368 lines
15 KiB
Rust
368 lines
15 KiB
Rust
//! Check whether a type is representable.
|
|
use rustc_data_structures::stable_map::FxHashMap;
|
|
use rustc_hir as hir;
|
|
use rustc_middle::ty::{self, Ty, TyCtxt};
|
|
use rustc_span::Span;
|
|
use std::cmp;
|
|
|
|
/// Describes whether a type is representable. For types that are not
|
|
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
|
|
/// distinguish between types that are recursive with themselves and types that
|
|
/// contain a different recursive type. These cases can therefore be treated
|
|
/// differently when reporting errors.
|
|
///
|
|
/// The ordering of the cases is significant. They are sorted so that cmp::max
|
|
/// will keep the "more erroneous" of two values.
|
|
#[derive(Clone, PartialOrd, Ord, Eq, PartialEq, Debug)]
|
|
pub enum Representability {
|
|
Representable,
|
|
ContainsRecursive,
|
|
SelfRecursive(Vec<Span>),
|
|
}
|
|
|
|
/// Check whether a type is representable. This means it cannot contain unboxed
|
|
/// structural recursion. This check is needed for structs and enums.
|
|
pub fn ty_is_representable<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, sp: Span) -> Representability {
|
|
debug!("is_type_representable: {:?}", ty);
|
|
// To avoid a stack overflow when checking an enum variant or struct that
|
|
// contains a different, structurally recursive type, maintain a stack of
|
|
// seen types and check recursion for each of them (issues #3008, #3779,
|
|
// #74224, #84611). `shadow_seen` contains the full stack and `seen` only
|
|
// the one for the current type (e.g. if we have structs A and B, B contains
|
|
// a field of type A, and we're currently looking at B, then `seen` will be
|
|
// cleared when recursing to check A, but `shadow_seen` won't, so that we
|
|
// can catch cases of mutual recursion where A also contains B).
|
|
let mut seen: Vec<Ty<'_>> = Vec::new();
|
|
let mut shadow_seen: Vec<&'tcx ty::AdtDef> = Vec::new();
|
|
let mut representable_cache = FxHashMap::default();
|
|
let mut force_result = false;
|
|
let r = is_type_structurally_recursive(
|
|
tcx,
|
|
sp,
|
|
&mut seen,
|
|
&mut shadow_seen,
|
|
&mut representable_cache,
|
|
ty,
|
|
&mut force_result,
|
|
);
|
|
debug!("is_type_representable: {:?} is {:?}", ty, r);
|
|
r
|
|
}
|
|
|
|
// Iterate until something non-representable is found
|
|
fn fold_repr<It: Iterator<Item = Representability>>(iter: It) -> Representability {
|
|
iter.fold(Representability::Representable, |r1, r2| match (r1, r2) {
|
|
(Representability::SelfRecursive(v1), Representability::SelfRecursive(v2)) => {
|
|
Representability::SelfRecursive(v1.into_iter().chain(v2).collect())
|
|
}
|
|
(r1, r2) => cmp::max(r1, r2),
|
|
})
|
|
}
|
|
|
|
fn are_inner_types_recursive<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
sp: Span,
|
|
seen: &mut Vec<Ty<'tcx>>,
|
|
shadow_seen: &mut Vec<&'tcx ty::AdtDef>,
|
|
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
|
|
ty: Ty<'tcx>,
|
|
force_result: &mut bool,
|
|
) -> Representability {
|
|
debug!("are_inner_types_recursive({:?}, {:?}, {:?})", ty, seen, shadow_seen);
|
|
match ty.kind() {
|
|
ty::Tuple(..) => {
|
|
// Find non representable
|
|
fold_repr(ty.tuple_fields().map(|ty| {
|
|
is_type_structurally_recursive(
|
|
tcx,
|
|
sp,
|
|
seen,
|
|
shadow_seen,
|
|
representable_cache,
|
|
ty,
|
|
force_result,
|
|
)
|
|
}))
|
|
}
|
|
// Fixed-length vectors.
|
|
// FIXME(#11924) Behavior undecided for zero-length vectors.
|
|
ty::Array(ty, _) => is_type_structurally_recursive(
|
|
tcx,
|
|
sp,
|
|
seen,
|
|
shadow_seen,
|
|
representable_cache,
|
|
ty,
|
|
force_result,
|
|
),
|
|
ty::Adt(def, substs) => {
|
|
// Find non representable fields with their spans
|
|
fold_repr(def.all_fields().map(|field| {
|
|
let ty = field.ty(tcx, substs);
|
|
let span = match field
|
|
.did
|
|
.as_local()
|
|
.map(|id| tcx.hir().local_def_id_to_hir_id(id))
|
|
.and_then(|id| tcx.hir().find(id))
|
|
{
|
|
Some(hir::Node::Field(field)) => field.ty.span,
|
|
_ => sp,
|
|
};
|
|
|
|
let mut result = None;
|
|
|
|
// First, we check whether the field type per se is representable.
