Alex Crichton 13d33064a6 Remove even more usage of clownshoes in symbols
This removes another large chunk of this odd 'clownshoes' identifier showing up
in symbol names. These all originated from external crates because the encoded
items were encoded independently of the paths calculated in ast_map. The
encoding of these paths now uses the helper function in ast_map to calculate the
"pretty name" for an impl block.

Unfortunately there is still no information about generics in the symbol name,
but it's certainly vastly better than before

    hash::__extensions__::write::_version::v0.8

becomes

    hash::Writer$SipState::write::hversion::v0.8

This also fixes bugs in which lots of methods would show up as `meth_XXX`, they
now only show up as `meth` and throw some extra characters onto the version
string.
2013-09-06 23:56:17 -07:00

1143 lines
34 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Code that is useful in various trans modules.
use driver::session;
use driver::session::Session;
use lib::llvm::{ValueRef, BasicBlockRef, BuilderRef};
use lib::llvm::{True, False, Bool};
use lib::llvm::{llvm};
use lib;
use middle::lang_items::LangItem;
use middle::trans::base;
use middle::trans::build;
use middle::trans::datum;
use middle::trans::glue;
use middle::trans::write_guard;
use middle::trans::debuginfo;
use middle::ty::substs;
use middle::ty;
use middle::typeck;
use middle::borrowck::root_map_key;
use util::ppaux::{Repr};
use middle::trans::type_::Type;
use std::c_str::ToCStr;
use std::cast::transmute;
use std::cast;
use std::hashmap::{HashMap};
use std::libc::{c_uint, c_longlong, c_ulonglong, c_char};
use std::vec;
use syntax::ast::Ident;
use syntax::ast_map::{path, path_elt, path_pretty_name};
use syntax::codemap::Span;
use syntax::parse::token;
use syntax::{ast, ast_map};
pub use middle::trans::context::CrateContext;
pub fn gensym_name(name: &str) -> (Ident, path_elt) {
let name = token::gensym(name);
let ident = Ident::new(name);
(ident, path_pretty_name(ident, name as u64))
}
pub struct tydesc_info {
ty: ty::t,
tydesc: ValueRef,
size: ValueRef,
align: ValueRef,
borrow_offset: ValueRef,
name: ValueRef,
take_glue: Option<ValueRef>,
drop_glue: Option<ValueRef>,
free_glue: Option<ValueRef>,
visit_glue: Option<ValueRef>
}
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
pub struct Stats {
n_static_tydescs: uint,
n_glues_created: uint,
n_null_glues: uint,
n_real_glues: uint,
n_fns: uint,
n_monos: uint,
n_inlines: uint,
n_closures: uint,
n_llvm_insns: uint,
llvm_insn_ctxt: ~[~str],
llvm_insns: HashMap<~str, uint>,
fn_stats: ~[(~str, uint, uint)] // (ident, time-in-ms, llvm-instructions)
}
pub struct BuilderRef_res {
B: BuilderRef,
}
impl Drop for BuilderRef_res {
fn drop(&self) {
unsafe {
llvm::LLVMDisposeBuilder(self.B);
}
}
}
pub fn BuilderRef_res(B: BuilderRef) -> BuilderRef_res {
BuilderRef_res {
B: B
}
}
pub type ExternMap = HashMap<~str, ValueRef>;
// Types used for llself.
pub struct ValSelfData {
v: ValueRef,
t: ty::t,
is_copy: bool,
}
// Here `self_ty` is the real type of the self parameter to this method. It
// will only be set in the case of default methods.
pub struct param_substs {
tys: ~[ty::t],
self_ty: Option<ty::t>,
vtables: Option<typeck::vtable_res>,
self_vtables: Option<typeck::vtable_param_res>
}
impl param_substs {
pub fn validate(&self) {
for t in self.tys.iter() { assert!(!ty::type_needs_infer(*t)); }
for t in self.self_ty.iter() { assert!(!ty::type_needs_infer(*t)); }
}
}
fn param_substs_to_str(this: &param_substs, tcx: ty::ctxt) -> ~str {
fmt!("param_substs {tys:%s, vtables:%s}",
this.tys.repr(tcx),
this.vtables.repr(tcx))
}
impl Repr for param_substs {
fn repr(&self, tcx: ty::ctxt) -> ~str {
param_substs_to_str(self, tcx)
}
}
// Function context. Every LLVM function we create will have one of
// these.
