According to #7887, we've decided to use the syntax of `fn map<U>(f: &fn(&T) -> U) -> U`, which passes a reference to the closure, and to `fn map_move<U>(f: &fn(T) -> U) -> U` which moves the value into the closure. This PR adds these `.map_move()` functions to `Option` and `Result`. In addition, it has these other minor features: * Replaces a couple uses of `option.get()`, `result.get()`, and `result.get_err()` with `option.unwrap()`, `result.unwrap()`, and `result.unwrap_err()`. (See #8268 and #8288 for a more thorough adaptation of this functionality. * Removes `option.take_map()` and `option.take_map_default()`. These two functions can be easily written as `.take().map_move(...)`. * Adds a better error message to `result.unwrap()` and `result.unwrap_err()`.
726 lines
25 KiB
Rust
726 lines
25 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
* rusti - A REPL using the JIT backend
|
|
*
|
|
* Rusti works by serializing state between lines of input. This means that each
|
|
* line can be run in a separate task, and the only limiting factor is that all
|
|
* local bound variables are encodable.
|
|
*
|
|
* This is accomplished by feeding in generated input to rustc for execution in
|
|
* the JIT compiler. Currently input actually gets fed in three times to get
|
|
* information about the program.
|
|
*
|
|
* - Pass #1
|
|
* In this pass, the input is simply thrown at the parser and the input comes
|
|
* back. This validates the structure of the program, and at this stage the
|
|
* global items (fns, structs, impls, traits, etc.) are filtered from the
|
|
* input into the "global namespace". These declarations shadow all previous
|
|
* declarations of an item by the same name.
|
|
*
|
|
* - Pass #2
|
|
* After items have been stripped, the remaining input is passed to rustc
|
|
* along with all local variables declared (initialized to nothing). This pass
|
|
* runs up to typechecking. From this, we can learn about the types of each
|
|
* bound variable, what variables are bound, and also ensure that all the
|
|
* types are encodable (the input can actually be run).
|
|
*
|
|
* - Pass #3
|
|
* Finally, a program is generated to deserialize the local variable state,
|
|
* run the code input, and then reserialize all bindings back into a local
|
|
* hash map. This code is then run in the JIT engine provided by the rust
|
|
* compiler.
|
|
*
|
|
* - Pass #4
|
|
* Once this code runs, the input has fully been run and the hash map of local
|
|
* variables from TLS is read back into the local store of variables. This is
|
|
* then used later to pass back along to the parent rusti task and then begin
|
|
* waiting for input again.
|
|
*
|
|
* - Pass #5
|
|
* When running rusti code, it's important to consume ownership of the LLVM
|
|
* jit contextual information to prevent code from being deallocated too soon
|
|
* (before drop glue runs, see #7732). For this reason, the jit context is
|
|
* consumed and also passed along to the parent task. The parent task then
|
|
* keeps around all contexts while rusti is running. This must be done because
|
|
* tasks could in theory be spawned off and running in the background (still
|
|
* using the code).
|
|
*
|
|
* Encoding/decoding is done with EBML, and there is simply a map of ~str ->
|
|
* ~[u8] maintaining the values of each local binding (by name).
|
|
*/
|
|
|
|
#[link(name = "rusti",
|
|
vers = "0.8-pre",
|
|
uuid = "7fb5bf52-7d45-4fee-8325-5ad3311149fc",
|
|
url = "https://github.com/mozilla/rust/tree/master/src/rusti")];
|
|
|
|
#[license = "MIT/ASL2"];
|
|
#[crate_type = "lib"];
|
|
|
|
extern mod extra;
|
|
extern mod rustc;
|
|
extern mod syntax;
|
|
|
|
use std::{libc, io, os, task};
|
|
use std::cell::Cell;
|
|
use extra::rl;
|
|
|
|
use rustc::driver::{driver, session};
|
|
use rustc::back::link::jit;
|
|
use syntax::{ast, diagnostic};
|
|
use syntax::ast_util::*;
|
|
use syntax::parse::token;
|
|
use syntax::print::pprust;
|
|
|
|
use program::Program;
|
|
use utils::*;
|
|
|
|
mod program;
|
|
pub mod utils;
|
|
|
|
/**
|
|
* A structure shared across REPL instances for storing history
|
|
* such as statements and view items. I wish the AST was sendable.