|
|
// This catches cases as in #74224 and #84611. There is a special
|
|
// case related to mutual recursion, though; consider this example:
|
|
//
|
|
// struct A<T> {
|
|
// z: T,
|
|
// x: B<T>,
|
|
// }
|
|
//
|
|
// struct B<T> {
|
|
// y: A<T>
|
|
// }
|
|
//
|
|
// Here, without the following special case, both A and B are
|
|
// ContainsRecursive, which is a problem because we only report
|
|
// errors for SelfRecursive. We fix this by detecting this special
|
|
// case (shadow_seen.first() is the type we are originally
|
|
// interested in, and if we ever encounter the same AdtDef again,
|
|
// we know that it must be SelfRecursive) and "forcibly" returning
|
|
// SelfRecursive (by setting force_result, which tells the calling
|
|
// invocations of are_inner_types_representable to forward the
|
|
// result without adjusting).
|
|
if shadow_seen.len() > seen.len() && shadow_seen.first() == Some(def) {
|
|
*force_result = true;
|
|
result = Some(Representability::SelfRecursive(vec![span]));
|
|
}
|
|
|
|
if result == None {
|
|
result = Some(Representability::Representable);
|
|
|
|
// Now, we check whether the field types per se are representable, e.g.
|
|
// for struct Foo { x: Option<Foo> }, we first check whether Option<_>
|
|
// by itself is representable (which it is), and the nesting of Foo
|
|
// will be detected later. This is necessary for #74224 and #84611.
|
|
|
|
// If we have encountered an ADT definition that we have not seen
|
|
// before (no need to check them twice), recurse to see whether that
|
|
// definition is SelfRecursive. If so, we must be ContainsRecursive.
|
|
if shadow_seen.len() > 1
|
|
&& !shadow_seen
|
|
.iter()
|
|
.take(shadow_seen.len() - 1)
|
|
.any(|seen_def| seen_def == def)
|
|
{
|
|
let adt_def_id = def.did;
|
|
let raw_adt_ty = tcx.type_of(adt_def_id);
|
|
debug!("are_inner_types_recursive: checking nested type: {:?}", raw_adt_ty);
|
|
|
|
// Check independently whether the ADT is SelfRecursive. If so,
|
|
// we must be ContainsRecursive (except for the special case
|
|
// mentioned above).
|
|
let mut nested_seen: Vec<Ty<'_>> = vec![];
|
|
result = Some(
|
|
match is_type_structurally_recursive(
|
|
tcx,
|
|
span,
|
|
&mut nested_seen,
|
|
shadow_seen,
|
|
representable_cache,
|
|
raw_adt_ty,
|
|
force_result,
|
|
) {
|
|
Representability::SelfRecursive(_) => {
|
|
if *force_result {
|
|
Representability::SelfRecursive(vec![span])
|
|
} else {
|
|
Representability::ContainsRecursive
|
|
}
|
|
}
|
|
x => x,
|
|
},
|
|
);
|
|
}
|
|
|
|
// We only enter the following block if the type looks representable
|
|
// so far. This is necessary for cases such as this one (#74224):
|
|
//
|
|
// struct A<T> {
|
|
// x: T,
|
|
// y: A<A<T>>,
|
|
// }
|
|
//
|
|
// struct B {
|
|
// z: A<usize>
|
|
// }
|
|
//
|
|
// When checking B, we recurse into A and check field y of type
|
|
// A<A<usize>>. We haven't seen this exact type before, so we recurse
|
|
// into A<A<usize>>, which contains, A<A<A<usize>>>, and so forth,
|
|
// ad infinitum. We can prevent this from happening by first checking
|
|
// A separately (the code above) and only checking for nested Bs if
|
|
// A actually looks representable (which it wouldn't in this example).
|
|
if result == Some(Representability::Representable) {
|
|
// Now, even if the type is representable (e.g. Option<_>),
|
|
// it might still contribute to a recursive type, e.g.:
|
|
// struct Foo { x: Option<Option<Foo>> }
|
|
// These cases are handled by passing the full `seen`
|
|
// stack to is_type_structurally_recursive (instead of the
|
|
// empty `nested_seen` above):
|
|
result = Some(
|
|
match is_type_structurally_recursive(
|
|
tcx,
|
|
span,
|
|
seen,
|
|
shadow_seen,
|
|
representable_cache,
|
|
ty,
|
|
force_result,
|
|
) {
|
|
Representability::SelfRecursive(_) => {
|
|
Representability::SelfRecursive(vec![span])
|
|
}
|
|
x => x,
|
|
},
|
|
);
|
|
}
|
|
}
|
|
|
|
result.unwrap()
|
|
}))
|
|
}
|
|
ty::Closure(..) => {
|
|
// this check is run on type definitions, so we don't expect
|
|
// to see closure types
|
|
bug!("requires check invoked on inapplicable type: {:?}", ty)
|
|
}
|
|
_ => Representability::Representable,
|
|
}
|
|
}
|
|
|
|
fn same_adt<'tcx>(ty: Ty<'tcx>, def: &'tcx ty::AdtDef) -> bool {
|
|
match *ty.kind() {
|
|
ty::Adt(ty_def, _) => ty_def == def,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
// Does the type `ty` directly (without indirection through a pointer)
|
|
// contain any types on stack `seen`?
