rust/src/rustc/middle/liveness.rs
2012-08-24 22:28:12 -07:00

1900 lines
64 KiB
Rust

/*!
* A classic liveness analysis based on dataflow over the AST. Computes,
* for each local variable in a function, whether that variable is live
* at a given point. Program execution points are identified by their
* id.
*
* # Basic idea
*
* The basic model is that each local variable is assigned an index. We
* represent sets of local variables using a vector indexed by this
* index. The value in the vector is either 0, indicating the variable
* is dead, or the id of an expression that uses the variable.
*
* We conceptually walk over the AST in reverse execution order. If we
* find a use of a variable, we add it to the set of live variables. If
* we find an assignment to a variable, we remove it from the set of live
* variables. When we have to merge two flows, we take the union of
* those two flows---if the variable is live on both paths, we simply
* pick one id. In the event of loops, we continue doing this until a
* fixed point is reached.
*
* ## Checking initialization
*
* At the function entry point, all variables must be dead. If this is
* not the case, we can report an error using the id found in the set of
* live variables, which identifies a use of the variable which is not
* dominated by an assignment.
*
* ## Checking moves
*
* After each explicit move, the variable must be dead.
*
* ## Computing last uses
*
* Any use of the variable where the variable is dead afterwards is a
* last use.
*
* # Extension to handle constructors
*
* Each field is assigned an index just as with local variables. A use of
* `self` is considered a use of all fields. A use of `self.f` is just a use
* of `f`.
*
* # Implementation details
*
* The actual implementation contains two (nested) walks over the AST.
* The outer walk has the job of building up the ir_maps instance for the
* enclosing function. On the way down the tree, it identifies those AST
* nodes and variable IDs that will be needed for the liveness analysis
* and assigns them contiguous IDs. The liveness id for an AST node is
* called a `live_node` (it's a newtype'd uint) and the id for a variable
* is called a `variable` (another newtype'd uint).
*
* On the way back up the tree, as we are about to exit from a function
* declaration we allocate a `liveness` instance. Now that we know
* precisely how many nodes and variables we need, we can allocate all
* the various arrays that we will need to precisely the right size. We then
* perform the actual propagation on the `liveness` instance.
*
* This propagation is encoded in the various `propagate_through_*()`
* methods. It effectively does a reverse walk of the AST; whenever we
* reach a loop node, we iterate until a fixed point is reached.
*
* ## The `users` struct
*
* At each live node `N`, we track three pieces of information for each
* variable `V` (these are encapsulated in the `users` struct):
*
* - `reader`: the `LiveNode` ID of some node which will read the value
* that `V` holds on entry to `N`. Formally: a node `M` such
* that there exists a path `P` from `N` to `M` where `P` does not
* write `V`. If the `reader` is `invalid_node()`, then the current
* value will never be read (the variable is dead, essentially).
*
* - `writer`: the `LiveNode` ID of some node which will write the
* variable `V` and which is reachable from `N`. Formally: a node `M`
* such that there exists a path `P` from `N` to `M` and `M` writes
* `V`. If the `writer` is `invalid_node()`, then there is no writer
* of `V` that follows `N`.
*
* - `used`: a boolean value indicating whether `V` is *used*. We
* distinguish a *read* from a *use* in that a *use* is some read that
* is not just used to generate a new value. For example, `x += 1` is
* a read but not a use. This is used to generate better warnings.
*
* ## Special Variables
*
* We generate various special variables for various, well, special purposes.
* These are described in the `specials` struct:
*
* - `exit_ln`: a live node that is generated to represent every 'exit' from
* the function, whether it be by explicit return, fail, or other means.
*
* - `fallthrough_ln`: a live node that represents a fallthrough
*
* - `no_ret_var`: a synthetic variable that is only 'read' from, the
* fallthrough node. This allows us to detect functions where we fail
* to return explicitly.
*
* - `self_var`: a variable representing 'self'
*/
import dvec::{DVec, dvec};
import std::map::{hashmap, int_hash, str_hash, uint_hash};
import syntax::{visit, ast_util};
import syntax::print::pprust::{expr_to_str};
import visit::vt;
import syntax::codemap::span;
import syntax::ast::*;
import driver::session::session;
import io::WriterUtil;
import capture::{cap_move, cap_drop, cap_copy, cap_ref};
export check_crate;
export last_use_map;
// Maps from an expr id to a list of variable ids for which this expr
// is the last use. Typically, the expr is a path and the node id is
// the local/argument/etc that the path refers to. However, it also
// possible for the expr to be a closure, in which case the list is a
// list of closed over variables that can be moved into the closure.
//
// Very subtle (#2633): borrowck will remove entries from this table
// if it detects an outstanding loan (that is, the addr is taken).
type last_use_map = hashmap<node_id, @DVec<node_id>>;
enum Variable = uint;
enum LiveNode = uint;
enum LiveNodeKind {
FreeVarNode(span),
ExprNode(span),
VarDefNode(span),
ExitNode
}
fn check_crate(tcx: ty::ctxt,
method_map: typeck::method_map,
crate: @crate) -> last_use_map {
let visitor = visit::mk_vt(@{
visit_fn: visit_fn,
visit_local: visit_local,
visit_expr: visit_expr,
visit_arm: visit_arm,
with *visit::default_visitor()
});
let last_use_map = int_hash();
let initial_maps = @IrMaps(tcx, method_map, last_use_map);
visit::visit_crate(*crate, initial_maps, visitor);
tcx.sess.abort_if_errors();
return last_use_map;
}
impl LiveNode: to_str::ToStr {
fn to_str() -> ~str { fmt!("ln(%u)", *self) }
}
impl Variable: to_str::ToStr {
fn to_str() -> ~str { fmt!("v(%u)", *self) }
}
// ______________________________________________________________________
// Creating ir_maps
//
// This is the first pass and the one that drives the main
// computation. It walks up and down the IR once. On the way down,
// we count for each function the number of variables as well as
// liveness nodes. A liveness node is basically an expression or
// capture clause that does something of interest: either it has
// interesting control flow or it uses/defines a local variable.
//
// On the way back up, at each function node we create liveness sets
// (we now know precisely how big to make our various vectors and so
// forth) and then do the data-flow propagation to compute the set
// of live variables at each program point.