pub struct FunctionContext {
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of
// instructions for this function that will go in the .text
// section of the executable we're generating.
llfn: ValueRef,
// The implicit environment argument that arrives in the function we're
// creating.
llenv: ValueRef,
// The place to store the return value. If the return type is immediate,
// this is an alloca in the function. Otherwise, it's the hidden first
// parameter to the function. After function construction, this should
// always be Some.
llretptr: Option<ValueRef>,
entry_bcx: Option<@mut Block>,
// These elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A marker for the place where we want to insert the function's static
// allocas, so that LLVM will coalesce them into a single alloca call.
alloca_insert_pt: Option<ValueRef>,
llreturn: Option<BasicBlockRef>,
// The 'self' value currently in use in this function, if there
// is one.
//
// NB: This is the type of the self *variable*, not the self *type*. The
// self type is set only for default methods, while the self variable is
// set for all methods.
llself: Option<ValSelfData>,
// The a value alloca'd for calls to upcalls.rust_personality. Used when
// outputting the resume instruction.
personality: Option<ValueRef>,
// True if the caller expects this fn to use the out pointer to
// return. Either way, your code should write into llretptr, but if
// this value is false, llretptr will be a local alloca.
caller_expects_out_pointer: bool,
// Maps arguments to allocas created for them in llallocas.
llargs: @mut HashMap<ast::NodeId, ValueRef>,
// Maps the def_ids for local variables to the allocas created for
// them in llallocas.
lllocals: @mut HashMap<ast::NodeId, ValueRef>,
// Same as above, but for closure upvars
llupvars: @mut HashMap<ast::NodeId, ValueRef>,
// The NodeId of the function, or -1 if it doesn't correspond to
// a user-defined function.
id: ast::NodeId,
// If this function is being monomorphized, this contains the type
// substitutions used.
param_substs: Option<@param_substs>,
// The source span and nesting context where this function comes from, for
// error reporting and symbol generation.
span: Option<Span>,
path: path,
// This function's enclosing crate context.
ccx: @mut CrateContext,
// Used and maintained by the debuginfo module.
debug_context: debuginfo::FunctionDebugContext,
}
impl FunctionContext {
pub fn arg_pos(&self, arg: uint) -> uint {
if self.caller_expects_out_pointer {
arg + 2u
} else {
arg + 1u
}
}
pub fn out_arg_pos(&self) -> uint {
assert!(self.caller_expects_out_pointer);
0u
}
pub fn env_arg_pos(&self) -> uint {
if self.caller_expects_out_pointer {
1u
} else {
0u
}
}
pub fn cleanup(&mut self) {
unsafe {
llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt.unwrap());
}
// Remove the cycle between fcx and bcx, so memory can be freed
self.entry_bcx = None;
}
pub fn get_llreturn(&mut self) -> BasicBlockRef {
if self.llreturn.is_none() {
self.llreturn = Some(base::mk_return_basic_block(self.llfn));
}
self.llreturn.unwrap()
}
}
pub fn warn_not_to_commit(ccx: &mut CrateContext, msg: &str) {
if !ccx.do_not_commit_warning_issued {
ccx.do_not_commit_warning_issued = true;
ccx.sess.warn(msg.to_str() + " -- do not commit like this!");
}
}
// Heap selectors. Indicate which heap something should go on.
#[deriving(Eq)]
pub enum heap {
heap_managed,
heap_managed_unique,
heap_exchange,
heap_exchange_closure
}
#[deriving(Clone, Eq)]
pub enum cleantype {
normal_exit_only,
normal_exit_and_unwind
}
pub enum cleanup {
clean(@fn(@mut Block) -> @mut Block, cleantype),
clean_temp(ValueRef, @fn(@mut Block) -> @mut Block, cleantype),
}
// Can't use deriving(Clone) because of the managed closure.
