => return Err(e)
}
self.parse_whitespace();
match self.ch_or_null() {
',' => self.bump(),
'}' => { self.bump(); return Ok(Object(values)); },
_ => {
if self.eof() { break; }
return self.error("expected `,` or `}`".to_owned());
}
}
}
return self.error("EOF while parsing object".to_owned());
}
}
/// Decodes a json value from an `&mut io::Reader`
pub fn from_reader(rdr: &mut io::Reader) -> DecodeResult<Json> {
let contents = match rdr.read_to_end() {
Ok(c) => c,
Err(e) => return Err(IoError(e))
};
let s = match str::from_utf8(contents.as_slice()) {
Some(s) => s.to_owned(),
None => return Err(ParseError("contents not utf-8".to_owned(), 0, 0))
};
let mut parser = Parser::new(s.chars());
parser.parse()
}
/// Decodes a json value from a string
pub fn from_str(s: &str) -> DecodeResult<Json> {
let mut parser = Parser::new(s.chars());
parser.parse()
}
/// A structure to decode JSON to values in rust.
pub struct Decoder {
stack: Vec<Json>,
}
impl Decoder {
/// Creates a new decoder instance for decoding the specified JSON value.
pub fn new(json: Json) -> Decoder {
Decoder {
stack: vec!(json),
}
}
}
impl Decoder {
fn pop(&mut self) -> Json {
self.stack.pop().unwrap()
}
}
macro_rules! expect(
($e:expr, Null) => ({
match $e {
Null => Ok(()),
other => Err(ExpectedError("Null".to_owned(), format!("{}", other)))
}
});
($e:expr, $t:ident) => ({
match $e {
$t(v) => Ok(v),
other => Err(ExpectedError(stringify!($t).to_owned(), format!("{}", other)))
}
})
)
impl ::Decoder<Error> for Decoder {
fn read_nil(&mut self) -> DecodeResult<()> {
debug!("read_nil");
try!(expect!(self.pop(), Null));
Ok(())
}
fn read_u64(&mut self) -> DecodeResult<u64 > { Ok(try!(self.read_f64()) as u64) }
fn read_u32(&mut self) -> DecodeResult<u32 > { Ok(try!(self.read_f64()) as u32) }
fn read_u16(&mut self) -> DecodeResult<u16 > { Ok(try!(self.read_f64()) as u16) }
fn read_u8 (&mut self) -> DecodeResult<u8 > { Ok(try!(self.read_f64()) as u8) }
fn read_uint(&mut self) -> DecodeResult<uint> { Ok(try!(self.read_f64()) as uint) }
fn read_i64(&mut self) -> DecodeResult<i64> { Ok(try!(self.read_f64()) as i64) }
fn read_i32(&mut self) -> DecodeResult<i32> { Ok(try!(self.read_f64()) as i32) }
fn read_i16(&mut self) -> DecodeResult<i16> { Ok(try!(self.read_f64()) as i16) }
fn read_i8 (&mut self) -> DecodeResult<i8 > { Ok(try!(self.read_f64()) as i8) }
fn read_int(&mut self) -> DecodeResult<int> { Ok(try!(self.read_f64()) as int) }
fn read_bool(&mut self) -> DecodeResult<bool> {
debug!("read_bool");
Ok(try!(expect!(self.pop(), Boolean)))
}
fn read_f64(&mut self) -> DecodeResult<f64> {
use std::from_str::FromStr;
debug!("read_f64");
match self.pop() {
Number(f) => Ok(f),
String(s) => {
// re: #12967.. a type w/ numeric keys (ie HashMap<uint, V> etc)
// is going to have a string here, as per JSON spec..
Ok(FromStr::from_str(s).unwrap())
},
value => Err(ExpectedError("Number".to_owned(), format!("{}", value)))
}
}
fn read_f32(&mut self) -> DecodeResult<f32> { Ok(try!(self.read_f64()) as f32) }
fn read_char(&mut self) -> DecodeResult<char> {
let s = try!(self.read_str());
{
let mut it = s.chars();
match (it.next(), it.next()) {
// exactly one character
(Some(c), None) => return Ok(c),
_ => ()
}
}
Err(ExpectedError("single character string".to_owned(), format!("{}", s)))
}
fn read_str(&mut self) -> DecodeResult<~str> {
debug!("read_str");
Ok(try!(expect!(self.pop(), String)))
}
fn read_enum<T>(&mut self,
name: &str,
f: |&mut Decoder| -> DecodeResult<T>) -> DecodeResult<T> {
debug!("read_enum({})", name);
f(self)
}
fn read_enum_variant<T>(&mut self,
names: &[&str],
f: |&mut Decoder, uint| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_enum_variant(names={:?})", names);
let name = match self.pop() {
String(s) => s,
Object(mut o) => {
let n = match o.pop(&"variant".to_owned()) {
Some(String(s)) => s,
Some(val) => return Err(ExpectedError("String".to_owned(), format!("{}", val))),
None => return Err(MissingFieldError("variant".to_owned()))
};
match o.pop(&"fields".to_owned()) {
Some(List(l)) => {
for field in l.move_rev_iter() {
self.stack.push(field.clone());
}
},
Some(val) => return Err(ExpectedError("List".to_owned(), format!("{}", val))),