//
// Finally, we run back over the IR one last time and, using the
// computed liveness, check various safety conditions. For example,
// there must be no live nodes at the definition site for a variable
// unless it has an initializer. Similarly, each non-mutable local
// variable must not be assigned if there is some successor
// assignment. And so forth.
impl LiveNode {
pure fn is_valid() -> bool { *self != uint::max_value }
}
fn invalid_node() -> LiveNode { LiveNode(uint::max_value) }
enum RelevantDef { RelevantVar(node_id), RelevantSelf }
type CaptureInfo = {ln: LiveNode, is_move: bool, rv: RelevantDef};
enum LocalKind {
FromMatch(binding_mode),
FromLetWithInitializer,
FromLetNoInitializer
}
struct LocalInfo {
id: node_id;
ident: ident;
is_mutbl: bool;
kind: LocalKind;
}
enum VarKind {
Arg(node_id, ident, rmode),
Local(LocalInfo),
Field(ident),
Self,
ImplicitRet
}
fn relevant_def(def: def) -> option<RelevantDef> {
match def {
def_self(_) => some(RelevantSelf),
def_binding(nid, _) |
def_arg(nid, _) |
def_local(nid, _) => some(RelevantVar(nid)),
_ => none
}
}
struct IrMaps {
tcx: ty::ctxt;
method_map: typeck::method_map;
last_use_map: last_use_map;
mut num_live_nodes: uint;
mut num_vars: uint;
live_node_map: hashmap<node_id, LiveNode>;
variable_map: hashmap<node_id, Variable>;
field_map: hashmap<ident, Variable>;
capture_map: hashmap<node_id, @~[CaptureInfo]>;
mut var_kinds: ~[VarKind];
mut lnks: ~[LiveNodeKind];
}
fn IrMaps(tcx: ty::ctxt, method_map: typeck::method_map,
last_use_map: last_use_map) -> IrMaps {
IrMaps {
tcx: tcx,
method_map: method_map,
last_use_map: last_use_map,
num_live_nodes: 0u,
num_vars: 0u,
live_node_map: int_hash(),
variable_map: int_hash(),
capture_map: int_hash(),
field_map: uint_hash(),
var_kinds: ~[],
lnks: ~[]
}
}
impl IrMaps {
fn add_live_node(lnk: LiveNodeKind) -> LiveNode {
let ln = LiveNode(self.num_live_nodes);
vec::push(self.lnks, lnk);
self.num_live_nodes += 1u;
debug!("%s is of kind %?", ln.to_str(), lnk);
ln
}
fn add_live_node_for_node(node_id: node_id, lnk: LiveNodeKind) {
let ln = self.add_live_node(lnk);
self.live_node_map.insert(node_id, ln);
debug!("%s is node %d", ln.to_str(), node_id);
}
fn add_variable(vk: VarKind) -> Variable {
let v = Variable(self.num_vars);
vec::push(self.var_kinds, vk);
self.num_vars += 1u;
match vk {
Local(LocalInfo {id:node_id, _}) |
Arg(node_id, _, _) => {
self.variable_map.insert(node_id, v);
}
Field(name) => {
self.field_map.insert(name, v);
}
Self | ImplicitRet => {
}
}
debug!("%s is %?", v.to_str(), vk);
v
}
fn variable(node_id: node_id, span: span) -> Variable {
match self.variable_map.find(node_id) {
some(var) => var,
none => {
self.tcx.sess.span_bug(
span, fmt!("No variable registered for id %d", node_id));
}
}
}
fn variable_name(var: Variable) -> ~str {
match copy self.var_kinds[*var] {
Local(LocalInfo {ident: nm, _}) |
Arg(_, nm, _) => self.tcx.sess.str_of(nm),
Field(nm) => ~"self." + self.tcx.sess.str_of(nm),
Self => ~"self",
ImplicitRet => ~"<implicit-ret>"
}
}
fn set_captures(node_id: node_id, +cs: ~[CaptureInfo]) {
self.capture_map.insert(node_id, @cs);
}
fn captures(expr: @expr) -> @~[CaptureInfo] {
match self.capture_map.find(expr.id) {
some(caps) => caps,
none => {
self.tcx.sess.span_bug(expr.span, ~"no registered caps");
}
}
}
fn lnk(ln: LiveNode) -> LiveNodeKind {
self.lnks[*ln]
}
fn add_last_use(expr_id: node_id, var: Variable) {
let vk = self.var_kinds[*var];
debug!("Node %d is a last use of variable %?", expr_id, vk);
match vk {
Arg(id, name, by_move) |
Arg(id, name, by_copy) |
Local(LocalInfo {id:id, ident:name,
kind: FromLetNoInitializer, _}) |
Local(LocalInfo {id:id, ident:name,
kind: FromLetWithInitializer, _}) |
Local(LocalInfo {id:id, ident:name,
kind: FromMatch(bind_by_value), _}) |
Local(LocalInfo {id:id, ident:name,
kind: FromMatch(bind_by_ref(_)), _}) |
Local(LocalInfo {id:id, ident:name,
kind: FromMatch(bind_by_move), _}) => {
let v = match self.last_use_map.find(expr_id) {
some(v) => v,
none => {
let v = @dvec();
self.last_use_map.insert(expr_id, v);
v
}
};
(*v).push(id);
}
Arg(_, _, by_ref) | Arg(_, _, by_mutbl_ref) |
Arg(_, _, by_val) | Self | Field(_) | ImplicitRet |
Local(LocalInfo {kind: FromMatch(bind_by_implicit_ref), _}) => {
debug!("--but it is not owned");
}
}
}
}
fn visit_fn(fk: visit::fn_kind, decl: fn_decl, body: blk,
sp: span, id: node_id, &&self: @IrMaps, v: vt<@IrMaps>) {
debug!("visit_fn: id=%d", id);
let _i = util::common::indenter();
// swap in a new set of IR maps for this function body:
let fn_maps = @IrMaps(self.tcx, self.method_map,
self.last_use_map);
debug!("creating fn_maps: %x", ptr::addr_of(*fn_maps) as uint);
for decl.inputs.each |arg| {
debug!("adding argument %d", arg.id);
let mode = ty::resolved_mode(self.tcx, arg.mode);
(*fn_maps).add_variable(Arg(arg.id, arg.ident, mode));
};
// gather up the various local variables, significant expressions,
// and so forth:
visit::visit_fn(fk, decl, body, sp, id, fn_maps, v);
match fk {
visit::fk_ctor(_, _, _, _, class_did) => {
add_class_fields(fn_maps, class_did);
}
_ => {}
}
// Special nodes and variables:
// - exit_ln represents the end of the fn, either by return or fail
// - implicit_ret_var is a pseudo-variable that represents
// an implicit return
let specials = {
exit_ln: (*fn_maps).add_live_node(ExitNode),
fallthrough_ln: (*fn_maps).add_live_node(ExitNode),
no_ret_var: (*fn_maps).add_variable(ImplicitRet),
self_var: (*fn_maps).add_variable(Self)
};
// compute liveness
let lsets = @Liveness(fn_maps, specials);
let entry_ln = (*lsets).compute(decl, body);
// check for various error conditions
let check_vt = visit::mk_vt(@{
visit_fn: check_fn,
visit_local: check_local,
visit_expr: check_expr,
visit_arm: check_arm,
with *visit::default_visitor()
});
check_vt.visit_block(body, lsets, check_vt);
lsets.check_ret(id, sp, fk, entry_ln);
lsets.check_fields(sp, entry_ln);
lsets.warn_about_unused_args(sp, decl, entry_ln);
}
fn add_class_fields(self: @IrMaps, did: def_id) {
for ty::lookup_class_fields(self.tcx, did).each |field_ty| {
assert field_ty.id.crate == local_crate;
let var = self.add_variable(Field(field_ty.ident));
self.field_map.insert(field_ty.ident, var);
}
}
fn visit_local(local: @local, &&self: @IrMaps, vt: vt<@IrMaps>) {
let def_map = self.tcx.def_map;
do pat_util::pat_bindings(def_map, local.node.pat) |_bm, p_id, sp, path| {
debug!("adding local variable %d", p_id);
let name = ast_util::path_to_ident(path);
self.add_live_node_for_node(p_id, VarDefNode(sp));
let kind = match local.node.init {
some(_) => FromLetWithInitializer,
none => FromLetNoInitializer
};
self.add_variable(Local(LocalInfo {
id: p_id,
ident: name,
is_mutbl: local.node.is_mutbl,
kind: kind
}));
}
visit::visit_local(local, self, vt);
}
fn visit_arm(arm: arm, &&self: @IrMaps, vt: vt<@IrMaps>) {
let def_map = self.tcx.def_map;
for arm.pats.each |pat| {
do pat_util::pat_bindings(def_map, pat) |bm, p_id, sp, path| {
debug!("adding local variable %d from match with bm %?",
p_id, bm);
let name = ast_util::path_to_ident(path);
self.add_live_node_for_node(p_id, VarDefNode(sp));
self.add_variable(Local(LocalInfo {
id: p_id,
ident: name,
is_mutbl: false,
kind: FromMatch(bm)
}));
}
}
visit::visit_arm(arm, self, vt);
}
fn visit_expr(expr: @expr, &&self: @IrMaps, vt: vt<@IrMaps>) {
match expr.node {
// live nodes required for uses or definitions of variables:
expr_path(_) => {
let def = self.tcx.def_map.get(expr.id);
debug!("expr %d: path that leads to %?", expr.id, def);
if relevant_def(def).is_some() {
self.add_live_node_for_node(expr.id, ExprNode(expr.span));
}
visit::visit_expr(expr, self, vt);
}
expr_fn(_, _, _, cap_clause) |
expr_fn_block(_, _, cap_clause) => {
// Make a live_node for each captured variable, with the span
// being the location that the variable is used. This results
// in better error messages than just pointing at the closure
// construction site.
