rust/src/librustc_trans/trans/attributes.rs
Alex Crichton 464cdff102 std: Stabilize APIs for the 1.6 release
This commit is the standard API stabilization commit for the 1.6 release cycle.
The list of issues and APIs below have all been through their cycle-long FCP and
the libs team decisions are listed below

Stabilized APIs

* `Read::read_exact`
* `ErrorKind::UnexpectedEof` (renamed from `UnexpectedEOF`)
* libcore -- this was a bit of a nuanced stabilization, the crate itself is now
  marked as `#[stable]` and the methods appearing via traits for primitives like
  `char` and `str` are now also marked as stable. Note that the extension traits
  themeselves are marked as unstable as they're imported via the prelude. The
  `try!` macro was also moved from the standard library into libcore to have the
  same interface. Otherwise the functions all have copied stability from the
  standard library now.
* The `#![no_std]` attribute
* `fs::DirBuilder`
* `fs::DirBuilder::new`
* `fs::DirBuilder::recursive`
* `fs::DirBuilder::create`
* `os::unix::fs::DirBuilderExt`
* `os::unix::fs::DirBuilderExt::mode`
* `vec::Drain`
* `vec::Vec::drain`
* `string::Drain`
* `string::String::drain`
* `vec_deque::Drain`
* `vec_deque::VecDeque::drain`
* `collections::hash_map::Drain`
* `collections::hash_map::HashMap::drain`
* `collections::hash_set::Drain`
* `collections::hash_set::HashSet::drain`
* `collections::binary_heap::Drain`
* `collections::binary_heap::BinaryHeap::drain`
* `Vec::extend_from_slice` (renamed from `push_all`)
* `Mutex::get_mut`
* `Mutex::into_inner`
* `RwLock::get_mut`
* `RwLock::into_inner`
* `Iterator::min_by_key` (renamed from `min_by`)
* `Iterator::max_by_key` (renamed from `max_by`)

Deprecated APIs

* `ErrorKind::UnexpectedEOF` (renamed to `UnexpectedEof`)
* `OsString::from_bytes`
* `OsStr::to_cstring`
* `OsStr::to_bytes`
* `fs::walk_dir` and `fs::WalkDir`
* `path::Components::peek`
* `slice::bytes::MutableByteVector`
* `slice::bytes::copy_memory`
* `Vec::push_all` (renamed to `extend_from_slice`)
* `Duration::span`
* `IpAddr`
* `SocketAddr::ip`
* `Read::tee`
* `io::Tee`
* `Write::broadcast`
* `io::Broadcast`
* `Iterator::min_by` (renamed to `min_by_key`)
* `Iterator::max_by` (renamed to `max_by_key`)
* `net::lookup_addr`

New APIs (still unstable)

* `<[T]>::sort_by_key` (added to mirror `min_by_key`)

Closes #27585
Closes #27704
Closes #27707
Closes #27710
Closes #27711
Closes #27727
Closes #27740
Closes #27744
Closes #27799
Closes #27801
cc #27801 (doesn't close as `Chars` is still unstable)
Closes #28968
2015-12-05 15:09:44 -08:00