impl Clone for cleanup {
fn clone(&self) -> cleanup {
match *self {
clean(f, ct) => clean(f, ct),
clean_temp(v, f, ct) => clean_temp(v, f, ct),
}
}
}
// Used to remember and reuse existing cleanup paths
// target: none means the path ends in an resume instruction
#[deriving(Clone)]
pub struct cleanup_path {
target: Option<BasicBlockRef>,
size: uint,
dest: BasicBlockRef
}
pub fn shrink_scope_clean(scope_info: &mut ScopeInfo, size: uint) {
scope_info.landing_pad = None;
scope_info.cleanup_paths = scope_info.cleanup_paths.iter()
.take_while(|&cu| cu.size <= size).map(|&x|x).collect();
}
pub fn grow_scope_clean(scope_info: &mut ScopeInfo) {
scope_info.landing_pad = None;
}
pub fn cleanup_type(cx: ty::ctxt, ty: ty::t) -> cleantype {
if ty::type_needs_unwind_cleanup(cx, ty) {
normal_exit_and_unwind
} else {
normal_exit_only
}
}
pub fn add_clean(bcx: @mut Block, val: ValueRef, t: ty::t) {
if !ty::type_needs_drop(bcx.tcx(), t) { return; }
debug!("add_clean(%s, %s, %s)", bcx.to_str(), bcx.val_to_str(val), t.repr(bcx.tcx()));
let cleanup_type = cleanup_type(bcx.tcx(), t);
do in_scope_cx(bcx, None) |scope_info| {
scope_info.cleanups.push(clean(|a| glue::drop_ty(a, val, t), cleanup_type));
grow_scope_clean(scope_info);
}
}
pub fn add_clean_temp_immediate(cx: @mut Block, val: ValueRef, ty: ty::t) {
if !ty::type_needs_drop(cx.tcx(), ty) { return; }
debug!("add_clean_temp_immediate(%s, %s, %s)",
cx.to_str(), cx.val_to_str(val),
ty.repr(cx.tcx()));
let cleanup_type = cleanup_type(cx.tcx(), ty);
do in_scope_cx(cx, None) |scope_info| {
scope_info.cleanups.push(
clean_temp(val, |a| glue::drop_ty_immediate(a, val, ty),
cleanup_type));
grow_scope_clean(scope_info);
}
}
pub fn add_clean_temp_mem(bcx: @mut Block, val: ValueRef, t: ty::t) {
add_clean_temp_mem_in_scope_(bcx, None, val, t);
}
pub fn add_clean_temp_mem_in_scope(bcx: @mut Block,
scope_id: ast::NodeId,
val: ValueRef,
t: ty::t) {
add_clean_temp_mem_in_scope_(bcx, Some(scope_id), val, t);
}
pub fn add_clean_temp_mem_in_scope_(bcx: @mut Block, scope_id: Option<ast::NodeId>,
val: ValueRef, t: ty::t) {
if !ty::type_needs_drop(bcx.tcx(), t) { return; }
debug!("add_clean_temp_mem(%s, %s, %s)",
bcx.to_str(), bcx.val_to_str(val),
t.repr(bcx.tcx()));
let cleanup_type = cleanup_type(bcx.tcx(), t);
do in_scope_cx(bcx, scope_id) |scope_info| {
scope_info.cleanups.push(clean_temp(val, |a| glue::drop_ty(a, val, t), cleanup_type));
grow_scope_clean(scope_info);
}
}
pub fn add_clean_return_to_mut(bcx: @mut Block,
scope_id: ast::NodeId,
root_key: root_map_key,
frozen_val_ref: ValueRef,
bits_val_ref: ValueRef,
filename_val: ValueRef,
line_val: ValueRef) {
//! When an `@mut` has been frozen, we have to
//! call the lang-item `return_to_mut` when the
//! freeze goes out of scope. We need to pass
//! in both the value which was frozen (`frozen_val`) and
//! the value (`bits_val_ref`) which was returned when the
//! box was frozen initially. Here, both `frozen_val_ref` and
//! `bits_val_ref` are in fact pointers to stack slots.