let proto = ty::ty_fn_proto(ty::expr_ty(self.tcx, expr));
let cvs = capture::compute_capture_vars(self.tcx, expr.id,
proto, cap_clause);
let mut call_caps = ~[];
for cvs.each |cv| {
match relevant_def(cv.def) {
some(rv) => {
let cv_ln = self.add_live_node(FreeVarNode(cv.span));
let is_move = match cv.mode {
cap_move | cap_drop => true, // var must be dead afterwards
cap_copy | cap_ref => false // var can still be used
};
vec::push(call_caps, {ln: cv_ln, is_move: is_move, rv: rv});
}
none => {}
}
}
self.set_captures(expr.id, call_caps);
visit::visit_expr(expr, self, vt);
}
// live nodes required for interesting control flow:
expr_if(*) | expr_match(*) | expr_while(*) | expr_loop(*) => {
self.add_live_node_for_node(expr.id, ExprNode(expr.span));
visit::visit_expr(expr, self, vt);
}
expr_binary(op, _, _) if ast_util::lazy_binop(op) => {
self.add_live_node_for_node(expr.id, ExprNode(expr.span));
visit::visit_expr(expr, self, vt);
}
// otherwise, live nodes are not required:
expr_index(*) | expr_field(*) | expr_vstore(*) |
expr_vec(*) | expr_rec(*) | expr_call(*) | expr_tup(*) |
expr_log(*) | expr_binary(*) |
expr_assert(*) | expr_addr_of(*) | expr_copy(*) |
expr_loop_body(*) | expr_do_body(*) | expr_cast(*) |
expr_unary(*) | expr_fail(*) |
expr_break(_) | expr_again(_) | expr_lit(_) | expr_ret(*) |
expr_block(*) | expr_move(*) | expr_unary_move(*) | expr_assign(*) |
expr_swap(*) | expr_assign_op(*) | expr_mac(*) | expr_struct(*) |
expr_repeat(*) => {
visit::visit_expr(expr, self, vt);
}
}
}
// ______________________________________________________________________
// Computing liveness sets
//
// Actually we compute just a bit more than just liveness, but we use
// the same basic propagation framework in all cases.
type users = {
reader: LiveNode,
writer: LiveNode,
used: bool
};
fn invalid_users() -> users {
{reader: invalid_node(), writer: invalid_node(), used: false}
}
type Specials = {
exit_ln: LiveNode,
fallthrough_ln: LiveNode,
no_ret_var: Variable,
self_var: Variable
};
const ACC_READ: uint = 1u;
const ACC_WRITE: uint = 2u;
const ACC_USE: uint = 4u;
struct Liveness {
let tcx: ty::ctxt;
let ir: @IrMaps;
let s: Specials;
let successors: ~[mut LiveNode];
let users: ~[mut users];
let mut break_ln: LiveNode;
let mut cont_ln: LiveNode;
}
fn Liveness(ir: @IrMaps, specials: Specials) -> Liveness {
Liveness {
ir: ir,
tcx: ir.tcx,
s: specials,
successors:
vec::to_mut(
vec::from_elem(ir.num_live_nodes,
invalid_node())),
users:
vec::to_mut(
vec::from_elem(ir.num_live_nodes * ir.num_vars,
invalid_users())),
break_ln: invalid_node(),
cont_ln: invalid_node()
}
}
impl Liveness {
fn live_node(node_id: node_id, span: span) -> LiveNode {
match self.ir.live_node_map.find(node_id) {
some(ln) => ln,
none => {
// This must be a mismatch between the ir_map construction
// above and the propagation code below; the two sets of
// code have to agree about which AST nodes are worth
// creating liveness nodes for.