None => return Err(MissingFieldError("fields".to_owned()))
}
n
}
json => return Err(ExpectedError("String or Object".to_owned(), format!("{}", json)))
};
let idx = match names.iter().position(|n| str::eq_slice(*n, name)) {
Some(idx) => idx,
None => return Err(UnknownVariantError(name))
};
f(self, idx)
}
fn read_enum_variant_arg<T>(&mut self, idx: uint, f: |&mut Decoder| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_enum_variant_arg(idx={})", idx);
f(self)
}
fn read_enum_struct_variant<T>(&mut self,
names: &[&str],
f: |&mut Decoder, uint| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_enum_struct_variant(names={:?})", names);
self.read_enum_variant(names, f)
}
fn read_enum_struct_variant_field<T>(&mut self,
name: &str,
idx: uint,
f: |&mut Decoder| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_enum_struct_variant_field(name={}, idx={})", name, idx);
self.read_enum_variant_arg(idx, f)
}
fn read_struct<T>(&mut self,
name: &str,
len: uint,
f: |&mut Decoder| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_struct(name={}, len={})", name, len);
let value = try!(f(self));
self.pop();
Ok(value)
}
fn read_struct_field<T>(&mut self,
name: &str,
idx: uint,
f: |&mut Decoder| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_struct_field(name={}, idx={})", name, idx);
let mut obj = try!(expect!(self.pop(), Object));
let value = match obj.pop(&name.to_owned()) {
None => return Err(MissingFieldError(name.to_owned())),
Some(json) => {
self.stack.push(json);
try!(f(self))
}
};
self.stack.push(Object(obj));
Ok(value)
}
fn read_tuple<T>(&mut self, f: |&mut Decoder, uint| -> DecodeResult<T>) -> DecodeResult<T> {
debug!("read_tuple()");
self.read_seq(f)
}
fn read_tuple_arg<T>(&mut self,
idx: uint,
f: |&mut Decoder| -> DecodeResult<T>) -> DecodeResult<T> {
debug!("read_tuple_arg(idx={})", idx);
self.read_seq_elt(idx, f)
}
fn read_tuple_struct<T>(&mut self,
name: &str,
f: |&mut Decoder, uint| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_tuple_struct(name={})", name);
self.read_tuple(f)
}
fn read_tuple_struct_arg<T>(&mut self,
idx: uint,
f: |&mut Decoder| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_tuple_struct_arg(idx={})", idx);
self.read_tuple_arg(idx, f)
}
fn read_option<T>(&mut self, f: |&mut Decoder, bool| -> DecodeResult<T>) -> DecodeResult<T> {
match self.pop() {
Null => f(self, false),
value => { self.stack.push(value); f(self, true) }
}
}
fn read_seq<T>(&mut self, f: |&mut Decoder, uint| -> DecodeResult<T>) -> DecodeResult<T> {
debug!("read_seq()");
let list = try!(expect!(self.pop(), List));
let len = list.len();
for v in list.move_rev_iter() {
self.stack.push(v);
}
f(self, len)
}
fn read_seq_elt<T>(&mut self,
idx: uint,
f: |&mut Decoder| -> DecodeResult<T>) -> DecodeResult<T> {
debug!("read_seq_elt(idx={})", idx);
f(self)
}
fn read_map<T>(&mut self, f: |&mut Decoder, uint| -> DecodeResult<T>) -> DecodeResult<T> {
debug!("read_map()");
let obj = try!(expect!(self.pop(), Object));
let len = obj.len();
for (key, value) in obj.move_iter() {
self.stack.push(value);
self.stack.push(String(key));
}
f(self, len)
}
fn read_map_elt_key<T>(&mut self, idx: uint, f: |&mut Decoder| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_map_elt_key(idx={})", idx);
f(self)
}
fn read_map_elt_val<T>(&mut self, idx: uint, f: |&mut Decoder| -> DecodeResult<T>)
-> DecodeResult<T> {
debug!("read_map_elt_val(idx={})", idx);
f(self)
}
}
/// Test if two json values are less than one another
impl Ord for Json {
fn lt(&self, other: &Json) -> bool {
match *self {
Number(f0) => {
match *other {
Number(f1) => f0 < f1,
String(_) | Boolean(_) | List(_) | Object(_) |
Null => true
}
}
String(ref s0) => {
match *other {
Number(_) => false,
String(ref s1) => s0 < s1,
Boolean(_) | List(_) | Object(_) | Null => true
}
}
Boolean(b0) => {
match *other {
Number(_) | String(_) => false,
Boolean(b1) => b0 < b1,
List(_) | Object(_) | Null => true
}
}
List(ref l0) => {
match *other {
Number(_) | String(_) | Boolean(_) => false,
List(ref l1) => (*l0) < (*l1),
Object(_) | Null => true
}
}
Object(ref d0) => {
match *other {
Number(_) | String(_) | Boolean(_) | List(_) => false,
Object(ref d1) => d0 < d1,
Null => true
}
}
Null => {
match *other {
