rust/src/libcore/result.rs
2012-11-20 16:39:30 -08:00

471 lines
12 KiB
Rust

//! A type representing either success or failure
// NB: transitionary, de-mode-ing.
#[forbid(deprecated_mode)];
#[forbid(deprecated_pattern)];
use cmp::Eq;
use either::Either;
/// The result type
pub enum Result<T, U> {
/// Contains the successful result value
Ok(T),
/// Contains the error value
Err(U)
}
/**
* Get the value out of a successful result
*
* # Failure
*
* If the result is an error
*/
pub pure fn get<T: Copy, U>(res: &Result<T, U>) -> T {
match *res {
Ok(copy t) => t,
Err(ref the_err) => unsafe {
fail fmt!("get called on error result: %?", *the_err)
}
}
}
/**
* Get a reference to the value out of a successful result
*
* # Failure
*
* If the result is an error
*/
pub pure fn get_ref<T, U>(res: &a/Result<T, U>) -> &a/T {
match *res {
Ok(ref t) => t,
Err(ref the_err) => unsafe {
fail fmt!("get_ref called on error result: %?", *the_err)
}
}
}
/**
* Get the value out of an error result
*
* # Failure
*
* If the result is not an error
*/
pub pure fn get_err<T, U: Copy>(res: &Result<T, U>) -> U {
match *res {
Err(copy u) => u,
Ok(_) => fail ~"get_err called on ok result"
}
}
/// Returns true if the result is `ok`
pub pure fn is_ok<T, U>(res: &Result<T, U>) -> bool {
match *res {
Ok(_) => true,
Err(_) => false
}
}
/// Returns true if the result is `err`
pub pure fn is_err<T, U>(res: &Result<T, U>) -> bool {
!is_ok(res)
}
/**
* Convert to the `either` type
*
* `ok` result variants are converted to `either::right` variants, `err`
* result variants are converted to `either::left`.
*/
pub pure fn to_either<T: Copy, U: Copy>(res: &Result<U, T>)
-> Either<T, U> {
match *res {
Ok(copy res) => either::Right(res),
Err(copy fail_) => either::Left(fail_)
}
}
/**
* Call a function based on a previous result
*
* If `res` is `ok` then the value is extracted and passed to `op` whereupon
* `op`s result is returned. if `res` is `err` then it is immediately
* returned. This function can be used to compose the results of two
* functions.
*
* Example:
*
* let res = chain(read_file(file)) { |buf|
* ok(parse_bytes(buf))
* }
*/
pub fn chain<T, U, V>(res: Result<T, V>, op: fn(t: T)
-> Result<U, V>) -> Result<U, V> {
match move res {
Ok(move t) => op(move t),
Err(move e) => Err(move e)
}
}
/**
* Call a function based on a previous result
*
* If `res` is `err` then the value is extracted and passed to `op`
* whereupon `op`s result is returned. if `res` is `ok` then it is
* immediately returned. This function can be used to pass through a
* successful result while handling an error.
*/
pub fn chain_err<T, U, V>(
res: Result<T, V>,
op: fn(t: V) -> Result<T, U>)
-> Result<T, U> {
match move res {
Ok(move t) => Ok(move t),
Err(move v) => op(move v)
}
}
/**
* Call a function based on a previous result
*
* If `res` is `ok` then the value is extracted and passed to `op` whereupon
* `op`s result is returned. if `res` is `err` then it is immediately
* returned. This function can be used to compose the results of two
* functions.
*
* Example:
*
* iter(read_file(file)) { |buf|
* print_buf(buf)
* }
*/
pub fn iter<T, E>(res: &Result<T, E>, f: fn(&T)) {
match *res {
Ok(ref t) => f(t),
Err(_) => ()
}
}
/**
* Call a function based on a previous result
*
* If `res` is `err` then the value is extracted and passed to `op` whereupon
* `op`s result is returned. if `res` is `ok` then it is immediately returned.
* This function can be used to pass through a successful result while
* handling an error.
*/
pub fn iter_err<T, E>(res: &Result<T, E>, f: fn(&E)) {
match *res {
Ok(_) => (),
Err(ref e) => f(e)
}
}
/**
* Call a function based on a previous result
*
* If `res` is `ok` then the value is extracted and passed to `op` whereupon
* `op`s result is wrapped in `ok` and returned. if `res` is `err` then it is
* immediately returned. This function can be used to compose the results of
* two functions.