self.tcx.sess.span_bug(
span, fmt!("No live node registered for node %d",
node_id));
}
}
}
fn variable_from_rdef(rv: RelevantDef, span: span) -> Variable {
match rv {
RelevantSelf => self.s.self_var,
RelevantVar(nid) => self.variable(nid, span)
}
}
fn variable_from_path(expr: @expr) -> option<Variable> {
match expr.node {
expr_path(_) => {
let def = self.tcx.def_map.get(expr.id);
relevant_def(def).map(
|rdef| self.variable_from_rdef(rdef, expr.span)
)
}
_ => none
}
}
fn variable(node_id: node_id, span: span) -> Variable {
(*self.ir).variable(node_id, span)
}
fn variable_from_def_map(node_id: node_id,
span: span) -> option<Variable> {
match self.tcx.def_map.find(node_id) {
some(def) => {
relevant_def(def).map(
|rdef| self.variable_from_rdef(rdef, span)
)
}
none => {
self.tcx.sess.span_bug(
span, ~"Not present in def map")
}
}
}
fn pat_bindings(pat: @pat, f: fn(LiveNode, Variable, span)) {
let def_map = self.tcx.def_map;
do pat_util::pat_bindings(def_map, pat) |_bm, p_id, sp, _n| {
let ln = self.live_node(p_id, sp);
let var = self.variable(p_id, sp);
f(ln, var, sp);
}
}
fn arm_pats_bindings(pats: &[@pat], f: fn(LiveNode, Variable, span)) {
// only consider the first pattern; any later patterns must have
// the same bindings, and we also consider the first pattern to be
// the "authoratative" set of ids
if !pats.is_empty() {
self.pat_bindings(pats[0], f)
}
}
fn define_bindings_in_pat(pat: @pat, succ: LiveNode) -> LiveNode {
self.define_bindings_in_arm_pats([pat], succ)
}
fn define_bindings_in_arm_pats(pats: &[@pat],
succ: LiveNode) -> LiveNode {
let mut succ = succ;
do self.arm_pats_bindings(pats) |ln, var, _sp| {
self.init_from_succ(ln, succ);
self.define(ln, var);
succ = ln;
}
succ
}
fn idx(ln: LiveNode, var: Variable) -> uint {
*ln * self.ir.num_vars + *var
}
fn live_on_entry(ln: LiveNode, var: Variable)
-> option<LiveNodeKind> {
assert ln.is_valid();
let reader = self.users[self.idx(ln, var)].reader;
if reader.is_valid() {some((*self.ir).lnk(reader))} else {none}
}
fn live_on_exit(ln: LiveNode, var: Variable)
-> option<LiveNodeKind> {
self.live_on_entry(copy self.successors[*ln], var)
}
fn used_on_entry(ln: LiveNode, var: Variable) -> bool {
assert ln.is_valid();
self.users[self.idx(ln, var)].used
}
fn assigned_on_entry(ln: LiveNode, var: Variable)
-> option<LiveNodeKind> {
assert ln.is_valid();
let writer = self.users[self.idx(ln, var)].writer;
if writer.is_valid() {some((*self.ir).lnk(writer))} else {none}
}
fn assigned_on_exit(ln: LiveNode, var: Variable)
-> option<LiveNodeKind> {
self.assigned_on_entry(copy self.successors[*ln], var)
}
fn indices(ln: LiveNode, op: fn(uint)) {
let node_base_idx = self.idx(ln, Variable(0u));
for uint::range(0u, self.ir.num_vars) |var_idx| {
op(node_base_idx + var_idx)
}
}
fn indices2(ln: LiveNode, succ_ln: LiveNode,
op: fn(uint, uint)) {
let node_base_idx = self.idx(ln, Variable(0u));
let succ_base_idx = self.idx(succ_ln, Variable(0u));
for uint::range(0u, self.ir.num_vars) |var_idx| {
op(node_base_idx + var_idx, succ_base_idx + var_idx);
}
}
fn write_vars(wr: io::Writer,
ln: LiveNode,
test: fn(uint) -> LiveNode) {
let node_base_idx = self.idx(ln, Variable(0u));
for uint::range(0u, self.ir.num_vars) |var_idx| {
let idx = node_base_idx + var_idx;
if test(idx).is_valid() {
wr.write_str(~" ");
wr.write_str(Variable(var_idx).to_str());
}
}
}
fn ln_str(ln: LiveNode) -> ~str {
do io::with_str_writer |wr| {
wr.write_str(~"[ln(");
wr.write_uint(*ln);
wr.write_str(~") of kind ");
wr.write_str(fmt!("%?", copy self.ir.lnks[*ln]));
wr.write_str(~" reads");
self.write_vars(wr, ln, |idx| self.users[idx].reader );
wr.write_str(~" writes");
self.write_vars(wr, ln, |idx| self.users[idx].writer );
wr.write_str(~" ");
wr.write_str(~" precedes ");
wr.write_str((copy self.successors[*ln]).to_str());
wr.write_str(~"]");
}
}
fn init_empty(ln: LiveNode, succ_ln: LiveNode) {
self.successors[*ln] = succ_ln;
// It is not necessary to initialize the
// values to empty because this is the value
// they have when they are created, and the sets
// only grow during iterations.
//
// self.indices(ln) { |idx|
// self.users[idx] = invalid_users();
// }
}
fn init_from_succ(ln: LiveNode, succ_ln: LiveNode) {
// more efficient version of init_empty() / merge_from_succ()
self.successors[*ln] = succ_ln;
self.indices2(ln, succ_ln, |idx, succ_idx| {
self.users[idx] = self.users[succ_idx]
});
debug!("init_from_succ(ln=%s, succ=%s)",
self.ln_str(ln), self.ln_str(succ_ln));
}
fn merge_from_succ(ln: LiveNode, succ_ln: LiveNode,
first_merge: bool) -> bool {
if ln == succ_ln { return false; }
let mut changed = false;
do self.indices2(ln, succ_ln) |idx, succ_idx| {
changed |= copy_if_invalid(copy self.users[succ_idx].reader,
self.users[idx].reader);
changed |= copy_if_invalid(copy self.users[succ_idx].writer,
self.users[idx].writer);
if self.users[succ_idx].used && !self.users[idx].used {
self.users[idx].used = true;
changed = true;
}
}
debug!("merge_from_succ(ln=%s, succ=%s, first_merge=%b, changed=%b)",
ln.to_str(), self.ln_str(succ_ln), first_merge, changed);
return changed;
fn copy_if_invalid(src: LiveNode, &dst: LiveNode) -> bool {
if src.is_valid() {
if !dst.is_valid() {
dst = src;
return true;
}
}
return false;
}
}
// Indicates that a local variable was *defined*; we know that no
// uses of the variable can precede the definition (resolve checks
// this) so we just clear out all the data.
fn define(writer: LiveNode, var: Variable) {
let idx = self.idx(writer, var);
self.users[idx].reader = invalid_node();
self.users[idx].writer = invalid_node();
debug!("%s defines %s (idx=%u): %s", writer.to_str(), var.to_str(),
idx, self.ln_str(writer));
}
// Either read, write, or both depending on the acc bitset
fn acc(ln: LiveNode, var: Variable, acc: uint) {
let idx = self.idx(ln, var);
let user = &mut self.users[idx];
if (acc & ACC_WRITE) != 0u {
user.reader = invalid_node();
user.writer = ln;
}
// Important: if we both read/write, must do read second
// or else the write will override.
if (acc & ACC_READ) != 0u {
user.reader = ln;
}
if (acc & ACC_USE) != 0u {
self.users[idx].used = true;
}
debug!("%s accesses[%x] %s: %s",
ln.to_str(), acc, var.to_str(), self.ln_str(ln));
}
// _______________________________________________________________________
fn compute(decl: fn_decl, body: blk) -> LiveNode {
// if there is a `break` or `again` at the top level, then it's
// effectively a return---this only occurs in `for` loops,
// where the body is really a closure.
let entry_ln: LiveNode =
self.with_loop_nodes(self.s.exit_ln, self.s.exit_ln, || {
self.propagate_through_fn_block(decl, body)
});
// hack to skip the loop unless #debug is enabled:
debug!("^^ liveness computation results for body %d (entry=%s)",
{
for uint::range(0u, self.ir.num_live_nodes) |ln_idx| {
#debug["%s", self.ln_str(LiveNode(ln_idx))];
}
body.node.id
},
entry_ln.to_str());
entry_ln
}
fn propagate_through_fn_block(decl: fn_decl, blk: blk) -> LiveNode {
// inputs passed by & mode should be considered live on exit:
for decl.inputs.each |arg| {
match ty::resolved_mode(self.tcx, arg.mode) {
by_mutbl_ref | by_ref | by_val => {
// These are "non-owned" modes, so register a read at
// the end. This will prevent us from moving out of
// such variables but also prevent us from registering
// last uses and so forth.
let var = self.variable(arg.id, blk.span);
self.acc(self.s.exit_ln, var, ACC_READ);
}
by_move | by_copy => {
// These are owned modes. If we don't use the
// variable, nobody will.