Number(_) | String(_) | Boolean(_) | List(_) |
Object(_) =>
false,
Null => true
}
}
}
}
}
/// A trait for converting values to JSON
pub trait ToJson {
/// Converts the value of `self` to an instance of JSON
fn to_json(&self) -> Json;
}
impl ToJson for Json {
fn to_json(&self) -> Json { (*self).clone() }
}
impl ToJson for int {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for i8 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for i16 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for i32 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for i64 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for uint {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for u8 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for u16 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for u32 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for u64 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for f32 {
fn to_json(&self) -> Json { Number(*self as f64) }
}
impl ToJson for f64 {
fn to_json(&self) -> Json { Number(*self) }
}
impl ToJson for () {
fn to_json(&self) -> Json { Null }
}
impl ToJson for bool {
fn to_json(&self) -> Json { Boolean(*self) }
}
impl ToJson for ~str {
fn to_json(&self) -> Json { String((*self).clone()) }
}
impl<A:ToJson,B:ToJson> ToJson for (A, B) {
fn to_json(&self) -> Json {
match *self {
(ref a, ref b) => {
List(~[a.to_json(), b.to_json()])
}
}
}
}
impl<A:ToJson,B:ToJson,C:ToJson> ToJson for (A, B, C) {
fn to_json(&self) -> Json {
match *self {
(ref a, ref b, ref c) => {
List(~[a.to_json(), b.to_json(), c.to_json()])
}
}
}
}
impl<A:ToJson> ToJson for ~[A] {
fn to_json(&self) -> Json { List(self.iter().map(|elt| elt.to_json()).collect()) }
}
impl<A:ToJson> ToJson for TreeMap<~str, A> {
fn to_json(&self) -> Json {
let mut d = TreeMap::new();
for (key, value) in self.iter() {
d.insert((*key).clone(), value.to_json());
}
Object(~d)
}
}
impl<A:ToJson> ToJson for HashMap<~str, A> {
fn to_json(&self) -> Json {
let mut d = TreeMap::new();
for (key, value) in self.iter() {
d.insert((*key).clone(), value.to_json());
}
Object(~d)
}
}
impl<A:ToJson> ToJson for Option<A> {
fn to_json(&self) -> Json {
match *self {
None => Null,
Some(ref value) => value.to_json()
}
}
}
impl fmt::Show for Json {
/// Encodes a json value into a string
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.to_writer(f.buf)
}
}
#[cfg(test)]
mod tests {
use {Encodable, Decodable};
use super::{Encoder, Decoder, Error, Boolean, Number, List, String, Null,
PrettyEncoder, Object, Json, from_str, ParseError, ExpectedError,
MissingFieldError, UnknownVariantError, DecodeResult };
use std::io;
use collections::TreeMap;
#[deriving(Eq, Encodable, Decodable, Show)]
enum Animal {
Dog,
Frog(~str, int)
}
#[deriving(Eq, Encodable, Decodable, Show)]
struct Inner {
a: (),
b: uint,
c: ~[~str],
}
#[deriving(Eq, Encodable, Decodable, Show)]
struct Outer {
inner: ~[Inner],
}
fn mk_object(items: &[(~str, Json)]) -> Json {
let mut d = ~TreeMap::new();
for item in items.iter() {
match *item {
(ref key, ref value) => { d.insert((*key).clone(), (*value).clone()); },
}
};
Object(d)
}
#[test]
fn test_write_null() {
assert_eq!(Null.to_str(), "null".to_owned());
assert_eq!(Null.to_pretty_str(), "null".to_owned());
}
#[test]
fn test_write_number() {
assert_eq!(Number(3.0).to_str(), "3".to_owned());
assert_eq!(Number(3.0).to_pretty_str(), "3".to_owned());
assert_eq!(Number(3.1).to_str(), "3.1".to_owned());
assert_eq!(Number(3.1).to_pretty_str(), "3.1".to_owned());
assert_eq!(Number(-1.5).to_str(), "-1.5".to_owned());
assert_eq!(Number(-1.5).to_pretty_str(), "-1.5".to_owned());
assert_eq!(Number(0.5).to_str(), "0.5".to_owned());
assert_eq!(Number(0.5).to_pretty_str(), "0.5".to_owned());
}
#[test]
fn test_write_str() {
assert_eq!(String("".to_owned()).to_str(), "\"\"".to_owned());
assert_eq!(String("".to_owned()).to_pretty_str(), "\"\"".to_owned());
assert_eq!(String("foo".to_owned()).to_str(), "\"foo\"".to_owned());
assert_eq!(String("foo".to_owned()).to_pretty_str(), "\"foo\"".to_owned());
}
#[test]
fn test_write_bool() {
assert_eq!(Boolean(true).to_str(), "true".to_owned());
assert_eq!(Boolean(true).to_pretty_str(), "true".to_owned());