308 lines
12 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Set and unset common attributes on LLVM values.
use libc::{c_uint, c_ulonglong};
use llvm::{self, ValueRef, AttrHelper};
use middle::ty;
use middle::infer;
use session::config::NoDebugInfo;
use syntax::abi;
pub use syntax::attr::InlineAttr;
use syntax::ast;
use rustc_front::hir;
use trans::base;
use trans::common;
use trans::context::CrateContext;
use trans::machine;
use trans::type_of;
/// Mark LLVM function to use provided inline heuristic.
#[inline]
pub fn inline(val: ValueRef, inline: InlineAttr) {
use self::InlineAttr::*;
match inline {
Hint => llvm::SetFunctionAttribute(val, llvm::Attribute::InlineHint),
Always => llvm::SetFunctionAttribute(val, llvm::Attribute::AlwaysInline),
Never => llvm::SetFunctionAttribute(val, llvm::Attribute::NoInline),
None => {
let attr = llvm::Attribute::InlineHint |
llvm::Attribute::AlwaysInline |
llvm::Attribute::NoInline;
unsafe {
llvm::LLVMRemoveFunctionAttr(val, attr.bits() as c_ulonglong)
}
},
};
}
/// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function.
#[inline]
pub fn emit_uwtable(val: ValueRef, emit: bool) {
if emit {
llvm::SetFunctionAttribute(val, llvm::Attribute::UWTable);
} else {
unsafe {
llvm::LLVMRemoveFunctionAttr(
val,
llvm::Attribute::UWTable.bits() as c_ulonglong,
);
}
}
}
/// Tell LLVM whether the function can or cannot unwind.
#[inline]
pub fn unwind(val: ValueRef, can_unwind: bool) {
if can_unwind {
unsafe {
llvm::LLVMRemoveFunctionAttr(
val,
llvm::Attribute::NoUnwind.bits() as c_ulonglong,
);
}
} else {
llvm::SetFunctionAttribute(val, llvm::Attribute::NoUnwind);
}
}
/// Tell LLVM whether it should optimise function for size.
#[inline]
#[allow(dead_code)] // possibly useful function
pub fn set_optimize_for_size(val: ValueRef, optimize: bool) {
if optimize {
llvm::SetFunctionAttribute(val, llvm::Attribute::OptimizeForSize);
} else {
unsafe {
llvm::LLVMRemoveFunctionAttr(
val,
llvm::Attribute::OptimizeForSize.bits() as c_ulonglong,
);
}
}
}
/// Composite function which sets LLVM attributes for function depending on its AST (#[attribute])
/// attributes.
pub fn from_fn_attrs(ccx: &CrateContext, attrs: &[ast::Attribute], llfn: ValueRef) {
use syntax::attr::*;
inline(llfn, find_inline_attr(Some(ccx.sess().diagnostic()), attrs));
// FIXME: #11906: Omitting frame pointers breaks retrieving the value of a
// parameter.
let no_fp_elim = (ccx.sess().opts.debuginfo != NoDebugInfo) ||
!ccx.sess().target.target.options.eliminate_frame_pointer;
if no_fp_elim {
unsafe {
let attr = "no-frame-pointer-elim\0".as_ptr() as *const _;
let val = "true\0".as_ptr() as *const _;
llvm::LLVMAddFunctionAttrStringValue(llfn,
llvm::FunctionIndex as c_uint,
attr, val);
}
}
for attr in attrs {
if attr.check_name("cold") {
unsafe {
llvm::LLVMAddFunctionAttribute(llfn,
llvm::FunctionIndex as c_uint,
llvm::ColdAttribute as u64)
}
} else if attr.check_name("allocator") {
llvm::Attribute::NoAlias.apply_llfn(llvm::ReturnIndex as c_uint, llfn);
} else if attr.check_name("unwind") {
unwind(llfn, true);
}
}
}
/// Composite function which converts function type into LLVM attributes for the function.
pub fn from_fn_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_type: ty::Ty<'tcx>)
-> llvm::AttrBuilder {
use middle::ty::{BrAnon, ReLateBound};
let function_type;
let (fn_sig, abi, env_ty) = match fn_type.sty {
ty::TyBareFn(_, ref f) => (&f.sig, f.abi, None),
ty::TyClosure(closure_did, ref substs) => {
let infcx = infer::normalizing_infer_ctxt(ccx.tcx(), &ccx.tcx().tables);
function_type = infcx.closure_type(closure_did, substs);
let self_type = base::self_type_for_closure(ccx, closure_did, fn_type);
(&function_type.sig, abi::RustCall, Some(self_type))
}
_ => ccx.sess().bug("expected closure or function.")
};
let fn_sig = ccx.tcx().erase_late_bound_regions(fn_sig);
let fn_sig = infer::normalize_associated_type(ccx.tcx(), &fn_sig);
let mut attrs = llvm::AttrBuilder::new();
let ret_ty = fn_sig.output;
// These have an odd calling convention, so we need to manually
// unpack the input ty's
let input_tys = match fn_type.sty {
ty::TyClosure(..) => {
assert!(abi == abi::RustCall);
match fn_sig.inputs[0].sty {
ty::TyTuple(ref inputs) => {