debug!("add_clean_return_to_mut(%s, %s, %s)",
bcx.to_str(),
bcx.val_to_str(frozen_val_ref),
bcx.val_to_str(bits_val_ref));
do in_scope_cx(bcx, Some(scope_id)) |scope_info| {
scope_info.cleanups.push(
clean_temp(
frozen_val_ref,
|bcx| write_guard::return_to_mut(bcx, root_key, frozen_val_ref, bits_val_ref,
filename_val, line_val),
normal_exit_only));
grow_scope_clean(scope_info);
}
}
pub fn add_clean_free(cx: @mut Block, ptr: ValueRef, heap: heap) {
let free_fn = match heap {
heap_managed | heap_managed_unique => {
let f: @fn(@mut Block) -> @mut Block = |a| glue::trans_free(a, ptr);
f
}
heap_exchange | heap_exchange_closure => {
let f: @fn(@mut Block) -> @mut Block = |a| glue::trans_exchange_free(a, ptr);
f
}
};
do in_scope_cx(cx, None) |scope_info| {
scope_info.cleanups.push(clean_temp(ptr, free_fn,
normal_exit_and_unwind));
grow_scope_clean(scope_info);
}
}
// Note that this only works for temporaries. We should, at some point, move
// to a system where we can also cancel the cleanup on local variables, but
// this will be more involved. For now, we simply zero out the local, and the
// drop glue checks whether it is zero.
pub fn revoke_clean(cx: @mut Block, val: ValueRef) {
do in_scope_cx(cx, None) |scope_info| {
let cleanup_pos = scope_info.cleanups.iter().position(
|cu| match *cu {
clean_temp(v, _, _) if v == val => true,
_ => false
});
for i in cleanup_pos.iter() {
scope_info.cleanups =
vec::append(scope_info.cleanups.slice(0u, *i).to_owned(),
scope_info.cleanups.slice(*i + 1u,
scope_info.cleanups.len()));
shrink_scope_clean(scope_info, *i);
}
}
}
pub fn block_cleanups(bcx: @mut Block) -> ~[cleanup] {
match bcx.scope {
None => ~[],
Some(inf) => inf.cleanups.clone(),
}
}
pub struct ScopeInfo {
parent: Option<@mut ScopeInfo>,
loop_break: Option<@mut Block>,
loop_label: Option<Ident>,
// A list of functions that must be run at when leaving this
// block, cleaning up any variables that were introduced in the
// block.
cleanups: ~[cleanup],
// Existing cleanup paths that may be reused, indexed by destination and
// cleared when the set of cleanups changes.
cleanup_paths: ~[cleanup_path],
// Unwinding landing pad. Also cleared when cleanups change.
landing_pad: Option<BasicBlockRef>,
// info about the AST node this scope originated from, if any
node_info: Option<NodeInfo>,
}
impl ScopeInfo {
pub fn empty_cleanups(&mut self) -> bool {
self.cleanups.is_empty()
}
}
pub trait get_node_info {
fn info(&self) -> Option<NodeInfo>;
}
impl get_node_info for ast::Expr {
fn info(&self) -> Option<NodeInfo> {
Some(NodeInfo {id: self.id,
callee_id: self.get_callee_id(),
span: self.span})
}
}
impl get_node_info for ast::Block {
fn info(&self) -> Option<NodeInfo> {
Some(NodeInfo {id: self.id,
callee_id: None,
span: self.span})
}
}
impl get_node_info for Option<@ast::Expr> {
fn info(&self) -> Option<NodeInfo> {
self.chain_ref(|s| s.info())
}
}
pub struct NodeInfo {
id: ast::NodeId,
callee_id: Option<ast::NodeId>,
span: Span
}
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
pub struct Block {
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
// block to the function pointed to by llfn. We insert
// instructions into that block by way of this block context.
// The block pointing to this one in the function's digraph.
llbb: BasicBlockRef,
terminated: bool,
unreachable: bool,
parent: Option<@mut Block>,
// The current scope within this basic block
scope: Option<@mut ScopeInfo>,
// Is this block part of a landing pad?
is_lpad: bool,
// info about the AST node this block originated from, if any
node_info: Option<NodeInfo>,
// The function context for the function to which this block is
// attached.