*
* Example:
*
* let res = map(read_file(file)) { |buf|
* parse_bytes(buf)
* }
*/
pub fn map<T, E: Copy, U: Copy>(res: &Result<T, E>, op: fn(&T) -> U)
-> Result<U, E> {
match *res {
Ok(ref t) => Ok(op(t)),
Err(copy e) => Err(e)
}
}
/**
* Call a function based on a previous result
*
* If `res` is `err` then the value is extracted and passed to `op` whereupon
* `op`s result is wrapped in an `err` and returned. if `res` is `ok` then it
* is immediately returned. This function can be used to pass through a
* successful result while handling an error.
*/
pub fn map_err<T: Copy, E, F: Copy>(res: &Result<T, E>, op: fn(&E) -> F)
-> Result<T, F> {
match *res {
Ok(copy t) => Ok(t),
Err(ref e) => Err(op(e))
}
}
impl<T, E> Result<T, E> {
pure fn get_ref(&self) -> &self/T { get_ref(self) }
pure fn is_ok() -> bool { is_ok(&self) }
pure fn is_err() -> bool { is_err(&self) }
pure fn iter(f: fn(&T)) {
match self {
Ok(ref t) => f(t),
Err(_) => ()
}
}
fn iter_err(f: fn(&E)) {
match self {
Ok(_) => (),
Err(ref e) => f(e)
}
}
}
impl<T: Copy, E> Result<T, E> {
pure fn get() -> T { get(&self) }
fn map_err<F:Copy>(op: fn(&E) -> F) -> Result<T,F> {
match self {
Ok(copy t) => Ok(t),
Err(ref e) => Err(op(e))
}
}
}
impl<T, E: Copy> Result<T, E> {
pure fn get_err() -> E { get_err(&self) }
fn map<U:Copy>(op: fn(&T) -> U) -> Result<U,E> {
match self {
Ok(ref t) => Ok(op(t)),
Err(copy e) => Err(e)
}
}
}
impl<T: Copy, E: Copy> Result<T, E> {
fn chain<U:Copy>(op: fn(t: T) -> Result<U,E>) -> Result<U,E> {
// XXX: Bad copy
chain(copy self, op)
}
fn chain_err<F:Copy>(op: fn(t: E) -> Result<T,F>) -> Result<T,F> {
// XXX: Bad copy
chain_err(copy self, op)
}
}
/**
* Maps each element in the vector `ts` using the operation `op`. Should an
* error occur, no further mappings are performed and the error is returned.
* Should no error occur, a vector containing the result of each map is
* returned.
*
* Here is an example which increments every integer in a vector,
* checking for overflow:
*
* fn inc_conditionally(x: uint) -> result<uint,str> {
* if x == uint::max_value { return err("overflow"); }
* else { return ok(x+1u); }
* }
* map(~[1u, 2u, 3u], inc_conditionally).chain {|incd|
* assert incd == ~[2u, 3u, 4u];
* }
*/
pub fn map_vec<T,U:Copy,V:Copy>(
ts: &[T], op: fn(&T) -> Result<V,U>) -> Result<~[V],U> {
let mut vs: ~[V] = vec::with_capacity(vec::len(ts));
for vec::each(ts) |t| {
match op(t) {
Ok(copy v) => vs.push(v),
Err(copy u) => return Err(u)
}
}
return Ok(move vs);
}
pub fn map_opt<T,U:Copy,V:Copy>(
o_t: &Option<T>, op: fn(&T) -> Result<V,U>) -> Result<Option<V>,U> {
match *o_t {
None => Ok(None),
Some(ref t) => match op(t) {
Ok(copy v) => Ok(Some(v)),
Err(copy e) => Err(e)
}
}
}
/**
* Same as map, but it operates over two parallel vectors.
*
* A precondition is used here to ensure that the vectors are the same
* length. While we do not often use preconditions in the standard
* library, a precondition is used here because result::t is generally
* used in 'careful' code contexts where it is both appropriate and easy
* to accommodate an error like the vectors being of different lengths.