|
|
*/
|
|
pub struct Repl {
|
|
prompt: ~str,
|
|
binary: ~str,
|
|
running: bool,
|
|
lib_search_paths: ~[~str],
|
|
engines: ~[~jit::Engine],
|
|
|
|
program: ~Program,
|
|
}
|
|
|
|
// Action to do after reading a :command
|
|
enum CmdAction {
|
|
action_none,
|
|
action_run_line(~str),
|
|
}
|
|
|
|
/// Run an input string in a Repl, returning the new Repl.
|
|
fn run(mut program: ~Program, binary: ~str, lib_search_paths: ~[~str],
|
|
input: ~str) -> (~Program, Option<~jit::Engine>)
|
|
{
|
|
// Build some necessary rustc boilerplate for compiling things
|
|
let binary = binary.to_managed();
|
|
let options = @session::options {
|
|
crate_type: session::unknown_crate,
|
|
binary: binary,
|
|
addl_lib_search_paths: @mut lib_search_paths.map(|p| Path(*p)),
|
|
jit: true,
|
|
.. (*session::basic_options()).clone()
|
|
};
|
|
// Because we assume that everything is encodable (and assert so), add some
|
|
// extra helpful information if the error crops up. Otherwise people are
|
|
// bound to be very confused when they find out code is running that they
|
|
// never typed in...
|
|
let sess = driver::build_session(options, |cm, msg, lvl| {
|
|
diagnostic::emit(cm, msg, lvl);
|
|
if msg.contains("failed to find an implementation of trait") &&
|
|
msg.contains("extra::serialize::Encodable") {
|
|
diagnostic::emit(cm,
|
|
"Currrently rusti serializes bound locals between \
|
|
different lines of input. This means that all \
|
|
values of local variables need to be encodable, \
|
|
and this type isn't encodable",
|
|
diagnostic::note);
|
|
}
|
|
});
|
|
let intr = token::get_ident_interner();
|
|
|
|
//
|
|
// Stage 1: parse the input and filter it into the program (as necessary)
|
|
//
|
|
debug!("parsing: %s", input);
|
|
let crate = parse_input(sess, binary, input);
|
|
let mut to_run = ~[]; // statements to run (emitted back into code)
|
|
let new_locals = @mut ~[]; // new locals being defined
|
|
let mut result = None; // resultant expression (to print via pp)
|
|
do find_main(crate, sess) |blk| {
|
|
// Fish out all the view items, be sure to record 'extern mod' items
|
|
// differently beause they must appear before all 'use' statements
|
|
for vi in blk.view_items.iter() {
|
|
let s = do with_pp(intr) |pp, _| {
|
|
pprust::print_view_item(pp, vi);
|
|
};
|
|
match vi.node {
|
|
ast::view_item_extern_mod(*) => {
|
|
program.record_extern(s);
|
|
}
|
|
ast::view_item_use(*) => { program.record_view_item(s); }
|
|
}
|
|
}
|
|
|
|
// Iterate through all of the block's statements, inserting them into
|
|
// the correct portions of the program
|
|
for stmt in blk.stmts.iter() {
|
|
let s = do with_pp(intr) |pp, _| { pprust::print_stmt(pp, *stmt); };
|
|
match stmt.node {
|
|
ast::stmt_decl(d, _) => {
|
|
match d.node {
|
|
ast::decl_item(it) => {
|
|
let name = sess.str_of(it.ident);
|
|
match it.node {
|
|
// Structs are treated specially because to make
|
|
// them at all usable they need to be decorated
|
|
// with #[deriving(Encoable, Decodable)]
|
|
ast::item_struct(*) => {
|
|
program.record_struct(name, s);
|
|
}
|
|
// Item declarations are hoisted out of main()
|
|
_ => { program.record_item(name, s); }
|
|
}
|
|
}
|
|
|
|
// Local declarations must be specially dealt with,
|
|
// record all local declarations for use later on
|
|
ast::decl_local(l) => {
|
|
let mutbl = l.is_mutbl;
|
|
do each_binding(l) |path, _| {
|
|
let s = do with_pp(intr) |pp, _| {
|
|
pprust::print_path(pp, path, false);
|
|
};
|
|
new_locals.push((s, mutbl));
|
|
}
|
|
to_run.push(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
// run statements with expressions (they have effects)
|
|
ast::stmt_mac(*) | ast::stmt_semi(*) | ast::stmt_expr(*) => {
|
|
to_run.push(s);