assert_eq!(Boolean(false).to_str(), "false".to_owned());
assert_eq!(Boolean(false).to_pretty_str(), "false".to_owned());
}
#[test]
fn test_write_list() {
assert_eq!(List(~[]).to_str(), "[]".to_owned());
assert_eq!(List(~[]).to_pretty_str(), "[]".to_owned());
assert_eq!(List(~[Boolean(true)]).to_str(), "[true]".to_owned());
assert_eq!(
List(~[Boolean(true)]).to_pretty_str(),
"\
[\n \
true\n\
]".to_owned()
);
let long_test_list = List(~[
Boolean(false),
Null,
List(~[String("foo\nbar".to_owned()), Number(3.5)])]);
assert_eq!(long_test_list.to_str(),
"[false,null,[\"foo\\nbar\",3.5]]".to_owned());
assert_eq!(
long_test_list.to_pretty_str(),
"\
[\n \
false,\n \
null,\n \
[\n \
\"foo\\nbar\",\n \
3.5\n \
]\n\
]".to_owned()
);
}
#[test]
fn test_write_object() {
assert_eq!(mk_object([]).to_str(), "{}".to_owned());
assert_eq!(mk_object([]).to_pretty_str(), "{}".to_owned());
assert_eq!(
mk_object([("a".to_owned(), Boolean(true))]).to_str(),
"{\"a\":true}".to_owned()
);
assert_eq!(
mk_object([("a".to_owned(), Boolean(true))]).to_pretty_str(),
"\
{\n \
\"a\": true\n\
}".to_owned()
);
let complex_obj = mk_object([
("b".to_owned(), List(~[
mk_object([("c".to_owned(), String("\x0c\r".to_owned()))]),
mk_object([("d".to_owned(), String("".to_owned()))])
]))
]);
assert_eq!(
complex_obj.to_str(),
"{\
\"b\":[\
{\"c\":\"\\f\\r\"},\
{\"d\":\"\"}\
]\
}".to_owned()
);
assert_eq!(
complex_obj.to_pretty_str(),
"\
{\n \
\"b\": [\n \
{\n \
\"c\": \"\\f\\r\"\n \
},\n \
{\n \
\"d\": \"\"\n \
}\n \
]\n\
}".to_owned()
);
let a = mk_object([
("a".to_owned(), Boolean(true)),
("b".to_owned(), List(~[
mk_object([("c".to_owned(), String("\x0c\r".to_owned()))]),
mk_object([("d".to_owned(), String("".to_owned()))])
]))
]);
// We can't compare the strings directly because the object fields be
// printed in a different order.
assert_eq!(a.clone(), from_str(a.to_str()).unwrap());
assert_eq!(a.clone(), from_str(a.to_pretty_str()).unwrap());
}
fn with_str_writer(f: |&mut io::Writer|) -> ~str {
use std::io::MemWriter;
use std::str;
let mut m = MemWriter::new();
f(&mut m as &mut io::Writer);
str::from_utf8(m.unwrap().as_slice()).unwrap().to_owned()
}
#[test]
fn test_write_enum() {
let animal = Dog;
assert_eq!(
with_str_writer(|wr| {
let mut encoder = Encoder::new(wr);
animal.encode(&mut encoder).unwrap();
}),
"\"Dog\"".to_owned()
);
assert_eq!(
with_str_writer(|wr| {
let mut encoder = PrettyEncoder::new(wr);
animal.encode(&mut encoder).unwrap();
}),
"\"Dog\"".to_owned()
);
let animal = Frog("Henry".to_owned(), 349);
assert_eq!(
with_str_writer(|wr| {
let mut encoder = Encoder::new(wr);
animal.encode(&mut encoder).unwrap();
}),
"{\"variant\":\"Frog\",\"fields\":[\"Henry\",349]}".to_owned()
);
assert_eq!(
with_str_writer(|wr| {
let mut encoder = PrettyEncoder::new(wr);
animal.encode(&mut encoder).unwrap();
}),
"\
[\n \
\"Frog\",\n \
\"Henry\",\n \
349\n\
]".to_owned()
);
}
#[test]
fn test_write_some() {
let value = Some("jodhpurs".to_owned());
let s = with_str_writer(|wr| {
let mut encoder = Encoder::new(wr);
value.encode(&mut encoder).unwrap();
});
assert_eq!(s, "\"jodhpurs\"".to_owned());
let value = Some("jodhpurs".to_owned());
let s = with_str_writer(|wr| {
let mut encoder = PrettyEncoder::new(wr);
value.encode(&mut encoder).unwrap();
});
assert_eq!(s, "\"jodhpurs\"".to_owned());
}
#[test]
fn test_write_none() {
let value: Option<~str> = None;
let s = with_str_writer(|wr| {
let mut encoder = Encoder::new(wr);
value.encode(&mut encoder).unwrap();
});
assert_eq!(s, "null".to_owned());
let s = with_str_writer(|wr| {
let mut encoder = Encoder::new(wr);
value.encode(&mut encoder).unwrap();
});
assert_eq!(s, "null".to_owned());
}
#[test]
fn test_trailing_characters() {
assert_eq!(from_str("nulla"),
Err(ParseError("trailing characters".to_owned(), 1u, 5u)));
assert_eq!(from_str("truea"),
Err(ParseError("trailing characters".to_owned(), 1u, 5u)));
assert_eq!(from_str("falsea"),
Err(ParseError("trailing characters".to_owned(), 1u, 6u)));
assert_eq!(from_str("1a"),
Err(ParseError("trailing characters".to_owned(), 1u, 2u)));
assert_eq!(from_str("[]a"),
Err(ParseError("trailing characters".to_owned(), 1u, 3u)));
assert_eq!(from_str("{}a"),
Err(ParseError("trailing characters".to_owned(), 1u, 3u)));