}
}
}
// as above, the "self" variable is a non-owned variable
self.acc(self.s.exit_ln, self.s.self_var, ACC_READ);
// in a ctor, there is an implicit use of self.f for all fields f:
for self.ir.field_map.each_value |var| {
self.acc(self.s.exit_ln, var, ACC_READ|ACC_USE);
}
// the fallthrough exit is only for those cases where we do not
// explicitly return:
self.init_from_succ(self.s.fallthrough_ln, self.s.exit_ln);
if blk.node.expr.is_none() {
self.acc(self.s.fallthrough_ln, self.s.no_ret_var, ACC_READ)
}
self.propagate_through_block(blk, self.s.fallthrough_ln)
}
fn propagate_through_block(blk: blk, succ: LiveNode) -> LiveNode {
let succ = self.propagate_through_opt_expr(blk.node.expr, succ);
do blk.node.stmts.foldr(succ) |stmt, succ| {
self.propagate_through_stmt(stmt, succ)
}
}
fn propagate_through_stmt(stmt: @stmt, succ: LiveNode) -> LiveNode {
match stmt.node {
stmt_decl(decl, _) => {
return self.propagate_through_decl(decl, succ);
}
stmt_expr(expr, _) | stmt_semi(expr, _) => {
return self.propagate_through_expr(expr, succ);
}
}
}
fn propagate_through_decl(decl: @decl, succ: LiveNode) -> LiveNode {
match decl.node {
decl_local(locals) => {
do locals.foldr(succ) |local, succ| {
self.propagate_through_local(local, succ)
}
}
decl_item(_) => {
succ
}
}
}
fn propagate_through_local(local: @local, succ: LiveNode) -> LiveNode {
// Note: we mark the variable as defined regardless of whether
// there is an initializer. Initially I had thought to only mark
// the live variable as defined if it was initialized, and then we
// could check for uninit variables just by scanning what is live
// at the start of the function. But that doesn't work so well for
// immutable variables defined in a loop:
// loop { let x; x = 5; }
// because the "assignment" loops back around and generates an error.
//
// So now we just check that variables defined w/o an
// initializer are not live at the point of their
// initialization, which is mildly more complex than checking
// once at the func header but otherwise equivalent.
let opt_init = local.node.init.map(|i| i.expr );
let succ = self.propagate_through_opt_expr(opt_init, succ);
self.define_bindings_in_pat(local.node.pat, succ)
}
fn propagate_through_exprs(exprs: ~[@expr],
succ: LiveNode) -> LiveNode {
do exprs.foldr(succ) |expr, succ| {
self.propagate_through_expr(expr, succ)
}
}
fn propagate_through_opt_expr(opt_expr: option<@expr>,
succ: LiveNode) -> LiveNode {
do opt_expr.foldl(succ) |succ, expr| {
self.propagate_through_expr(expr, succ)
}
}
fn propagate_through_expr(expr: @expr, succ: LiveNode) -> LiveNode {
match expr.node {
// Interesting cases with control flow or which gen/kill
expr_path(_) => {
self.access_path(expr, succ, ACC_READ | ACC_USE)
}
expr_field(e, nm, _) => {
// If this is a reference to `self.f` inside of a ctor,
// then we treat it as a read of that variable.
// Otherwise, we ignore it and just propagate down to
// process `e`.
match self.as_self_field(e, nm) {
some((ln, var)) => {
self.init_from_succ(ln, succ);
self.acc(ln, var, ACC_READ | ACC_USE);
ln
}
none => {
self.propagate_through_expr(e, succ)
}
}
}
expr_fn(*) | expr_fn_block(*) => {
// the construction of a closure itself is not important,
// but we have to consider the closed over variables.
let caps = (*self.ir).captures(expr);
do (*caps).foldr(succ) |cap, succ| {
self.init_from_succ(cap.ln, succ);
let var = self.variable_from_rdef(cap.rv, expr.span);
self.acc(cap.ln, var, ACC_READ | ACC_USE);
cap.ln
}
}
expr_if(cond, then, els) => {
//
// (cond)
// |
// v
// (expr)
// / \
// | |
// v v
// (then)(els)
// | |
// v v
// ( succ )
//
let else_ln = self.propagate_through_opt_expr(els, succ);
let then_ln = self.propagate_through_block(then, succ);
let ln = self.live_node(expr.id, expr.span);
self.init_from_succ(ln, else_ln);
self.merge_from_succ(ln, then_ln, false);
self.propagate_through_expr(cond, ln)
}
expr_while(cond, blk) => {
self.propagate_through_loop(expr, some(cond), blk, succ)
}
expr_loop(blk, _) => {
self.propagate_through_loop(expr, none, blk, succ)
}
expr_match(e, arms) => {
//
// (e)
// |
// v
// (expr)
// / | \
// | | |
// v v v
// (..arms..)
// | | |
// v v v
// ( succ )
//
//
let ln = self.live_node(expr.id, expr.span);
self.init_empty(ln, succ);
let mut first_merge = true;
for arms.each |arm| {
let body_succ =
self.propagate_through_block(arm.body, succ);
let guard_succ =
self.propagate_through_opt_expr(arm.guard, body_succ);
let arm_succ =
self.define_bindings_in_arm_pats(arm.pats, guard_succ);
self.merge_from_succ(ln, arm_succ, first_merge);
first_merge = false;
};
self.propagate_through_expr(e, ln)
}
expr_ret(o_e) | expr_fail(o_e) => {
// ignore succ and subst exit_ln:
self.propagate_through_opt_expr(o_e, self.s.exit_ln)
}
expr_break(opt_label) => {
if !self.break_ln.is_valid() {
self.tcx.sess.span_bug(
expr.span, ~"break with invalid break_ln");
}
if opt_label.is_some() {
self.tcx.sess.span_unimpl(expr.span, ~"labeled break");
}
self.break_ln
}
expr_again(opt_label) => {
if !self.cont_ln.is_valid() {
self.tcx.sess.span_bug(
expr.span, ~"cont with invalid cont_ln");
}
if opt_label.is_some() {
self.tcx.sess.span_unimpl(expr.span, ~"labeled again");
}
self.cont_ln
}
expr_move(l, r) | expr_assign(l, r) => {
// see comment on lvalues in
// propagate_through_lvalue_components()
let succ = self.write_lvalue(l, succ, ACC_WRITE);
let succ = self.propagate_through_lvalue_components(l, succ);
self.propagate_through_expr(r, succ)
}
expr_swap(l, r) => {
// see comment on lvalues in
// propagate_through_lvalue_components()
// I count swaps as `used` cause it might be something like:
// foo.bar <-> x
// and I am too lazy to distinguish this case from
// y <-> x
// (where both x, y are unused) just for a warning.
