rust/src/libsyntax/ast_util.rs
Alex Crichton 90d03d7926 rustc: Add const globals to the language
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.

The semantics of these three kinds of globals are:

* A `const` does not represent a memory location, but only a value. Constants
  are translated as rvalues, which means that their values are directly inlined
  at usage location (similar to a #define in C/C++). Constant values are, well,
  constant, and can not be modified. Any "modification" is actually a
  modification to a local value on the stack rather than the actual constant
  itself.

  Almost all values are allowed inside constants, whether they have interior
  mutability or not. There are a few minor restrictions listed in the RFC, but
  they should in general not come up too often.

* A `static` now always represents a memory location (unconditionally). Any
  references to the same `static` are actually a reference to the same memory
  location. Only values whose types ascribe to `Sync` are allowed in a `static`.
  This restriction is in place because many threads may access a `static`
  concurrently. Lifting this restriction (and allowing unsafe access) is a
  future extension not implemented at this time.

* A `static mut` continues to always represent a memory location. All references
  to a `static mut` continue to be `unsafe`.

This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:

* Statics may no longer be used in patterns. Statics now always represent a
  memory location, which can sometimes be modified. To fix code, repurpose the
  matched-on-`static` to a `const`.

      static FOO: uint = 4;
      match n {
          FOO => { /* ... */ }
          _ => { /* ... */ }
      }

  change this code to:

      const FOO: uint = 4;
      match n {
          FOO => { /* ... */ }
          _ => { /* ... */ }
      }

* Statics may no longer refer to other statics by value. Due to statics being
  able to change at runtime, allowing them to reference one another could
  possibly lead to confusing semantics. If you are in this situation, use a
  constant initializer instead. Note, however, that statics may reference other
  statics by address, however.

* Statics may no longer be used in constant expressions, such as array lengths.
  This is due to the same restrictions as listed above. Use a `const` instead.

[breaking-change]