|
|
fn is_type_structurally_recursive<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
sp: Span,
|
|
seen: &mut Vec<Ty<'tcx>>,
|
|
shadow_seen: &mut Vec<&'tcx ty::AdtDef>,
|
|
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
|
|
ty: Ty<'tcx>,
|
|
force_result: &mut bool,
|
|
) -> Representability {
|
|
debug!("is_type_structurally_recursive: {:?} {:?}", ty, sp);
|
|
if let Some(representability) = representable_cache.get(ty) {
|
|
debug!(
|
|
"is_type_structurally_recursive: {:?} {:?} - (cached) {:?}",
|
|
ty, sp, representability
|
|
);
|
|
return representability.clone();
|
|
}
|
|
|
|
let representability = is_type_structurally_recursive_inner(
|
|
tcx,
|
|
sp,
|
|
seen,
|
|
shadow_seen,
|
|
representable_cache,
|
|
ty,
|
|
force_result,
|
|
);
|
|
|
|
representable_cache.insert(ty, representability.clone());
|
|
representability
|
|
}
|
|
|
|
fn is_type_structurally_recursive_inner<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
sp: Span,
|
|
seen: &mut Vec<Ty<'tcx>>,
|
|
shadow_seen: &mut Vec<&'tcx ty::AdtDef>,
|
|
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
|
|
ty: Ty<'tcx>,
|
|
force_result: &mut bool,
|
|
) -> Representability {
|
|
match ty.kind() {
|
|
ty::Adt(def, _) => {
|
|
{
|
|
debug!("is_type_structurally_recursive_inner: adt: {:?}, seen: {:?}", ty, seen);
|
|
|
|
// Iterate through stack of previously seen types.
|
|
let mut iter = seen.iter();
|
|
|
|
// The first item in `seen` is the type we are actually curious about.
|
|
// We want to return SelfRecursive if this type contains itself.
|
|
// It is important that we DON'T take generic parameters into account
|
|
// for this check, so that Bar<T> in this example counts as SelfRecursive:
|
|
//
|
|
// struct Foo;
|
|
// struct Bar<T> { x: Bar<Foo> }
|
|
|
|
if let Some(&seen_adt) = iter.next() {
|
|
if same_adt(seen_adt, *def) {
|
|
debug!("SelfRecursive: {:?} contains {:?}", seen_adt, ty);
|
|
return Representability::SelfRecursive(vec![sp]);
|
|
}
|
|
}
|
|
|
|
// We also need to know whether the first item contains other types
|
|
// that are structurally recursive. If we don't catch this case, we
|
|
// will recurse infinitely for some inputs.
|
|
//
|
|
// It is important that we DO take generic parameters into account
|
|
// here, because nesting e.g. Options is allowed (as long as the
|
|
// definition of Option doesn't itself include an Option field, which
|
|
// would be a case of SelfRecursive above). The following, too, counts
|
|
// as SelfRecursive:
|
|
//
|
|
// struct Foo { Option<Option<Foo>> }
|
|
|
|
for &seen_adt in iter {
|
|
if ty::TyS::same_type(ty, seen_adt) {
|
|
debug!("ContainsRecursive: {:?} contains {:?}", seen_adt, ty);
|
|
return Representability::ContainsRecursive;
|
|
}
|
|
}
|
|
}
|
|
|
|
// For structs and enums, track all previously seen types by pushing them
|
|
// onto the 'seen' stack.
|
|
seen.push(ty);
|
|
shadow_seen.push(def);
|
|
let out = are_inner_types_recursive(
|
|
tcx,
|
|
sp,
|
|
seen,
|
|
shadow_seen,
|
|
representable_cache,
|
|
ty,
|
|
force_result,
|
|
);
|
|
shadow_seen.pop();
|
|
seen.pop();
|
|
out
|
|
}
|
|
_ => {
|
|
// No need to push in other cases.
|
|
are_inner_types_recursive(
|
|
tcx,
|
|
sp,
|
|
seen,
|
|
shadow_seen,
|
|
representable_cache,
|
|
ty,
|
|
force_result,
|
|
)
|
|
}
|
|
}
|
|
}
|