let succ = self.write_lvalue(r, succ, ACC_WRITE|ACC_READ|ACC_USE);
let succ = self.write_lvalue(l, succ, ACC_WRITE|ACC_READ|ACC_USE);
let succ = self.propagate_through_lvalue_components(r, succ);
self.propagate_through_lvalue_components(l, succ)
}
expr_assign_op(_, l, r) => {
// see comment on lvalues in
// propagate_through_lvalue_components()
let succ = self.write_lvalue(l, succ, ACC_WRITE|ACC_READ);
let succ = self.propagate_through_expr(r, succ);
self.propagate_through_lvalue_components(l, succ)
}
// Uninteresting cases: just propagate in rev exec order
expr_vstore(expr, _) => {
self.propagate_through_expr(expr, succ)
}
expr_vec(exprs, _) => {
self.propagate_through_exprs(exprs, succ)
}
expr_repeat(element, count, _) => {
let succ = self.propagate_through_expr(count, succ);
self.propagate_through_expr(element, succ)
}
expr_rec(fields, with_expr) => {
let succ = self.propagate_through_opt_expr(with_expr, succ);
do fields.foldr(succ) |field, succ| {
self.propagate_through_expr(field.node.expr, succ)
}
}
expr_struct(_, fields, with_expr) => {
let succ = self.propagate_through_opt_expr(with_expr, succ);
do fields.foldr(succ) |field, succ| {
self.propagate_through_expr(field.node.expr, succ)
}
}
expr_call(f, args, _) => {
// calling a fn with bot return type means that the fn
// will fail, and hence the successors can be ignored
let t_ret = ty::ty_fn_ret(ty::expr_ty(self.tcx, f));
let succ = if ty::type_is_bot(t_ret) {self.s.exit_ln}
else {succ};
let succ = self.propagate_through_exprs(args, succ);
self.propagate_through_expr(f, succ)
}
expr_tup(exprs) => {
self.propagate_through_exprs(exprs, succ)
}
expr_binary(op, l, r) if ast_util::lazy_binop(op) => {
let r_succ = self.propagate_through_expr(r, succ);
let ln = self.live_node(expr.id, expr.span);
self.init_from_succ(ln, succ);
self.merge_from_succ(ln, r_succ, false);
self.propagate_through_expr(l, ln)
}
expr_log(_, l, r) |
expr_index(l, r) |
expr_binary(_, l, r) => {
self.propagate_through_exprs(~[l, r], succ)
}
expr_assert(e) |
expr_addr_of(_, e) |
expr_copy(e) |
expr_unary_move(e) |
expr_loop_body(e) |
expr_do_body(e) |
expr_cast(e, _) |
expr_unary(_, e) => {
self.propagate_through_expr(e, succ)
}
expr_lit(*) => {
succ
}
expr_block(blk) => {
self.propagate_through_block(blk, succ)
}
expr_mac(*) => {
self.tcx.sess.span_bug(expr.span, ~"unexpanded macro");
}
}
}
fn propagate_through_lvalue_components(expr: @expr,
succ: LiveNode) -> LiveNode {
// # Lvalues
//
// In general, the full flow graph structure for an
// assignment/move/etc can be handled in one of two ways,
// depending on whether what is being assigned is a "tracked
// value" or not. A tracked value is basically a local variable
// or argument, or a self-field (`self.f`) in a ctor.
//
// The two kinds of graphs are:
//
// Tracked lvalue Untracked lvalue
// ----------------------++-----------------------
// ||
// | || |
// v || v
// (rvalue) || (rvalue)
// | || |
// v || v
// (write of lvalue) || (lvalue components)
// | || |
// v || v
// (succ) || (succ)
// ||
// ----------------------++-----------------------
//
// I will cover the two cases in turn:
//
// # Tracked lvalues
//
// A tracked lvalue is either a local variable/argument `x` or
// else it is a self-field `self.f` in a constructor. In
// these cases, the link_node where the write occurs is linked
// to node id of `x` or `self`, respectively. The
// `write_lvalue()` routine generates the contents of this
// node. There are no subcomponents to consider.
//
// # Non-tracked lvalues
//
// These are lvalues like `x[5]` or `x.f`. In that case, we
// basically ignore the value which is written to but generate
// reads for the components---`x` in these two examples. The
// components reads are generated by
// `propagate_through_lvalue_components()` (this fn).
//
// # Illegal lvalues
//
// It is still possible to observe assignments to non-lvalues;
// these errors are detected in the later pass borrowck. We
// just ignore such cases and treat them as reads.
match expr.node {
expr_path(_) => succ,
expr_field(e, nm, _) => match self.as_self_field(e, nm) {
some(_) => succ,
none => self.propagate_through_expr(e, succ)
},
_ => self.propagate_through_expr(expr, succ)
}
}
// see comment on propagate_through_lvalue()
fn write_lvalue(expr: @expr,
succ: LiveNode,
acc: uint) -> LiveNode {
match expr.node {
expr_path(_) => self.access_path(expr, succ, acc),
expr_field(e, nm, _) => match self.as_self_field(e, nm) {
some((ln, var)) => {
self.init_from_succ(ln, succ);
self.acc(ln, var, acc);
ln
}
none => succ
},
// We do not track other lvalues, so just propagate through
// to their subcomponents. Also, it may happen that
// non-lvalues occur here, because those are detected in the
// later pass borrowck.
_ => succ
}
}
fn access_path(expr: @expr, succ: LiveNode, acc: uint) -> LiveNode {
let def = self.tcx.def_map.get(expr.id);
match relevant_def(def) {
some(RelevantSelf) => {
// Accessing `self` is like accessing every field of
// the current object. This allows something like
// `self = ...;` (it will be considered a write to
// every field, sensibly enough), though the borrowck
// pass will reject it later on.
//
// Also, note that, within a ctor at least, an
// expression like `self.f` is "shortcircuiting"
// before it reaches this point by the code for
// expr_field.
let ln = self.live_node(expr.id, expr.span);
if acc != 0u {
self.init_from_succ(ln, succ);
for self.ir.field_map.each_value |var| {
self.acc(ln, var, acc);
}
}
ln
}
some(RelevantVar(nid)) => {
let ln = self.live_node(expr.id, expr.span);
if acc != 0u {
self.init_from_succ(ln, succ);
let var = self.variable(nid, expr.span);
self.acc(ln, var, acc);
}
ln
}
none => succ
}
}
fn as_self_field(expr: @expr,
fld: ident) -> option<(LiveNode,Variable)> {
// If we checking a constructor, then we treat self.f as a
// variable. we use the live_node id that will be assigned to
// the reference to self but the variable id for `f`.
match expr.node {
expr_path(_) => {
let def = self.tcx.def_map.get(expr.id);
match def {
def_self(_) => {
// Note: the field_map is empty unless we are in a ctor
return self.ir.field_map.find(fld).map(|var| {
let ln = self.live_node(expr.id, expr.span);
(ln, var)
});
}
_ => return none
}
}
_ => return none
}
}
fn propagate_through_loop(expr: @expr,
cond: option<@expr>,
body: blk,
succ: LiveNode) -> LiveNode {
/*
We model control flow like this:
(cond) <--+
| |
v |
+-- (expr) |
| | |
| v |
| (body) ---+
|
|
v
(succ)
*/
// first iteration:
let mut first_merge = true;
let ln = self.live_node(expr.id, expr.span);
self.init_empty(ln, succ);
if cond.is_some() {
// if there is a condition, then it's possible we bypass
// the body altogether. otherwise, the only way is via a
// break in the loop body.