[rfc]: https://github.com/rust-lang/rfcs/pull/246
2014-10-09 09:44:50 -07:00

774 lines
22 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use abi::Abi;
use ast::*;
use ast;
use ast_util;
use codemap;
use codemap::Span;
use owned_slice::OwnedSlice;
use parse::token;
use print::pprust;
use ptr::P;
use visit::Visitor;
use visit;
use std::cell::Cell;
use std::cmp;
use std::u32;
pub fn path_name_i(idents: &[Ident]) -> String {
// FIXME: Bad copies (#2543 -- same for everything else that says "bad")
idents.iter().map(|i| {
token::get_ident(*i).get().to_string()
}).collect::<Vec<String>>().connect("::")
}
pub fn local_def(id: NodeId) -> DefId {
ast::DefId { krate: LOCAL_CRATE, node: id }
}
pub fn is_local(did: ast::DefId) -> bool { did.krate == LOCAL_CRATE }
pub fn stmt_id(s: &Stmt) -> NodeId {
match s.node {
StmtDecl(_, id) => id,
StmtExpr(_, id) => id,
StmtSemi(_, id) => id,
StmtMac(..) => fail!("attempted to analyze unexpanded stmt")
}
}
pub fn binop_to_string(op: BinOp) -> &'static str {
match op {
BiAdd => "+",
BiSub => "-",
BiMul => "*",
BiDiv => "/",
BiRem => "%",
BiAnd => "&&",
BiOr => "||",
BiBitXor => "^",
BiBitAnd => "&",
BiBitOr => "|",
BiShl => "<<",
BiShr => ">>",
BiEq => "==",
BiLt => "<",
BiLe => "<=",
BiNe => "!=",
BiGe => ">=",
BiGt => ">"
}
}
pub fn lazy_binop(b: BinOp) -> bool {
match b {
BiAnd => true,
BiOr => true,
_ => false
}
}
pub fn is_shift_binop(b: BinOp) -> bool {
match b {
BiShl => true,
BiShr => true,
_ => false
}
}
pub fn unop_to_string(op: UnOp) -> &'static str {
match op {
UnUniq => "box() ",
UnDeref => "*",
UnNot => "!",
UnNeg => "-",
}
}
pub fn is_path(e: P<Expr>) -> bool {
return match e.node { ExprPath(_) => true, _ => false };
}
/// Get a string representation of a signed int type, with its value.
/// We want to avoid "45int" and "-3int" in favor of "45" and "-3"
pub fn int_ty_to_string(t: IntTy, val: Option<i64>) -> String {
let s = match t {
TyI if val.is_some() => "i",
TyI => "int",
TyI8 => "i8",
TyI16 => "i16",
TyI32 => "i32",
TyI64 => "i64"
};
match val {
// cast to a u64 so we can correctly print INT64_MIN. All integral types
// are parsed as u64, so we wouldn't want to print an extra negative
// sign.
Some(n) => format!("{}{}", n as u64, s),
None => s.to_string()
}
}
pub fn int_ty_max(t: IntTy) -> u64 {
match t {
TyI8 => 0x80u64,
TyI16 => 0x8000u64,
TyI | TyI32 => 0x80000000u64, // actually ni about TyI
TyI64 => 0x8000000000000000u64
}
}
/// Get a string representation of an unsigned int type, with its value.
/// We want to avoid "42uint" in favor of "42u"
pub fn uint_ty_to_string(t: UintTy, val: Option<u64>) -> String {
let s = match t {
TyU if val.is_some() => "u",
TyU => "uint",
TyU8 => "u8",
TyU16 => "u16",
TyU32 => "u32",
TyU64 => "u64"
};
match val {
Some(n) => format!("{}{}", n, s),
None => s.to_string()
}
}
pub fn uint_ty_max(t: UintTy) -> u64 {
match t {
TyU8 => 0xffu64,
TyU16 => 0xffffu64,
TyU | TyU32 => 0xffffffffu64, // actually ni about TyU
TyU64 => 0xffffffffffffffffu64
}
}
pub fn float_ty_to_string(t: FloatTy) -> String {
match t {
TyF32 => "f32".to_string(),
TyF64 => "f64".to_string(),
}
}
// convert a span and an identifier to the corresponding
// 1-segment path
pub fn ident_to_path(s: Span, identifier: Ident) -> Path {
ast::Path {
span: s,
global: false,
segments: vec!(
ast::PathSegment {
identifier: identifier,
lifetimes: Vec::new(),
types: OwnedSlice::empty(),
}
),
}
}
pub fn ident_to_pat(id: NodeId, s: Span, i: Ident) -> P<Pat> {
P(Pat {
id: id,
node: PatIdent(BindByValue(MutImmutable), codemap::Spanned{span:s, node:i}, None),