}
#[test]
fn test_read_identifiers() {
assert_eq!(from_str("n"),
Err(ParseError("invalid syntax".to_owned(), 1u, 2u)));
assert_eq!(from_str("nul"),
Err(ParseError("invalid syntax".to_owned(), 1u, 4u)));
assert_eq!(from_str("t"),
Err(ParseError("invalid syntax".to_owned(), 1u, 2u)));
assert_eq!(from_str("truz"),
Err(ParseError("invalid syntax".to_owned(), 1u, 4u)));
assert_eq!(from_str("f"),
Err(ParseError("invalid syntax".to_owned(), 1u, 2u)));
assert_eq!(from_str("faz"),
Err(ParseError("invalid syntax".to_owned(), 1u, 3u)));
assert_eq!(from_str("null"), Ok(Null));
assert_eq!(from_str("true"), Ok(Boolean(true)));
assert_eq!(from_str("false"), Ok(Boolean(false)));
assert_eq!(from_str(" null "), Ok(Null));
assert_eq!(from_str(" true "), Ok(Boolean(true)));
assert_eq!(from_str(" false "), Ok(Boolean(false)));
}
#[test]
fn test_decode_identifiers() {
let mut decoder = Decoder::new(from_str("null").unwrap());
let v: () = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, ());
let mut decoder = Decoder::new(from_str("true").unwrap());
let v: bool = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, true);
let mut decoder = Decoder::new(from_str("false").unwrap());
let v: bool = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, false);
}
#[test]
fn test_read_number() {
assert_eq!(from_str("+"),
Err(ParseError("invalid syntax".to_owned(), 1u, 1u)));
assert_eq!(from_str("."),
Err(ParseError("invalid syntax".to_owned(), 1u, 1u)));
assert_eq!(from_str("-"),
Err(ParseError("invalid number".to_owned(), 1u, 2u)));
assert_eq!(from_str("00"),
Err(ParseError("invalid number".to_owned(), 1u, 2u)));
assert_eq!(from_str("1."),
Err(ParseError("invalid number".to_owned(), 1u, 3u)));
assert_eq!(from_str("1e"),
Err(ParseError("invalid number".to_owned(), 1u, 3u)));
assert_eq!(from_str("1e+"),
Err(ParseError("invalid number".to_owned(), 1u, 4u)));
assert_eq!(from_str("3"), Ok(Number(3.0)));
assert_eq!(from_str("3.1"), Ok(Number(3.1)));
assert_eq!(from_str("-1.2"), Ok(Number(-1.2)));
assert_eq!(from_str("0.4"), Ok(Number(0.4)));
assert_eq!(from_str("0.4e5"), Ok(Number(0.4e5)));
assert_eq!(from_str("0.4e+15"), Ok(Number(0.4e15)));
assert_eq!(from_str("0.4e-01"), Ok(Number(0.4e-01)));
assert_eq!(from_str(" 3 "), Ok(Number(3.0)));
}
#[test]
fn test_decode_numbers() {
let mut decoder = Decoder::new(from_str("3").unwrap());
let v: f64 = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, 3.0);
let mut decoder = Decoder::new(from_str("3.1").unwrap());
let v: f64 = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, 3.1);
let mut decoder = Decoder::new(from_str("-1.2").unwrap());
let v: f64 = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, -1.2);
let mut decoder = Decoder::new(from_str("0.4").unwrap());
let v: f64 = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, 0.4);
let mut decoder = Decoder::new(from_str("0.4e5").unwrap());
let v: f64 = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, 0.4e5);
let mut decoder = Decoder::new(from_str("0.4e15").unwrap());
let v: f64 = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, 0.4e15);
let mut decoder = Decoder::new(from_str("0.4e-01").unwrap());
let v: f64 = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, 0.4e-01);
}
#[test]
fn test_read_str() {
assert_eq!(from_str("\""),
Err(ParseError("EOF while parsing string".to_owned(), 1u, 2u)));
assert_eq!(from_str("\"lol"),
Err(ParseError("EOF while parsing string".to_owned(), 1u, 5u)));
assert_eq!(from_str("\"\""), Ok(String("".to_owned())));
assert_eq!(from_str("\"foo\""), Ok(String("foo".to_owned())));
assert_eq!(from_str("\"\\\"\""), Ok(String("\"".to_owned())));
assert_eq!(from_str("\"\\b\""), Ok(String("\x08".to_owned())));
assert_eq!(from_str("\"\\n\""), Ok(String("\n".to_owned())));
assert_eq!(from_str("\"\\r\""), Ok(String("\r".to_owned())));
assert_eq!(from_str("\"\\t\""), Ok(String("\t".to_owned())));
assert_eq!(from_str(" \"foo\" "), Ok(String("foo".to_owned())));
assert_eq!(from_str("\"\\u12ab\""), Ok(String("\u12ab".to_owned())));
assert_eq!(from_str("\"\\uAB12\""), Ok(String("\uAB12".to_owned())));
// Non-BMP escapes. The exact error messages and positions are kind of
// arbitrary.