|
|
}
|
|
}
|
|
}
|
|
result = do blk.expr.map_move |e| {
|
|
do with_pp(intr) |pp, _| { pprust::print_expr(pp, e); }
|
|
};
|
|
}
|
|
// return fast for empty inputs
|
|
if to_run.len() == 0 && result.is_none() {
|
|
return (program, None);
|
|
}
|
|
|
|
//
|
|
// Stage 2: run everything up to typeck to learn the types of the new
|
|
// variables introduced into the program
|
|
//
|
|
info!("Learning about the new types in the program");
|
|
program.set_cache(); // before register_new_vars (which changes them)
|
|
let input = to_run.connect("\n");
|
|
let test = program.test_code(input, &result, *new_locals);
|
|
debug!("testing with ^^^^^^ %?", (||{ println(test) })());
|
|
let dinput = driver::str_input(test.to_managed());
|
|
let cfg = driver::build_configuration(sess, binary, &dinput);
|
|
|
|
let crate = driver::phase_1_parse_input(sess, cfg.clone(), &dinput);
|
|
let expanded_crate = driver::phase_2_configure_and_expand(sess, cfg, crate);
|
|
let analysis = driver::phase_3_run_analysis_passes(sess, expanded_crate);
|
|
|
|
// Once we're typechecked, record the types of all local variables defined
|
|
// in this input
|
|
do find_main(crate, sess) |blk| {
|
|
program.register_new_vars(blk, analysis.ty_cx);
|
|
}
|
|
|
|
//
|
|
// Stage 3: Actually run the code in the JIT
|
|
//
|
|
info!("actually running code");
|
|
let code = program.code(input, &result);
|
|
debug!("actually running ^^^^^^ %?", (||{ println(code) })());
|
|
let input = driver::str_input(code.to_managed());
|
|
let cfg = driver::build_configuration(sess, binary, &input);
|
|
let outputs = driver::build_output_filenames(&input, &None, &None, [], sess);
|
|
let sess = driver::build_session(options, diagnostic::emit);
|
|
|
|
let crate = driver::phase_1_parse_input(sess, cfg.clone(), &input);
|
|
let expanded_crate = driver::phase_2_configure_and_expand(sess, cfg, crate);
|
|
let analysis = driver::phase_3_run_analysis_passes(sess, expanded_crate);
|
|
let trans = driver::phase_4_translate_to_llvm(sess, expanded_crate, &analysis, outputs);
|
|
driver::phase_5_run_llvm_passes(sess, &trans, outputs);
|
|
|
|
//
|
|
// Stage 4: Inform the program that computation is done so it can update all
|
|
// local variable bindings.
|
|
//
|
|
info!("cleaning up after code");
|
|
program.consume_cache();
|
|
|
|
//
|
|
// Stage 5: Extract the LLVM execution engine to take ownership of the
|
|
// generated JIT code. This means that rusti can spawn parallel
|
|
// tasks and we won't deallocate the code emitted until rusti
|
|
// itself is destroyed.
|
|
//
|
|
return (program, jit::consume_engine());
|
|
|
|
fn parse_input(sess: session::Session, binary: @str,
|
|
input: &str) -> @ast::Crate {
|
|
let code = fmt!("fn main() {\n %s \n}", input);
|
|
let input = driver::str_input(code.to_managed());
|
|
let cfg = driver::build_configuration(sess, binary, &input);
|
|
driver::phase_1_parse_input(sess, cfg.clone(), &input)
|
|
}
|
|
|
|
fn find_main(crate: @ast::Crate, sess: session::Session,
|
|
f: &fn(&ast::Block)) {
|
|
for item in crate.module.items.iter() {
|
|
match item.node {
|
|
ast::item_fn(_, _, _, _, ref blk) => {
|
|
if item.ident == sess.ident_of("main") {
|
|
return f(blk);
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
fail!("main function was expected somewhere...");
|
|
}
|
|
}
|
|
|
|
// Compiles a crate given by the filename as a library if the compiled
|
|
// version doesn't exist or is older than the source file. Binary is
|
|
// the name of the compiling executable. Returns Some(true) if it
|
|
// successfully compiled, Some(false) if the crate wasn't compiled
|
|
// because it already exists and is newer than the source file, or
|
|
// None if there were compile errors.