self.merge_from_succ(ln, succ, first_merge);
first_merge = false;
}
let cond_ln = self.propagate_through_opt_expr(cond, ln);
let body_ln = self.with_loop_nodes(succ, ln, || {
self.propagate_through_block(body, cond_ln)
});
// repeat until fixed point is reached:
while self.merge_from_succ(ln, body_ln, first_merge) {
first_merge = false;
assert cond_ln == self.propagate_through_opt_expr(cond, ln);
assert body_ln == self.with_loop_nodes(succ, ln, || {
self.propagate_through_block(body, cond_ln)
});
}
cond_ln
}
fn with_loop_nodes<R>(break_ln: LiveNode,
cont_ln: LiveNode,
f: fn() -> R) -> R {
let bl = self.break_ln, cl = self.cont_ln;
self.break_ln = break_ln;
self.cont_ln = cont_ln;
let r <- f();
self.break_ln = bl;
self.cont_ln = cl;
return r;
}
}
// _______________________________________________________________________
// Checking for error conditions
fn check_local(local: @local, &&self: @Liveness, vt: vt<@Liveness>) {
match local.node.init {
some({op: op, expr: expr}) => {
// Initializer:
match op {
init_move => self.check_move_from_expr(expr, vt),
init_assign => ()
}
self.warn_about_unused_or_dead_vars_in_pat(local.node.pat);
if !local.node.is_mutbl {
self.check_for_reassignments_in_pat(local.node.pat);
}
}
none => {
// No initializer: the variable might be unused; if not, it
// should not be live at this point.
debug!("check_local() with no initializer");
do self.pat_bindings(local.node.pat) |ln, var, sp| {
if !self.warn_about_unused(sp, ln, var) {
match self.live_on_exit(ln, var) {
none => { /* not live: good */ }
some(lnk) => {
self.report_illegal_read(
local.span, lnk, var,
PossiblyUninitializedVariable);
}
}
}
}
}
}
visit::visit_local(local, self, vt);
}
fn check_arm(arm: arm, &&self: @Liveness, vt: vt<@Liveness>) {
do self.arm_pats_bindings(arm.pats) |ln, var, sp| {
self.warn_about_unused(sp, ln, var);
}
visit::visit_arm(arm, self, vt);
}
fn check_expr(expr: @expr, &&self: @Liveness, vt: vt<@Liveness>) {
match expr.node {
expr_path(_) => {
for self.variable_from_def_map(expr.id, expr.span).each |var| {
let ln = self.live_node(expr.id, expr.span);
self.consider_last_use(expr, ln, var);
}
visit::visit_expr(expr, self, vt);
}
expr_fn(_, _, _, cap_clause) | expr_fn_block(_, _, cap_clause) => {
let caps = (*self.ir).captures(expr);
for (*caps).each |cap| {
let var = self.variable_from_rdef(cap.rv, expr.span);
self.consider_last_use(expr, cap.ln, var);
if cap.is_move {
self.check_move_from_var(expr.span, cap.ln, var);
}
}
visit::visit_expr(expr, self, vt);
}
expr_assign(l, r) => {
self.check_lvalue(l, vt);
vt.visit_expr(r, self, vt);
visit::visit_expr(expr, self, vt);
}
expr_move(l, r) => {
self.check_lvalue(l, vt);
self.check_move_from_expr(r, vt);
visit::visit_expr(expr, self, vt);
}
expr_unary_move(r) => {
self.check_move_from_expr(r, vt);
visit::visit_expr(expr, self, vt);
}
expr_assign_op(_, l, _) => {
self.check_lvalue(l, vt);
visit::visit_expr(expr, self, vt);
}
expr_call(f, args, _) => {
let targs = ty::ty_fn_args(ty::expr_ty(self.tcx, f));
vt.visit_expr(f, self, vt);
do vec::iter2(args, targs) |arg_expr, arg_ty| {
match ty::resolved_mode(self.tcx, arg_ty.mode) {
by_val | by_copy | by_ref | by_mutbl_ref => {
vt.visit_expr(arg_expr, self, vt);
}
by_move => {
self.check_move_from_expr(arg_expr, vt);
}
}
}
}
// no correctness conditions related to liveness
expr_if(*) | expr_match(*) |
expr_while(*) | expr_loop(*) |
expr_index(*) | expr_field(*) | expr_vstore(*) |
expr_vec(*) | expr_rec(*) | expr_tup(*) |
expr_log(*) | expr_binary(*) |
expr_assert(*) | expr_copy(*) |
expr_loop_body(*) | expr_do_body(*) |
expr_cast(*) | expr_unary(*) | expr_fail(*) |
expr_ret(*) | expr_break(*) | expr_again(*) | expr_lit(_) |
expr_block(*) | expr_swap(*) | expr_mac(*) | expr_addr_of(*) |
expr_struct(*) | expr_repeat(*) => {
visit::visit_expr(expr, self, vt);
}
}
}
fn check_fn(_fk: visit::fn_kind, _decl: fn_decl,
_body: blk, _sp: span, _id: node_id,
&&_self: @Liveness, _v: vt<@Liveness>) {
// do not check contents of nested fns
}
enum ReadKind {
PossiblyUninitializedVariable,
PossiblyUninitializedField,
MovedVariable
}
impl @Liveness {
fn check_fields(sp: span, entry_ln: LiveNode) {
for self.ir.field_map.each |nm, var| {
match self.live_on_entry(entry_ln, var) {
none => { /* ok */ }
some(ExitNode) => {
self.tcx.sess.span_err(
sp, fmt!("field `self.%s` is never initialized",
self.tcx.sess.str_of(nm)));
}
some(lnk) => {
self.report_illegal_read(
sp, lnk, var, PossiblyUninitializedField);
}
}
}
}
fn check_ret(id: node_id, sp: span, fk: visit::fn_kind,
entry_ln: LiveNode) {
if self.live_on_entry(entry_ln, self.s.no_ret_var).is_some() {
// if no_ret_var is live, then we fall off the end of the
// function without any kind of return expression:
let t_ret = ty::ty_fn_ret(ty::node_id_to_type(self.tcx, id));
if ty::type_is_nil(t_ret) {
// for nil return types, it is ok to not return a value expl.
} else if ty::type_is_bot(t_ret) {
// for bot return types, not ok. Function should fail.
self.tcx.sess.span_err(
sp, ~"some control paths may return");
} else {
match fk {
visit::fk_ctor(*) => {
// ctors are written as though they are unit.