assert_eq!(from_str("\"\\ud83d\\udca9\""), Ok(String("\U0001F4A9".to_owned())));
assert!(from_str("\"\\ud83d\"").is_err());
assert!(from_str("\"\\udca9\"").is_err());
assert!(from_str("\"\\ud83d\\ud83d\"").is_err());
assert!(from_str("\"\\ud83dx\"").is_err());
assert!(from_str("\"\\udca9\\udca9\"").is_err());
assert!(from_str("\"\\udca9x\"").is_err());
}
#[test]
fn test_decode_str() {
let mut decoder = Decoder::new(from_str("\"\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "".to_owned());
let mut decoder = Decoder::new(from_str("\"foo\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "foo".to_owned());
let mut decoder = Decoder::new(from_str("\"\\\"\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "\"".to_owned());
let mut decoder = Decoder::new(from_str("\"\\b\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "\x08".to_owned());
let mut decoder = Decoder::new(from_str("\"\\n\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "\n".to_owned());
let mut decoder = Decoder::new(from_str("\"\\r\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "\r".to_owned());
let mut decoder = Decoder::new(from_str("\"\\t\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "\t".to_owned());
let mut decoder = Decoder::new(from_str("\"\\u12ab\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "\u12ab".to_owned());
let mut decoder = Decoder::new(from_str("\"\\uAB12\"").unwrap());
let v: ~str = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, "\uAB12".to_owned());
}
#[test]
fn test_read_list() {
assert_eq!(from_str("["),
Err(ParseError("EOF while parsing value".to_owned(), 1u, 2u)));
assert_eq!(from_str("[1"),
Err(ParseError("EOF while parsing list".to_owned(), 1u, 3u)));
assert_eq!(from_str("[1,"),
Err(ParseError("EOF while parsing value".to_owned(), 1u, 4u)));
assert_eq!(from_str("[1,]"),
Err(ParseError("invalid syntax".to_owned(), 1u, 4u)));
assert_eq!(from_str("[6 7]"),
Err(ParseError("expected `,` or `]`".to_owned(), 1u, 4u)));
assert_eq!(from_str("[]"), Ok(List(~[])));
assert_eq!(from_str("[ ]"), Ok(List(~[])));
assert_eq!(from_str("[true]"), Ok(List(~[Boolean(true)])));
assert_eq!(from_str("[ false ]"), Ok(List(~[Boolean(false)])));
assert_eq!(from_str("[null]"), Ok(List(~[Null])));
assert_eq!(from_str("[3, 1]"),
Ok(List(~[Number(3.0), Number(1.0)])));
assert_eq!(from_str("\n[3, 2]\n"),
Ok(List(~[Number(3.0), Number(2.0)])));
assert_eq!(from_str("[2, [4, 1]]"),
Ok(List(~[Number(2.0), List(~[Number(4.0), Number(1.0)])])));
}
#[test]
fn test_decode_list() {
let mut decoder = Decoder::new(from_str("[]").unwrap());
let v: ~[()] = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, ~[]);
let mut decoder = Decoder::new(from_str("[null]").unwrap());
let v: ~[()] = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, ~[()]);
let mut decoder = Decoder::new(from_str("[true]").unwrap());
let v: ~[bool] = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, ~[true]);
let mut decoder = Decoder::new(from_str("[true]").unwrap());
let v: ~[bool] = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, ~[true]);
let mut decoder = Decoder::new(from_str("[3, 1]").unwrap());
let v: ~[int] = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, ~[3, 1]);
let mut decoder = Decoder::new(from_str("[[3], [1, 2]]").unwrap());
let v: ~[~[uint]] = Decodable::decode(&mut decoder).unwrap();
assert_eq!(v, ~[~[3], ~[1, 2]]);
}
#[test]
fn test_read_object() {
assert_eq!(from_str("{"),
Err(ParseError("EOF while parsing object".to_owned(), 1u, 2u)));
assert_eq!(from_str("{ "),
Err(ParseError("EOF while parsing object".to_owned(), 1u, 3u)));
assert_eq!(from_str("{1"),
Err(ParseError("key must be a string".to_owned(), 1u, 2u)));
assert_eq!(from_str("{ \"a\""),
Err(ParseError("EOF while parsing object".to_owned(), 1u, 6u)));
assert_eq!(from_str("{\"a\""),
Err(ParseError("EOF while parsing object".to_owned(), 1u, 5u)));
assert_eq!(from_str("{\"a\" "),
Err(ParseError("EOF while parsing object".to_owned(), 1u, 6u)));
assert_eq!(from_str("{\"a\" 1"),
Err(ParseError("expected `:`".to_owned(), 1u, 6u)));
assert_eq!(from_str("{\"a\":"),
Err(ParseError("EOF while parsing value".to_owned(), 1u, 6u)));
assert_eq!(from_str("{\"a\":1"),
Err(ParseError("EOF while parsing object".to_owned(), 1u, 7u)));
assert_eq!(from_str("{\"a\":1 1"),
Err(ParseError("expected `,` or `}`".to_owned(), 1u, 8u)));