fcx: @mut FunctionContext
}
impl Block {
pub fn new(llbb: BasicBlockRef,
parent: Option<@mut Block>,
is_lpad: bool,
node_info: Option<NodeInfo>,
fcx: @mut FunctionContext)
-> Block {
Block {
llbb: llbb,
terminated: false,
unreachable: false,
parent: parent,
scope: None,
is_lpad: is_lpad,
node_info: node_info,
fcx: fcx
}
}
pub fn ccx(&self) -> @mut CrateContext { self.fcx.ccx }
pub fn tcx(&self) -> ty::ctxt { self.fcx.ccx.tcx }
pub fn sess(&self) -> Session { self.fcx.ccx.sess }
pub fn ident(&self, ident: Ident) -> @str {
token::ident_to_str(&ident)
}
pub fn node_id_to_str(&self, id: ast::NodeId) -> ~str {
ast_map::node_id_to_str(self.tcx().items, id, self.sess().intr())
}
pub fn expr_to_str(&self, e: @ast::Expr) -> ~str {
e.repr(self.tcx())
}
pub fn expr_is_lval(&self, e: &ast::Expr) -> bool {
ty::expr_is_lval(self.tcx(), self.ccx().maps.method_map, e)
}
pub fn expr_kind(&self, e: &ast::Expr) -> ty::ExprKind {
ty::expr_kind(self.tcx(), self.ccx().maps.method_map, e)
}
pub fn def(&self, nid: ast::NodeId) -> ast::Def {
match self.tcx().def_map.find(&nid) {
Some(&v) => v,
None => {
self.tcx().sess.bug(fmt!(
"No def associated with node id %?", nid));
}
}
}
pub fn val_to_str(&self, val: ValueRef) -> ~str {
self.ccx().tn.val_to_str(val)
}
pub fn llty_str(&self, ty: Type) -> ~str {
self.ccx().tn.type_to_str(ty)
}
pub fn ty_to_str(&self, t: ty::t) -> ~str {
t.repr(self.tcx())
}
pub fn to_str(&self) -> ~str {
unsafe {
match self.node_info {
Some(node_info) => fmt!("[block %d]", node_info.id),
None => fmt!("[block %x]", transmute(&*self)),
}
}
}
}
pub struct Result {
bcx: @mut Block,
val: ValueRef
}
pub fn rslt(bcx: @mut Block, val: ValueRef) -> Result {
Result {bcx: bcx, val: val}
}
impl Result {
pub fn unpack(&self, bcx: &mut @mut Block) -> ValueRef {
*bcx = self.bcx;
return self.val;
}
}
pub fn val_ty(v: ValueRef) -> Type {
unsafe {
Type::from_ref(llvm::LLVMTypeOf(v))
}
}
pub fn in_scope_cx(cx: @mut Block, scope_id: Option<ast::NodeId>, f: &fn(si: &mut ScopeInfo)) {
let mut cur = cx;
let mut cur_scope = cur.scope;
loop {
cur_scope = match cur_scope {
Some(inf) => match scope_id {
Some(wanted) => match inf.node_info {
Some(NodeInfo { id: actual, _ }) if wanted == actual => {
debug!("in_scope_cx: selected cur=%s (cx=%s)",
cur.to_str(), cx.to_str());
f(inf);
return;
},
_ => inf.parent,
},
None => {
debug!("in_scope_cx: selected cur=%s (cx=%s)",
cur.to_str(), cx.to_str());
f(inf);
return;
}
},
None => {
cur = block_parent(cur);
cur.scope
}
}
}
}
pub fn block_parent(cx: @mut Block) -> @mut Block {
match cx.parent {
Some(b) => b,
None => cx.sess().bug(fmt!("block_parent called on root block %?",
cx))
}
}
// Let T be the content of a box @T. tuplify_box_ty(t) returns the
// representation of @T as a tuple (i.e., the ty::t version of what T_box()
// returns).
pub fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t {
let ptr = ty::mk_ptr(
tcx,
ty::mt {ty: ty::mk_i8(), mutbl: ast::MutImmutable}
);
return ty::mk_tup(tcx, ~[ty::mk_uint(), ty::mk_type(tcx),
ptr, ptr,
t]);
}
// LLVM constant constructors.