let mut full_inputs = vec![env_ty.expect("Missing closure environment")];
full_inputs.extend_from_slice(inputs);
full_inputs
}
_ => ccx.sess().bug("expected tuple'd inputs")
}
},
ty::TyBareFn(..) if abi == abi::RustCall => {
let mut inputs = vec![fn_sig.inputs[0]];
match fn_sig.inputs[1].sty {
ty::TyTuple(ref t_in) => {
inputs.extend_from_slice(&t_in[..]);
inputs
}
_ => ccx.sess().bug("expected tuple'd inputs")
}
}
_ => fn_sig.inputs.clone()
};
// Index 0 is the return value of the llvm func, so we start at 1
let mut idx = 1;
if let ty::FnConverging(ret_ty) = ret_ty {
// A function pointer is called without the declaration
// available, so we have to apply any attributes with ABI
// implications directly to the call instruction. Right now,
// the only attribute we need to worry about is `sret`.
if type_of::return_uses_outptr(ccx, ret_ty) {
let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, ret_ty));
// The outptr can be noalias and nocapture because it's entirely
// invisible to the program. We also know it's nonnull as well
// as how many bytes we can dereference
attrs.arg(1, llvm::Attribute::StructRet)
.arg(1, llvm::Attribute::NoAlias)
.arg(1, llvm::Attribute::NoCapture)
.arg(1, llvm::DereferenceableAttribute(llret_sz));
// Add one more since there's an outptr
idx += 1;
} else {
// The `noalias` attribute on the return value is useful to a
// function ptr caller.
match ret_ty.sty {
// `Box` pointer return values never alias because ownership
// is transferred
ty::TyBox(it) if common::type_is_sized(ccx.tcx(), it) => {
attrs.ret(llvm::Attribute::NoAlias);
}
_ => {}
}
// We can also mark the return value as `dereferenceable` in certain cases
match ret_ty.sty {
// These are not really pointers but pairs, (pointer, len)
ty::TyRef(_, ty::TypeAndMut { ty: inner, .. })
| ty::TyBox(inner) if common::type_is_sized(ccx.tcx(), inner) => {
let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner));
attrs.ret(llvm::DereferenceableAttribute(llret_sz));
}
_ => {}
}
if let ty::TyBool = ret_ty.sty {
attrs.ret(llvm::Attribute::ZExt);
}
}
}
for &t in input_tys.iter() {
match t.sty {
_ if type_of::arg_is_indirect(ccx, t) => {
let llarg_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, t));
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
attrs.arg(idx, llvm::Attribute::NoAlias)
.arg(idx, llvm::Attribute::NoCapture)
.arg(idx, llvm::DereferenceableAttribute(llarg_sz));
}
ty::TyBool => {
attrs.arg(idx, llvm::Attribute::ZExt);
}
// `Box` pointer parameters never alias because ownership is transferred
ty::TyBox(inner) => {
attrs.arg(idx, llvm::Attribute::NoAlias);
if common::type_is_sized(ccx.tcx(), inner) {
let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner));
attrs.arg(idx, llvm::DereferenceableAttribute(llsz));
} else {
attrs.arg(idx, llvm::NonNullAttribute);
if inner.is_trait() {
attrs.arg(idx + 1, llvm::NonNullAttribute);
}
}
}
ty::TyRef(b, mt) => {
// `&mut` pointer parameters never alias other parameters, or mutable global data
//
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as
// both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely
// on memory dependencies rather than pointer equality
let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe();
if mt.mutbl == hir::MutMutable || !interior_unsafe {
attrs.arg(idx, llvm::Attribute::NoAlias);
}
if mt.mutbl == hir::MutImmutable && !interior_unsafe {
attrs.arg(idx, llvm::Attribute::ReadOnly);
}
// & pointer parameters are also never null and for sized types we also know
// exactly how many bytes we can dereference
if common::type_is_sized(ccx.tcx(), mt.ty) {
let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, mt.ty));
attrs.arg(idx, llvm::DereferenceableAttribute(llsz));
} else {
attrs.arg(idx, llvm::NonNullAttribute);
if mt.ty.is_trait() {
attrs.arg(idx + 1, llvm::NonNullAttribute);
}
}
// When a reference in an argument has no named lifetime, it's
// impossible for that reference to escape this function
// (returned or stored beyond the call by a closure).
if let ReLateBound(_, BrAnon(_)) = *b {
attrs.arg(idx, llvm::Attribute::NoCapture);
}
}
_ => ()
}
if common::type_is_fat_ptr(ccx.tcx(), t) {
idx += 2;
} else {
idx += 1;
}
}
attrs
}