span: s
})
}
pub fn name_to_dummy_lifetime(name: Name) -> Lifetime {
Lifetime { id: DUMMY_NODE_ID,
span: codemap::DUMMY_SP,
name: name }
}
/// Generate a "pretty" name for an `impl` from its type and trait.
/// This is designed so that symbols of `impl`'d methods give some
/// hint of where they came from, (previously they would all just be
/// listed as `__extensions__::method_name::hash`, with no indication
/// of the type).
pub fn impl_pretty_name(trait_ref: &Option<TraitRef>, ty: &Ty) -> Ident {
let mut pretty = pprust::ty_to_string(ty);
match *trait_ref {
Some(ref trait_ref) => {
pretty.push_char('.');
pretty.push_str(pprust::path_to_string(&trait_ref.path).as_slice());
}
None => {}
}
token::gensym_ident(pretty.as_slice())
}
pub fn trait_method_to_ty_method(method: &Method) -> TypeMethod {
match method.node {
MethDecl(ident,
ref generics,
abi,
ref explicit_self,
fn_style,
ref decl,
_,
vis) => {
TypeMethod {
ident: ident,
attrs: method.attrs.clone(),
fn_style: fn_style,
decl: (*decl).clone(),
generics: generics.clone(),
explicit_self: (*explicit_self).clone(),
id: method.id,
span: method.span,
vis: vis,
abi: abi,
}
},
MethMac(_) => fail!("expected non-macro method declaration")
}
}
/// extract a TypeMethod from a TraitItem. if the TraitItem is
/// a default, pull out the useful fields to make a TypeMethod
//
// NB: to be used only after expansion is complete, and macros are gone.
pub fn trait_item_to_ty_method(method: &TraitItem) -> TypeMethod {
match *method {
RequiredMethod(ref m) => (*m).clone(),
ProvidedMethod(ref m) => trait_method_to_ty_method(&**m),
TypeTraitItem(_) => {
fail!("trait_method_to_ty_method(): expected method but found \
typedef")
}
}
}
pub fn split_trait_methods(trait_methods: &[TraitItem])
-> (Vec<TypeMethod>, Vec<P<Method>> ) {
let mut reqd = Vec::new();
let mut provd = Vec::new();
for trt_method in trait_methods.iter() {
match *trt_method {
RequiredMethod(ref tm) => reqd.push((*tm).clone()),
ProvidedMethod(ref m) => provd.push((*m).clone()),
TypeTraitItem(_) => {}
}
};
(reqd, provd)
}
pub fn struct_field_visibility(field: ast::StructField) -> Visibility {
match field.node.kind {
ast::NamedField(_, v) | ast::UnnamedField(v) => v
}
}
/// Maps a binary operator to its precedence
pub fn operator_prec(op: ast::BinOp) -> uint {
match op {
// 'as' sits here with 12
BiMul | BiDiv | BiRem => 11u,
BiAdd | BiSub => 10u,
BiShl | BiShr => 9u,
BiBitAnd => 8u,
BiBitXor => 7u,
BiBitOr => 6u,
BiLt | BiLe | BiGe | BiGt => 4u,
BiEq | BiNe => 3u,
BiAnd => 2u,
BiOr => 1u
}
}
/// Precedence of the `as` operator, which is a binary operator
/// not appearing in the prior table.
#[allow(non_uppercase_statics)]
pub static as_prec: uint = 12u;
pub fn empty_generics() -> Generics {
Generics {
lifetimes: Vec::new(),
ty_params: OwnedSlice::empty(),
where_clause: WhereClause {
id: DUMMY_NODE_ID,
predicates: Vec::new(),
}
}
}
// ______________________________________________________________________
// Enumerating the IDs which appear in an AST
#[deriving(Encodable, Decodable)]
pub struct IdRange {
pub min: NodeId,
pub max: NodeId,
}
impl IdRange {
pub fn max() -> IdRange {
IdRange {
min: u32::MAX,
max: u32::MIN,
}
}
pub fn empty(&self) -> bool {
self.min >= self.max
}
pub fn add(&mut self, id: NodeId) {
self.min = cmp::min(self.min, id);
self.max = cmp::max(self.max, id + 1);
}
}
pub trait IdVisitingOperation {
fn visit_id(&self, node_id: NodeId);
}
/// A visitor that applies its operation to all of the node IDs
/// in a visitable thing.
pub struct IdVisitor<'a, O:'a> {
pub operation: &'a O,