pub fn C_null(t: Type) -> ValueRef {
unsafe {
llvm::LLVMConstNull(t.to_ref())
}
}
pub fn C_undef(t: Type) -> ValueRef {
unsafe {
llvm::LLVMGetUndef(t.to_ref())
}
}
pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
unsafe {
llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
}
}
pub fn C_floating(s: &str, t: Type) -> ValueRef {
unsafe {
do s.with_c_str |buf| {
llvm::LLVMConstRealOfString(t.to_ref(), buf)
}
}
}
pub fn C_nil() -> ValueRef {
return C_struct([]);
}
pub fn C_bool(val: bool) -> ValueRef {
C_integral(Type::bool(), val as u64, false)
}
pub fn C_i1(val: bool) -> ValueRef {
C_integral(Type::i1(), val as u64, false)
}
pub fn C_i32(i: i32) -> ValueRef {
return C_integral(Type::i32(), i as u64, true);
}
pub fn C_i64(i: i64) -> ValueRef {
return C_integral(Type::i64(), i as u64, true);
}
pub fn C_int(cx: &CrateContext, i: int) -> ValueRef {
return C_integral(cx.int_type, i as u64, true);
}
pub fn C_uint(cx: &CrateContext, i: uint) -> ValueRef {
return C_integral(cx.int_type, i as u64, false);
}
pub fn C_u8(i: uint) -> ValueRef {
return C_integral(Type::i8(), i as u64, false);
}
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
pub fn C_cstr(cx: &mut CrateContext, s: @str) -> ValueRef {
unsafe {
match cx.const_cstr_cache.find_equiv(&s) {
Some(&llval) => return llval,
None => ()
}
let sc = do s.as_imm_buf |buf, buflen| {
llvm::LLVMConstStringInContext(cx.llcx, buf as *c_char, buflen as c_uint, False)
};
let gsym = token::gensym("str");
let g = do fmt!("str%u", gsym).with_c_str |buf| {
llvm::LLVMAddGlobal(cx.llmod, val_ty(sc).to_ref(), buf)
};
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage);
cx.const_cstr_cache.insert(s, g);
return g;
}
}
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
// you will be kicked off fast isel. See issue #4352 for an example of this.
pub fn C_estr_slice(cx: &mut CrateContext, s: @str) -> ValueRef {
unsafe {
let len = s.len();
let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), Type::i8p().to_ref());
C_struct([cs, C_uint(cx, len)])
}
}
pub fn C_zero_byte_arr(size: uint) -> ValueRef {
unsafe {
let mut i = 0u;
let mut elts: ~[ValueRef] = ~[];
while i < size { elts.push(C_u8(0u)); i += 1u; }
return llvm::LLVMConstArray(Type::i8().to_ref(),
vec::raw::to_ptr(elts), elts.len() as c_uint);
}
}
pub fn C_struct(elts: &[ValueRef]) -> ValueRef {
unsafe {
do elts.as_imm_buf |ptr, len| {
llvm::LLVMConstStructInContext(base::task_llcx(), ptr, len as c_uint, False)
}
}
}
pub fn C_packed_struct(elts: &[ValueRef]) -> ValueRef {
unsafe {
do elts.as_imm_buf |ptr, len| {
llvm::LLVMConstStructInContext(base::task_llcx(), ptr, len as c_uint, True)
}
}
}
pub fn C_named_struct(T: Type, elts: &[ValueRef]) -> ValueRef {
unsafe {
do elts.as_imm_buf |ptr, len| {
llvm::LLVMConstNamedStruct(T.to_ref(), ptr, len as c_uint)
}
}
}
pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
unsafe {
return llvm::LLVMConstArray(ty.to_ref(), vec::raw::to_ptr(elts), elts.len() as c_uint);
}
}
pub fn C_bytes(bytes: &[u8]) -> ValueRef {
unsafe {
let ptr = cast::transmute(vec::raw::to_ptr(bytes));
return llvm::LLVMConstStringInContext(base::task_llcx(), ptr, bytes.len() as c_uint, True);
}
}
pub fn get_param(fndecl: ValueRef, param: uint) -> ValueRef {
unsafe {
llvm::LLVMGetParam(fndecl, param as c_uint)
}
}
pub fn const_get_elt(cx: &CrateContext, v: ValueRef, us: &[c_uint])
-> ValueRef {
unsafe {
let r = do us.as_imm_buf |p, len| {
llvm::LLVMConstExtractValue(v, p, len as c_uint)
};
debug!("const_get_elt(v=%s, us=%?, r=%s)",
cx.tn.val_to_str(v), us, cx.tn.val_to_str(r));
return r;
}
}
pub fn is_const(v: ValueRef) -> bool {
unsafe {
llvm::LLVMIsConstant(v) == True
}
}
pub fn const_to_int(v: ValueRef) -> c_longlong {
unsafe {
llvm::LLVMConstIntGetSExtValue(v)
}
}
pub fn const_to_uint(v: ValueRef) -> c_ulonglong {
unsafe {
llvm::LLVMConstIntGetZExtValue(v)
}
}
pub fn is_undef(val: ValueRef) -> bool {
unsafe {
llvm::LLVMIsUndef(val) != False
}
}
pub fn is_null(val: ValueRef) -> bool {
unsafe {
llvm::LLVMIsNull(val) != False
}
}
// Used to identify cached monomorphized functions and vtables
#[deriving(Eq,IterBytes)]
pub enum mono_param_id {
mono_precise(ty::t, Option<@~[mono_id]>),
mono_any,
mono_repr(uint /* size */,
uint /* align */,
MonoDataClass,
datum::DatumMode),
}
#[deriving(Eq,IterBytes)]
pub enum MonoDataClass {
MonoBits, // Anything not treated differently from arbitrary integer data
MonoNonNull, // Non-null pointers (used for optional-pointer optimization)
// FIXME(#3547)---scalars and floats are
// treated differently in most ABIs. But we
// should be doing something more detailed
// here.