assert_eq!(from_str("{\"a\":1,"),
Err(ParseError("EOF while parsing object".to_owned(), 1u, 8u)));
assert_eq!(from_str("{}").unwrap(), mk_object([]));
assert_eq!(from_str("{\"a\": 3}").unwrap(),
mk_object([("a".to_owned(), Number(3.0))]));
assert_eq!(from_str(
"{ \"a\": null, \"b\" : true }").unwrap(),
mk_object([
("a".to_owned(), Null),
("b".to_owned(), Boolean(true))]));
assert_eq!(from_str("\n{ \"a\": null, \"b\" : true }\n").unwrap(),
mk_object([
("a".to_owned(), Null),
("b".to_owned(), Boolean(true))]));
assert_eq!(from_str(
"{\"a\" : 1.0 ,\"b\": [ true ]}").unwrap(),
mk_object([
("a".to_owned(), Number(1.0)),
("b".to_owned(), List(~[Boolean(true)]))
]));
assert_eq!(from_str(
"{".to_owned() +
"\"a\": 1.0, " +
"\"b\": [" +
"true," +
"\"foo\\nbar\", " +
"{ \"c\": {\"d\": null} } " +
"]" +
"}").unwrap(),
mk_object([
("a".to_owned(), Number(1.0)),
("b".to_owned(), List(~[
Boolean(true),
String("foo\nbar".to_owned()),
mk_object([
("c".to_owned(), mk_object([("d".to_owned(), Null)]))
])
]))
]));
}
#[test]
fn test_decode_struct() {
let s = "{
\"inner\": [
{ \"a\": null, \"b\": 2, \"c\": [\"abc\", \"xyz\"] }
]
}".to_owned();
let mut decoder = Decoder::new(from_str(s).unwrap());
let v: Outer = Decodable::decode(&mut decoder).unwrap();
assert_eq!(
v,
Outer {
inner: ~[
Inner { a: (), b: 2, c: ~["abc".to_owned(), "xyz".to_owned()] }
]
}
);
}
#[test]
fn test_decode_option() {
let mut decoder = Decoder::new(from_str("null").unwrap());
let value: Option<~str> = Decodable::decode(&mut decoder).unwrap();
assert_eq!(value, None);
let mut decoder = Decoder::new(from_str("\"jodhpurs\"").unwrap());
let value: Option<~str> = Decodable::decode(&mut decoder).unwrap();
assert_eq!(value, Some("jodhpurs".to_owned()));
}
#[test]
fn test_decode_enum() {
let mut decoder = Decoder::new(from_str("\"Dog\"").unwrap());
let value: Animal = Decodable::decode(&mut decoder).unwrap();
assert_eq!(value, Dog);
let s = "{\"variant\":\"Frog\",\"fields\":[\"Henry\",349]}";
let mut decoder = Decoder::new(from_str(s).unwrap());
let value: Animal = Decodable::decode(&mut decoder).unwrap();
assert_eq!(value, Frog("Henry".to_owned(), 349));
}
#[test]
fn test_decode_map() {
let s = "{\"a\": \"Dog\", \"b\": {\"variant\":\"Frog\",\
\"fields\":[\"Henry\", 349]}}".to_owned();
let mut decoder = Decoder::new(from_str(s).unwrap());
let mut map: TreeMap<~str, Animal> = Decodable::decode(&mut decoder).unwrap();
assert_eq!(map.pop(&"a".to_owned()), Some(Dog));
assert_eq!(map.pop(&"b".to_owned()), Some(Frog("Henry".to_owned(), 349)));
}
#[test]
fn test_multiline_errors() {
assert_eq!(from_str("{\n \"foo\":\n \"bar\""),
Err(ParseError("EOF while parsing object".to_owned(), 3u, 8u)));
}
#[deriving(Decodable)]
struct DecodeStruct {
x: f64,
y: bool,
z: ~str,
w: ~[DecodeStruct]
}
#[deriving(Decodable)]
enum DecodeEnum {
A(f64),
B(~str)
}
fn check_err<T: Decodable<Decoder, Error>>(to_parse: &'static str, expected: Error) {
let res: DecodeResult<T> = match from_str(to_parse) {
Err(e) => Err(e),
Ok(json) => Decodable::decode(&mut Decoder::new(json))
};
match res {
Ok(_) => fail!("`{}` parsed & decoded ok, expecting error `{}`",
to_parse, expected),
Err(ParseError(e, _, _)) => fail!("`{}` is not valid json: {}",
to_parse, e),
Err(e) => {
assert_eq!(e, expected);
}
}
}
#[test]
fn test_decode_errors_struct() {
check_err::<DecodeStruct>("[]", ExpectedError("Object".to_owned(), "[]".to_owned()));
check_err::<DecodeStruct>("{\"x\": true, \"y\": true, \"z\": \"\", \"w\": []}",
ExpectedError("Number".to_owned(), "true".to_owned()));
check_err::<DecodeStruct>("{\"x\": 1, \"y\": [], \"z\": \"\", \"w\": []}",
ExpectedError("Boolean".to_owned(), "[]".to_owned()));
check_err::<DecodeStruct>("{\"x\": 1, \"y\": true, \"z\": {}, \"w\": []}",
ExpectedError("String".to_owned(), "{}".to_owned()));
check_err::<DecodeStruct>("{\"x\": 1, \"y\": true, \"z\": \"\", \"w\": null}",
ExpectedError("List".to_owned(), "null".to_owned()));
check_err::<DecodeStruct>("{\"x\": 1, \"y\": true, \"z\": \"\"}",
MissingFieldError("w".to_owned()));
}
#[test]
fn test_decode_errors_enum() {
check_err::<DecodeEnum>("{}",
MissingFieldError("variant".to_owned()));
check_err::<DecodeEnum>("{\"variant\": 1}",
ExpectedError("String".to_owned(), "1".to_owned()));
check_err::<DecodeEnum>("{\"variant\": \"A\"}",
MissingFieldError("fields".to_owned()));
check_err::<DecodeEnum>("{\"variant\": \"A\", \"fields\": null}",