pub pass_through_items: bool,
pub visited_outermost: bool,
}
impl<'a, O: IdVisitingOperation> IdVisitor<'a, O> {
fn visit_generics_helper(&self, generics: &Generics) {
for type_parameter in generics.ty_params.iter() {
self.operation.visit_id(type_parameter.id)
}
for lifetime in generics.lifetimes.iter() {
self.operation.visit_id(lifetime.lifetime.id)
}
}
}
impl<'a, 'v, O: IdVisitingOperation> Visitor<'v> for IdVisitor<'a, O> {
fn visit_mod(&mut self,
module: &Mod,
_: Span,
node_id: NodeId) {
self.operation.visit_id(node_id);
visit::walk_mod(self, module)
}
fn visit_view_item(&mut self, view_item: &ViewItem) {
if !self.pass_through_items {
if self.visited_outermost {
return;
} else {
self.visited_outermost = true;
}
}
match view_item.node {
ViewItemExternCrate(_, _, node_id) => {
self.operation.visit_id(node_id)
}
ViewItemUse(ref view_path) => {
match view_path.node {
ViewPathSimple(_, _, node_id) |
ViewPathGlob(_, node_id) => {
self.operation.visit_id(node_id)
}
ViewPathList(_, ref paths, node_id) => {
self.operation.visit_id(node_id);
for path in paths.iter() {
self.operation.visit_id(path.node.id())
}
}
}
}
}
visit::walk_view_item(self, view_item);
self.visited_outermost = false;
}
fn visit_foreign_item(&mut self, foreign_item: &ForeignItem) {
self.operation.visit_id(foreign_item.id);
visit::walk_foreign_item(self, foreign_item)
}
fn visit_item(&mut self, item: &Item) {
if !self.pass_through_items {
if self.visited_outermost {
return
} else {
self.visited_outermost = true
}
}
self.operation.visit_id(item.id);
match item.node {
ItemEnum(ref enum_definition, _) => {
for variant in enum_definition.variants.iter() {
self.operation.visit_id(variant.node.id)
}
}
_ => {}
}
visit::walk_item(self, item);
self.visited_outermost = false
}
fn visit_local(&mut self, local: &Local) {
self.operation.visit_id(local.id);
visit::walk_local(self, local)
}
fn visit_block(&mut self, block: &Block) {
self.operation.visit_id(block.id);
visit::walk_block(self, block)
}
fn visit_stmt(&mut self, statement: &Stmt) {
self.operation.visit_id(ast_util::stmt_id(statement));
visit::walk_stmt(self, statement)
}
fn visit_pat(&mut self, pattern: &Pat) {
self.operation.visit_id(pattern.id);
visit::walk_pat(self, pattern)
}
fn visit_expr(&mut self, expression: &Expr) {
self.operation.visit_id(expression.id);
visit::walk_expr(self, expression)
}
fn visit_ty(&mut self, typ: &Ty) {
self.operation.visit_id(typ.id);
match typ.node {
TyPath(_, _, id) => self.operation.visit_id(id),
_ => {}
}
visit::walk_ty(self, typ)
}
fn visit_generics(&mut self, generics: &Generics) {
self.visit_generics_helper(generics);
visit::walk_generics(self, generics)
}
fn visit_fn(&mut self,
function_kind: visit::FnKind<'v>,
function_declaration: &'v FnDecl,
block: &'v Block,
span: Span,
node_id: NodeId) {
if !self.pass_through_items {
match function_kind {
visit::FkMethod(..) if self.visited_outermost => return,
visit::FkMethod(..) => self.visited_outermost = true,
_ => {}
}
}
self.operation.visit_id(node_id);
match function_kind {
visit::FkItemFn(_, generics, _, _) |
visit::FkMethod(_, generics, _) => {
self.visit_generics_helper(generics)
}
visit::FkFnBlock => {}
}
for argument in function_declaration.inputs.iter() {
self.operation.visit_id(argument.id)
}
visit::walk_fn(self,
function_kind,
function_declaration,
block,
span);
if !self.pass_through_items {
match function_kind {
visit::FkMethod(..) => self.visited_outermost = false,
_ => {}
}
}
}
fn visit_struct_field(&mut self, struct_field: &StructField) {
self.operation.visit_id(struct_field.node.id);