MonoFloat
}
pub fn mono_data_classify(t: ty::t) -> MonoDataClass {
match ty::get(t).sty {
ty::ty_float(_) => MonoFloat,
ty::ty_rptr(*) | ty::ty_uniq(*) |
ty::ty_box(*) | ty::ty_opaque_box(*) |
ty::ty_estr(ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_uniq) |
ty::ty_estr(ty::vstore_box) | ty::ty_evec(_, ty::vstore_box) |
ty::ty_bare_fn(*) => MonoNonNull,
// Is that everything? Would closures or slices qualify?
_ => MonoBits
}
}
#[deriving(Eq,IterBytes)]
pub struct mono_id_ {
def: ast::DefId,
params: ~[mono_param_id]
}
pub type mono_id = @mono_id_;
pub fn umax(cx: @mut Block, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
return build::Select(cx, cond, b, a);
}
pub fn umin(cx: @mut Block, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
return build::Select(cx, cond, a, b);
}
pub fn align_to(cx: @mut Block, off: ValueRef, align: ValueRef) -> ValueRef {
let mask = build::Sub(cx, align, C_int(cx.ccx(), 1));
let bumped = build::Add(cx, off, mask);
return build::And(cx, bumped, build::Not(cx, mask));
}
pub fn path_str(sess: session::Session, p: &[path_elt]) -> ~str {
let mut r = ~"";
let mut first = true;
for e in p.iter() {
match *e {
ast_map::path_name(s) | ast_map::path_mod(s) |
ast_map::path_pretty_name(s, _) => {
if first {
first = false
} else {
r.push_str("::")
}
r.push_str(sess.str_of(s));
}
}
}
r
}
pub fn monomorphize_type(bcx: @mut Block, t: ty::t) -> ty::t {
match bcx.fcx.param_substs {
Some(substs) => {
ty::subst_tps(bcx.tcx(), substs.tys, substs.self_ty, t)
}
_ => {
assert!(!ty::type_has_params(t));
assert!(!ty::type_has_self(t));
t
}
}
}
pub fn node_id_type(bcx: @mut Block, id: ast::NodeId) -> ty::t {
let tcx = bcx.tcx();
let t = ty::node_id_to_type(tcx, id);
monomorphize_type(bcx, t)
}
pub fn expr_ty(bcx: @mut Block, ex: &ast::Expr) -> ty::t {
node_id_type(bcx, ex.id)
}
pub fn expr_ty_adjusted(bcx: @mut Block, ex: &ast::Expr) -> ty::t {
let tcx = bcx.tcx();
let t = ty::expr_ty_adjusted(tcx, ex);
monomorphize_type(bcx, t)
}
pub fn node_id_type_params(bcx: @mut Block, id: ast::NodeId) -> ~[ty::t] {
let tcx = bcx.tcx();
let params = ty::node_id_to_type_params(tcx, id);
if !params.iter().all(|t| !ty::type_needs_infer(*t)) {
bcx.sess().bug(
fmt!("Type parameters for node %d include inference types: %s",
id, params.map(|t| bcx.ty_to_str(*t)).connect(",")));
}
match bcx.fcx.param_substs {
Some(substs) => {
do params.iter().map |t| {
ty::subst_tps(tcx, substs.tys, substs.self_ty, *t)
}.collect()
}
_ => params
}
}
pub fn node_vtables(bcx: @mut Block, id: ast::NodeId)
-> Option<typeck::vtable_res> {
let raw_vtables = bcx.ccx().maps.vtable_map.find(&id);
raw_vtables.map_move(|vts| resolve_vtables_in_fn_ctxt(bcx.fcx, *vts))
}
// Apply the typaram substitutions in the FunctionContext to some
// vtables. This should eliminate any vtable_params.