ExpectedError("List".to_owned(), "null".to_owned()));
check_err::<DecodeEnum>("{\"variant\": \"C\", \"fields\": []}",
UnknownVariantError("C".to_owned()));
}
#[test]
fn test_find(){
let json_value = from_str("{\"dog\" : \"cat\"}").unwrap();
let found_str = json_value.find(&"dog".to_owned());
assert!(found_str.is_some() && found_str.unwrap().as_string().unwrap() == &"cat");
}
#[test]
fn test_find_path(){
let json_value = from_str("{\"dog\":{\"cat\": {\"mouse\" : \"cheese\"}}}").unwrap();
let found_str = json_value.find_path(&[&"dog".to_owned(),
&"cat".to_owned(), &"mouse".to_owned()]);
assert!(found_str.is_some() && found_str.unwrap().as_string().unwrap() == &"cheese");
}
#[test]
fn test_search(){
let json_value = from_str("{\"dog\":{\"cat\": {\"mouse\" : \"cheese\"}}}").unwrap();
let found_str = json_value.search(&"mouse".to_owned()).and_then(|j| j.as_string());
assert!(found_str.is_some());
assert!(found_str.unwrap() == &"cheese");
}
#[test]
fn test_is_object(){
let json_value = from_str("{}").unwrap();
assert!(json_value.is_object());
}
#[test]
fn test_as_object(){
let json_value = from_str("{}").unwrap();
let json_object = json_value.as_object();
assert!(json_object.is_some());
}
#[test]
fn test_is_list(){
let json_value = from_str("[1, 2, 3]").unwrap();
assert!(json_value.is_list());
}
#[test]
fn test_as_list(){
let json_value = from_str("[1, 2, 3]").unwrap();
let json_list = json_value.as_list();
let expected_length = 3;
assert!(json_list.is_some() && json_list.unwrap().len() == expected_length);
}
#[test]
fn test_is_string(){
let json_value = from_str("\"dog\"").unwrap();
assert!(json_value.is_string());
}
#[test]
fn test_as_string(){
let json_value = from_str("\"dog\"").unwrap();
let json_str = json_value.as_string();
let expected_str = &"dog";
assert_eq!(json_str, Some(expected_str));
}
#[test]
fn test_is_number(){
let json_value = from_str("12").unwrap();
assert!(json_value.is_number());
}
#[test]
fn test_as_number(){
let json_value = from_str("12").unwrap();
let json_num = json_value.as_number();
let expected_num = 12f64;
assert!(json_num.is_some() && json_num.unwrap() == expected_num);
}
#[test]
fn test_is_boolean(){
let json_value = from_str("false").unwrap();
assert!(json_value.is_boolean());
}
#[test]
fn test_as_boolean(){
let json_value = from_str("false").unwrap();
let json_bool = json_value.as_boolean();
let expected_bool = false;
assert!(json_bool.is_some() && json_bool.unwrap() == expected_bool);
}
#[test]
fn test_is_null(){
let json_value = from_str("null").unwrap();
assert!(json_value.is_null());
}
#[test]
fn test_as_null(){
let json_value = from_str("null").unwrap();
let json_null = json_value.as_null();
let expected_null = ();
assert!(json_null.is_some() && json_null.unwrap() == expected_null);
}
#[test]
fn test_encode_hashmap_with_numeric_key() {
use std::str::from_utf8;
use std::io::Writer;
use std::io::MemWriter;
use collections::HashMap;
let mut hm: HashMap<uint, bool> = HashMap::new();
hm.insert(1, true);
let mut mem_buf = MemWriter::new();
{
let mut encoder = Encoder::new(&mut mem_buf as &mut io::Writer);
hm.encode(&mut encoder).unwrap();
}
let bytes = mem_buf.unwrap();
let json_str = from_utf8(bytes.as_slice()).unwrap();
match from_str(json_str) {
Err(_) => fail!("Unable to parse json_str: {:?}", json_str),
_ => {} // it parsed and we are good to go
}
}
#[test]
fn test_prettyencode_hashmap_with_numeric_key() {
use std::str::from_utf8;
use std::io::Writer;
use std::io::MemWriter;
use collections::HashMap;
let mut hm: HashMap<uint, bool> = HashMap::new();
hm.insert(1, true);
let mut mem_buf = MemWriter::new();
{
let mut encoder = PrettyEncoder::new(&mut mem_buf as &mut io::Writer);
hm.encode(&mut encoder).unwrap();
}
let bytes = mem_buf.unwrap();
let json_str = from_utf8(bytes.as_slice()).unwrap();
match from_str(json_str) {
Err(_) => fail!("Unable to parse json_str: {:?}", json_str),
_ => {} // it parsed and we are good to go
}
}
#[test]
fn test_hashmap_with_numeric_key_can_handle_double_quote_delimited_key() {
use collections::HashMap;
use Decodable;
let json_str = "{\"1\":true}";
let json_obj = match from_str(json_str) {
Err(_) => fail!("Unable to parse json_str: {:?}", json_str),
Ok(o) => o
};
let mut decoder = Decoder::new(json_obj);
let _hm: HashMap<uint, bool> = Decodable::decode(&mut decoder).unwrap();
}
}