visit::walk_struct_field(self, struct_field)
}
fn visit_struct_def(&mut self,
struct_def: &StructDef,
_: ast::Ident,
_: &ast::Generics,
id: NodeId) {
self.operation.visit_id(id);
struct_def.ctor_id.map(|ctor_id| self.operation.visit_id(ctor_id));
visit::walk_struct_def(self, struct_def);
}
fn visit_trait_item(&mut self, tm: &ast::TraitItem) {
match *tm {
ast::RequiredMethod(ref m) => self.operation.visit_id(m.id),
ast::ProvidedMethod(ref m) => self.operation.visit_id(m.id),
ast::TypeTraitItem(ref typ) => self.operation.visit_id(typ.id),
}
visit::walk_trait_item(self, tm);
}
fn visit_lifetime_ref(&mut self, lifetime: &'v Lifetime) {
self.operation.visit_id(lifetime.id);
}
fn visit_lifetime_decl(&mut self, def: &'v LifetimeDef) {
self.visit_lifetime_ref(&def.lifetime);
}
}
pub fn visit_ids_for_inlined_item<O: IdVisitingOperation>(item: &InlinedItem,
operation: &O) {
let mut id_visitor = IdVisitor {
operation: operation,
pass_through_items: true,
visited_outermost: false,
};
visit::walk_inlined_item(&mut id_visitor, item);
}
struct IdRangeComputingVisitor {
result: Cell<IdRange>,
}
impl IdVisitingOperation for IdRangeComputingVisitor {
fn visit_id(&self, id: NodeId) {
let mut id_range = self.result.get();
id_range.add(id);
self.result.set(id_range)
}
}
pub fn compute_id_range_for_inlined_item(item: &InlinedItem) -> IdRange {
let visitor = IdRangeComputingVisitor {
result: Cell::new(IdRange::max())
};
visit_ids_for_inlined_item(item, &visitor);
visitor.result.get()
}
pub fn compute_id_range_for_fn_body(fk: visit::FnKind,
decl: &FnDecl,
body: &Block,
sp: Span,
id: NodeId)
-> IdRange
{
/*!
* Computes the id range for a single fn body,
* ignoring nested items.
*/
let visitor = IdRangeComputingVisitor {
result: Cell::new(IdRange::max())
};
let mut id_visitor = IdVisitor {
operation: &visitor,
pass_through_items: false,
visited_outermost: false,
};
id_visitor.visit_fn(fk, decl, body, sp, id);
visitor.result.get()
}
pub fn walk_pat(pat: &Pat, it: |&Pat| -> bool) -> bool {
if !it(pat) {
return false;
}
match pat.node {
PatIdent(_, _, Some(ref p)) => walk_pat(&**p, it),
PatStruct(_, ref fields, _) => {
fields.iter().all(|field| walk_pat(&*field.pat, |p| it(p)))
}
PatEnum(_, Some(ref s)) | PatTup(ref s) => {
s.iter().all(|p| walk_pat(&**p, |p| it(p)))
}
PatBox(ref s) | PatRegion(ref s) => {
walk_pat(&**s, it)
}
PatVec(ref before, ref slice, ref after) => {
before.iter().all(|p| walk_pat(&**p, |p| it(p))) &&
slice.iter().all(|p| walk_pat(&**p, |p| it(p))) &&
after.iter().all(|p| walk_pat(&**p, |p| it(p)))
}
PatMac(_) => fail!("attempted to analyze unexpanded pattern"),
PatWild(_) | PatLit(_) | PatRange(_, _) | PatIdent(_, _, _) |
PatEnum(_, _) => {
true
}
}
}
pub trait EachViewItem {
fn each_view_item(&self, f: |&ast::ViewItem| -> bool) -> bool;
}
struct EachViewItemData<'a> {
callback: |&ast::ViewItem|: 'a -> bool,
}
impl<'a, 'v> Visitor<'v> for EachViewItemData<'a> {
fn visit_view_item(&mut self, view_item: &ast::ViewItem) {
let _ = (self.callback)(view_item);
}
}
impl EachViewItem for ast::Crate {
fn each_view_item(&self, f: |&ast::ViewItem| -> bool) -> bool {
let mut visit = EachViewItemData {
callback: f,
};
visit::walk_crate(&mut visit, self);
true
}
}
pub fn view_path_id(p: &ViewPath) -> NodeId {
match p.node {
ViewPathSimple(_, _, id) | ViewPathGlob(_, id)
| ViewPathList(_, _, id) => id
}
}
/// Returns true if the given struct def is tuple-like; i.e. that its fields
/// are unnamed.
pub fn struct_def_is_tuple_like(struct_def: &ast::StructDef) -> bool {
struct_def.ctor_id.is_some()
}