pub fn resolve_vtables_in_fn_ctxt(fcx: &FunctionContext, vts: typeck::vtable_res)
-> typeck::vtable_res {
resolve_vtables_under_param_substs(fcx.ccx.tcx,
fcx.param_substs,
vts)
}
pub fn resolve_vtables_under_param_substs(tcx: ty::ctxt,
param_substs: Option<@param_substs>,
vts: typeck::vtable_res)
-> typeck::vtable_res {
@vts.iter().map(|ds|
resolve_param_vtables_under_param_substs(tcx,
param_substs,
*ds))
.collect()
}
pub fn resolve_param_vtables_under_param_substs(
tcx: ty::ctxt,
param_substs: Option<@param_substs>,
ds: typeck::vtable_param_res)
-> typeck::vtable_param_res {
@ds.iter().map(
|d| resolve_vtable_under_param_substs(tcx,
param_substs,
d))
.collect()
}
pub fn resolve_vtable_under_param_substs(tcx: ty::ctxt,
param_substs: Option<@param_substs>,
vt: &typeck::vtable_origin)
-> typeck::vtable_origin {
match *vt {
typeck::vtable_static(trait_id, ref tys, sub) => {
let tys = match param_substs {
Some(substs) => {
do tys.iter().map |t| {
ty::subst_tps(tcx, substs.tys, substs.self_ty, *t)
}.collect()
}
_ => tys.to_owned()
};
typeck::vtable_static(
trait_id, tys,
resolve_vtables_under_param_substs(tcx, param_substs, sub))
}
typeck::vtable_param(n_param, n_bound) => {
match param_substs {
Some(substs) => {
find_vtable(tcx, substs, n_param, n_bound)
}
_ => {
tcx.sess.bug(fmt!(
"resolve_vtable_under_param_substs: asked to lookup \
but no vtables in the fn_ctxt!"))
}
}
}
}
}
pub fn find_vtable(tcx: ty::ctxt,
ps: &param_substs,
n_param: typeck::param_index,
n_bound: uint)
-> typeck::vtable_origin {
debug!("find_vtable(n_param=%?, n_bound=%u, ps=%s)",
n_param, n_bound, ps.repr(tcx));
let param_bounds = match n_param {
typeck::param_self => ps.self_vtables.expect("self vtables missing"),
typeck::param_numbered(n) => {
let tables = ps.vtables
.expect("vtables missing where they are needed");
tables[n]
}
};
param_bounds[n_bound].clone()
}
pub fn dummy_substs(tps: ~[ty::t]) -> ty::substs {
substs {
regions: ty::ErasedRegions,
self_ty: None,
tps: tps
}
}
pub fn filename_and_line_num_from_span(bcx: @mut Block,
span: Span) -> (ValueRef, ValueRef) {
let loc = bcx.sess().parse_sess.cm.lookup_char_pos(span.lo);
let filename_cstr = C_cstr(bcx.ccx(), loc.file.name);
let filename = build::PointerCast(bcx, filename_cstr, Type::i8p());
let line = C_int(bcx.ccx(), loc.line as int);
(filename, line)
}
// Casts a Rust bool value to an i1.
pub fn bool_to_i1(bcx: @mut Block, llval: ValueRef) -> ValueRef {
build::ICmp(bcx, lib::llvm::IntNE, llval, C_bool(false))
}
pub fn langcall(bcx: @mut Block, span: Option<Span>, msg: &str,
li: LangItem) -> ast::DefId {
match bcx.tcx().lang_items.require(li) {
Ok(id) => id,
Err(s) => {
let msg = fmt!("%s %s", msg, s);
match span {
Some(span) => { bcx.tcx().sess.span_fatal(span, msg); }
None => { bcx.tcx().sess.fatal(msg); }
}
}
}
}