*/
pub fn map_vec2<S,T,U:Copy,V:Copy>(ss: &[S], ts: &[T],
op: fn(&S,&T) -> Result<V,U>) -> Result<~[V],U> {
assert vec::same_length(ss, ts);
let n = vec::len(ts);
let mut vs = vec::with_capacity(n);
let mut i = 0u;
while i < n {
match op(&ss[i],&ts[i]) {
Ok(copy v) => vs.push(v),
Err(copy u) => return Err(u)
}
i += 1u;
}
return Ok(move vs);
}
/**
* Applies op to the pairwise elements from `ss` and `ts`, aborting on
* error. This could be implemented using `map2()` but it is more efficient
* on its own as no result vector is built.
*/
pub fn iter_vec2<S,T,U:Copy>(ss: &[S], ts: &[T],
op: fn(&S,&T) -> Result<(),U>) -> Result<(),U> {
assert vec::same_length(ss, ts);
let n = vec::len(ts);
let mut i = 0u;
while i < n {
match op(&ss[i],&ts[i]) {
Ok(()) => (),
Err(copy u) => return Err(u)
}
i += 1u;
}
return Ok(());
}
/// Unwraps a result, assuming it is an `ok(T)`
pub fn unwrap<T, U>(res: Result<T, U>) -> T {
match move res {
Ok(move t) => move t,
Err(_) => fail ~"unwrap called on an err result"
}
}
/// Unwraps a result, assuming it is an `err(U)`
pub fn unwrap_err<T, U>(res: Result<T, U>) -> U {
match move res {
Err(move u) => move u,
Ok(_) => fail ~"unwrap called on an ok result"
}
}
impl<T:Eq,U:Eq> Result<T,U> : Eq {
#[cfg(stage0)]
pure fn eq(other: &Result<T,U>) -> bool {
match self {
Ok(ref e0a) => {
match (*other) {
Ok(ref e0b) => *e0a == *e0b,
_ => false
}
}
Err(ref e0a) => {
match (*other) {
Err(ref e0b) => *e0a == *e0b,
_ => false
}
}
}
}
#[cfg(stage1)]
#[cfg(stage2)]
pure fn eq(&self, other: &Result<T,U>) -> bool {
match (*self) {
Ok(ref e0a) => {
match (*other) {
Ok(ref e0b) => *e0a == *e0b,
_ => false
}
}
Err(ref e0a) => {
match (*other) {
Err(ref e0b) => *e0a == *e0b,
_ => false
}
}
}
}
#[cfg(stage0)]
pure fn ne(other: &Result<T,U>) -> bool { !self.eq(other) }
#[cfg(stage1)]
#[cfg(stage2)]
pure fn ne(&self, other: &Result<T,U>) -> bool { !(*self).eq(other) }
}
#[cfg(test)]
#[allow(non_implicitly_copyable_typarams)]
mod tests {
#[legacy_exports];
fn op1() -> result::Result<int, ~str> { result::Ok(666) }
fn op2(i: int) -> result::Result<uint, ~str> {
result::Ok(i as uint + 1u)
}
fn op3() -> result::Result<int, ~str> { result::Err(~"sadface") }
#[test]
fn chain_success() {
assert get(&chain(op1(), op2)) == 667u;
}
#[test]
fn chain_failure() {
assert get_err(&chain(op3(), op2)) == ~"sadface";
}
#[test]
fn test_impl_iter() {
let mut valid = false;
Ok::<~str, ~str>(~"a").iter(|_x| valid = true);
assert valid;
Err::<~str, ~str>(~"b").iter(|_x| valid = false);
assert valid;
}
#[test]
fn test_impl_iter_err() {
let mut valid = true;
Ok::<~str, ~str>(~"a").iter_err(|_x| valid = false);
assert valid;
valid = false;
Err::<~str, ~str>(~"b").iter_err(|_x| valid = true);
assert valid;
}
#[test]
fn test_impl_map() {
assert Ok::<~str, ~str>(~"a").map(|_x| ~"b") == Ok(~"b");
assert Err::<~str, ~str>(~"a").map(|_x| ~"b") == Err(~"a");
}
#[test]
fn test_impl_map_err() {
assert Ok::<~str, ~str>(~"a").map_err(|_x| ~"b") == Ok(~"a");
assert Err::<~str, ~str>(~"a").map_err(|_x| ~"b") == Err(~"b");
}
#[test]
fn test_get_ref_method() {
let foo: Result<int, ()> = Ok(100);
assert *foo.get_ref() == 100;
}
}