/// Returns true if the given pattern consists solely of an identifier
/// and false otherwise.
pub fn pat_is_ident(pat: P<ast::Pat>) -> bool {
match pat.node {
ast::PatIdent(..) => true,
_ => false,
}
}
// are two paths equal when compared unhygienically?
// since I'm using this to replace ==, it seems appropriate
// to compare the span, global, etc. fields as well.
pub fn path_name_eq(a : &ast::Path, b : &ast::Path) -> bool {
(a.span == b.span)
&& (a.global == b.global)
&& (segments_name_eq(a.segments.as_slice(), b.segments.as_slice()))
}
// are two arrays of segments equal when compared unhygienically?
pub fn segments_name_eq(a : &[ast::PathSegment], b : &[ast::PathSegment]) -> bool {
if a.len() != b.len() {
false
} else {
for (idx,seg) in a.iter().enumerate() {
if (seg.identifier.name != b[idx].identifier.name)
// FIXME #7743: ident -> name problems in lifetime comparison?
|| (seg.lifetimes != b[idx].lifetimes)
// can types contain idents?
|| (seg.types != b[idx].types) {
return false;
}
}
true
}
}
/// Returns true if this literal is a string and false otherwise.
pub fn lit_is_str(lit: &Lit) -> bool {
match lit.node {
LitStr(..) => true,
_ => false,
}
}
/// Macro invocations are guaranteed not to occur after expansion is complete.
/// Extracting fields of a method requires a dynamic check to make sure that it's
/// not a macro invocation. This check is guaranteed to succeed, assuming
/// that the invocations are indeed gone.
pub trait PostExpansionMethod {
fn pe_ident(&self) -> ast::Ident;
fn pe_generics<'a>(&'a self) -> &'a ast::Generics;
fn pe_abi(&self) -> Abi;
fn pe_explicit_self<'a>(&'a self) -> &'a ast::ExplicitSelf;
fn pe_fn_style(&self) -> ast::FnStyle;
fn pe_fn_decl<'a>(&'a self) -> &'a ast::FnDecl;
fn pe_body<'a>(&'a self) -> &'a ast::Block;
fn pe_vis(&self) -> ast::Visibility;
}
macro_rules! mf_method{
($meth_name:ident, $field_ty:ty, $field_pat:pat, $result:expr) => {
fn $meth_name<'a>(&'a self) -> $field_ty {
match self.node {
$field_pat => $result,
MethMac(_) => {
fail!("expected an AST without macro invocations");
}
}
}
}
}
impl PostExpansionMethod for Method {
mf_method!(pe_ident,ast::Ident,MethDecl(ident,_,_,_,_,_,_,_),ident)
mf_method!(pe_generics,&'a ast::Generics,
MethDecl(_,ref generics,_,_,_,_,_,_),generics)
mf_method!(pe_abi,Abi,MethDecl(_,_,abi,_,_,_,_,_),abi)
mf_method!(pe_explicit_self,&'a ast::ExplicitSelf,
MethDecl(_,_,_,ref explicit_self,_,_,_,_),explicit_self)
mf_method!(pe_fn_style,ast::FnStyle,MethDecl(_,_,_,_,fn_style,_,_,_),fn_style)
mf_method!(pe_fn_decl,&'a ast::FnDecl,MethDecl(_,_,_,_,_,ref decl,_,_),&**decl)
mf_method!(pe_body,&'a ast::Block,MethDecl(_,_,_,_,_,_,ref body,_),&**body)
mf_method!(pe_vis,ast::Visibility,MethDecl(_,_,_,_,_,_,_,vis),vis)
}
#[cfg(test)]
mod test {
use ast::*;
use super::*;
use owned_slice::OwnedSlice;
fn ident_to_segment(id : &Ident) -> PathSegment {
PathSegment {identifier:id.clone(),
lifetimes: Vec::new(),
types: OwnedSlice::empty()}
}
#[test] fn idents_name_eq_test() {
assert!(segments_name_eq(
[Ident{name:Name(3),ctxt:4}, Ident{name:Name(78),ctxt:82}]
.iter().map(ident_to_segment).collect::<Vec<PathSegment>>().as_slice(),
[Ident{name:Name(3),ctxt:104}, Ident{name:Name(78),ctxt:182}]
.iter().map(ident_to_segment).collect::<Vec<PathSegment>>().as_slice()));
assert!(!segments_name_eq(
[Ident{name:Name(3),ctxt:4}, Ident{name:Name(78),ctxt:82}]
.iter().map(ident_to_segment).collect::<Vec<PathSegment>>().as_slice(),
[Ident{name:Name(3),ctxt:104}, Ident{name:Name(77),ctxt:182}]
.iter().map(ident_to_segment).collect::<Vec<PathSegment>>().as_slice()));
}
}