}
_ => {
self.tcx.sess.span_err(
sp, ~"not all control paths return a value");
}
}
}
}
}
fn check_move_from_var(span: span, ln: LiveNode, var: Variable) {
debug!("check_move_from_var(%s, %s)",
ln.to_str(), var.to_str());
match self.live_on_exit(ln, var) {
none => {}
some(lnk) => self.report_illegal_move(span, lnk, var)
}
}
fn consider_last_use(expr: @expr, ln: LiveNode, var: Variable) {
match self.live_on_exit(ln, var) {
some(_) => {}
none => (*self.ir).add_last_use(expr.id, var)
}
}
fn check_move_from_expr(expr: @expr, vt: vt<@Liveness>) {
debug!("check_move_from_expr(node %d: %s)",
expr.id, expr_to_str(expr, self.tcx.sess.intr()));
if self.ir.method_map.contains_key(expr.id) {
// actually an rvalue, since this calls a method
return vt.visit_expr(expr, self, vt);
}
match expr.node {
expr_path(_) => {
match self.variable_from_path(expr) {
some(var) => {
let ln = self.live_node(expr.id, expr.span);
self.check_move_from_var(expr.span, ln, var);
}
none => {}
}
}
expr_field(base, _, _) => {
// Moving from x.y is allowed if x is never used later.
// (Note that the borrowck guarantees that anything
// being moved from is uniquely tied to the stack frame)
self.check_move_from_expr(base, vt);
}
expr_index(base, idx) => {
// Moving from x[y] is allowed if x is never used later.
// (Note that the borrowck guarantees that anything
// being moved from is uniquely tied to the stack frame)
self.check_move_from_expr(base, vt);
vt.visit_expr(idx, self, vt);
}
_ => {
// For other kinds of lvalues, no checks are required,
// and any embedded expressions are actually rvalues
vt.visit_expr(expr, self, vt);
}
}
}
fn check_lvalue(expr: @expr, vt: vt<@Liveness>) {
match expr.node {
expr_path(_) => {
match self.tcx.def_map.get(expr.id) {
def_local(nid, false) => {
// Assignment to an immutable variable or argument:
// only legal if there is no later assignment.
let ln = self.live_node(expr.id, expr.span);
let var = self.variable(nid, expr.span);
self.check_for_reassignment(ln, var, expr.span);
self.warn_about_dead_assign(expr.span, ln, var);
}
def => {
match relevant_def(def) {
some(RelevantVar(nid)) => {
let ln = self.live_node(expr.id, expr.span);
let var = self.variable(nid, expr.span);
self.warn_about_dead_assign(expr.span, ln, var);
}
some(RelevantSelf) => {}
none => {}
}
}
}
}
_ => {
// For other kinds of lvalues, no checks are required,
// and any embedded expressions are actually rvalues
visit::visit_expr(expr, self, vt);
}
}
}
fn check_for_reassignments_in_pat(pat: @pat) {
do self.pat_bindings(pat) |ln, var, sp| {
self.check_for_reassignment(ln, var, sp);
}
}
fn check_for_reassignment(ln: LiveNode, var: Variable,
orig_span: span) {
match self.assigned_on_exit(ln, var) {
some(ExprNode(span)) => {
self.tcx.sess.span_err(
span,
~"re-assignment of immutable variable");
self.tcx.sess.span_note(
orig_span,
~"prior assignment occurs here");
}
some(lnk) => {
self.tcx.sess.span_bug(
orig_span,
fmt!("illegal writer: %?", lnk));
}
none => {}
}
}
fn report_illegal_move(move_span: span,
lnk: LiveNodeKind,
var: Variable) {
// the only time that it is possible to have a moved variable
// used by ExitNode would be arguments or fields in a ctor.
// we give a slightly different error message in those cases.
if lnk == ExitNode {
let vk = self.ir.var_kinds[*var];
match vk {
Arg(_, name, _) => {
self.tcx.sess.span_err(
move_span,
fmt!("illegal move from argument `%s`, which is not \
copy or move mode", self.tcx.sess.str_of(name)));
return;
}
Field(name) => {
self.tcx.sess.span_err(
move_span,
fmt!("illegal move from field `%s`",
self.tcx.sess.str_of(name)));
return;
}
Self => {
self.tcx.sess.span_err(
move_span,
~"illegal move from self (cannot move out of a field of \
self)");
return;
}
Local(*) | ImplicitRet => {
self.tcx.sess.span_bug(
move_span,
fmt!("illegal reader (%?) for `%?`",
lnk, vk));
}
}
}
self.report_illegal_read(move_span, lnk, var, MovedVariable);
self.tcx.sess.span_note(
move_span, ~"move of variable occurred here");
}
fn report_illegal_read(chk_span: span,
lnk: LiveNodeKind,
var: Variable,
rk: ReadKind) {
let msg = match rk {
PossiblyUninitializedVariable => {
~"possibly uninitialized variable"
}
PossiblyUninitializedField => ~"possibly uninitialized field",
MovedVariable => ~"moved variable"
};
let name = (*self.ir).variable_name(var);
match lnk {
FreeVarNode(span) => {
self.tcx.sess.span_err(
span,
fmt!("capture of %s: `%s`", msg, name));
}
ExprNode(span) => {
self.tcx.sess.span_err(
span,
fmt!("use of %s: `%s`", msg, name));
}
ExitNode |
VarDefNode(_) => {
self.tcx.sess.span_bug(
chk_span,
fmt!("illegal reader: %?", lnk));
}
}
}
fn should_warn(var: Variable) -> option<~str> {
let name = (*self.ir).variable_name(var);
if name[0] == ('_' as u8) {none} else {some(name)}
}
fn warn_about_unused_args(sp: span, decl: fn_decl, entry_ln: LiveNode) {
for decl.inputs.each |arg| {
let var = self.variable(arg.id, arg.ty.span);
match ty::resolved_mode(self.tcx, arg.mode) {
by_mutbl_ref => {
// for mutable reference arguments, something like
// x = 1;
// is not worth warning about, as it has visible
// side effects outside the fn.
match self.assigned_on_entry(entry_ln, var) {
some(_) => { /*ok*/ }
none => {
// but if it is not written, it ought to be used
self.warn_about_unused(sp, entry_ln, var);
}
}
}
by_val | by_ref | by_move | by_copy => {
self.warn_about_unused(sp, entry_ln, var);
}
}
}
}
fn warn_about_unused_or_dead_vars_in_pat(pat: @pat) {
do self.pat_bindings(pat) |ln, var, sp| {
if !self.warn_about_unused(sp, ln, var) {
self.warn_about_dead_assign(sp, ln, var);
}
}
}
fn warn_about_unused(sp: span, ln: LiveNode, var: Variable) -> bool {
if !self.used_on_entry(ln, var) {
for self.should_warn(var).each |name| {
// annoying: for parameters in funcs like `fn(x: int)
// {ret}`, there is only one node, so asking about
// assigned_on_exit() is not meaningful.
let is_assigned = if ln == self.s.exit_ln {
false
} else {
self.assigned_on_exit(ln, var).is_some()
};
if is_assigned {
// FIXME(#3266)--make liveness warnings lintable
self.tcx.sess.span_warn(
sp, fmt!("variable `%s` is assigned to, \
but never used", name));
} else {
// FIXME(#3266)--make liveness warnings lintable
self.tcx.sess.span_warn(
sp, fmt!("unused variable: `%s`", name));
}
}
return true;
}
return false;
}
fn warn_about_dead_assign(sp: span, ln: LiveNode, var: Variable) {
if self.live_on_exit(ln, var).is_none() {
for self.should_warn(var).each |name| {
// FIXME(#3266)--make liveness warnings lintable
self.tcx.sess.span_warn(
sp,
fmt!("value assigned to `%s` is never read", name));
}
}
}
}