|
|
fn compile_crate(src_filename: ~str, binary: ~str) -> Option<bool> {
|
|
match do task::try {
|
|
let src_path = Path(src_filename);
|
|
let binary = binary.to_managed();
|
|
let options = @session::options {
|
|
binary: binary,
|
|
addl_lib_search_paths: @mut ~[os::getcwd()],
|
|
.. (*session::basic_options()).clone()
|
|
};
|
|
let input = driver::file_input(src_path.clone());
|
|
let sess = driver::build_session(options, diagnostic::emit);
|
|
*sess.building_library = true;
|
|
let cfg = driver::build_configuration(sess, binary, &input);
|
|
let outputs = driver::build_output_filenames(
|
|
&input, &None, &None, [], sess);
|
|
// If the library already exists and is newer than the source
|
|
// file, skip compilation and return None.
|
|
let mut should_compile = true;
|
|
let dir = os::list_dir_path(&Path(outputs.out_filename.dirname()));
|
|
let maybe_lib_path = do dir.iter().find_ |file| {
|
|
// The actual file's name has a hash value and version
|
|
// number in it which is unknown at this time, so looking
|
|
// for a file that matches out_filename won't work,
|
|
// instead we guess which file is the library by matching
|
|
// the prefix and suffix of out_filename to files in the
|
|
// directory.
|
|
let file_str = file.filename().unwrap();
|
|
file_str.starts_with(outputs.out_filename.filestem().unwrap())
|
|
&& file_str.ends_with(outputs.out_filename.filetype().unwrap())
|
|
};
|
|
match maybe_lib_path {
|
|
Some(lib_path) => {
|
|
let (src_mtime, _) = src_path.get_mtime().unwrap();
|
|
let (lib_mtime, _) = lib_path.get_mtime().unwrap();
|
|
if lib_mtime >= src_mtime {
|
|
should_compile = false;
|
|
}
|
|
},
|
|
None => { },
|
|
}
|
|
if (should_compile) {
|
|
println(fmt!("compiling %s...", src_filename));
|
|
let crate = driver::phase_1_parse_input(sess, cfg.clone(), &input);
|
|
let expanded_crate = driver::phase_2_configure_and_expand(sess, cfg, crate);
|
|
let analysis = driver::phase_3_run_analysis_passes(sess, expanded_crate);
|
|
let trans = driver::phase_4_translate_to_llvm(sess, expanded_crate, &analysis, outputs);
|
|
driver::phase_5_run_llvm_passes(sess, &trans, outputs);
|
|
true
|
|
} else { false }
|
|
} {
|
|
Ok(true) => Some(true),
|
|
Ok(false) => Some(false),
|
|
Err(_) => None,
|
|
}
|
|
}
|
|
|
|
/// Tries to get a line from rl after outputting a prompt. Returns
|
|
/// None if no input was read (e.g. EOF was reached).
|
|
fn get_line(use_rl: bool, prompt: &str) -> Option<~str> {
|
|
if use_rl {
|
|
let result = unsafe { rl::read(prompt) };
|
|
|
|
match result {
|
|
None => None,
|
|
Some(line) => {
|
|
unsafe { rl::add_history(line) };
|
|
Some(line)
|
|
}
|
|
}
|
|
} else {
|
|
if io::stdin().eof() {
|
|
None
|
|
} else {
|
|
Some(io::stdin().read_line())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Run a command, e.g. :clear, :exit, etc.
|
|
fn run_cmd(repl: &mut Repl, _in: @io::Reader, _out: @io::Writer,
|
|
cmd: ~str, args: ~[~str], use_rl: bool) -> CmdAction {
|
|
let mut action = action_none;
|
|
match cmd {
|
|
~"exit" => repl.running = false,
|
|
~"clear" => {
|
|
repl.program.clear();
|
|
|
|
// XXX: Win32 version of linenoise can't do this
|
|
//rl::clear();
|
|
}
|
|
~"help" => {
|
|
println(
|
|
":{\\n ..lines.. \\n:}\\n - execute multiline command\n\
|
|
:load <crate> ... - loads given crates as dynamic libraries\n\
|
|
:clear - clear the bindings\n\
|
|
:exit - exit from the repl\n\
|
|
:help - show this message");
|
|
}
|
|
~"load" => {
|
|
let mut loaded_crates: ~[~str] = ~[];
|
|
for arg in args.iter() {
|
|
let (crate, filename) =
|
|
if arg.ends_with(".rs") || arg.ends_with(".rc") {
|
|
(arg.slice_to(arg.len() - 3).to_owned(), (*arg).clone())
|
|
} else {
|
|
((*arg).clone(), *arg + ".rs")
|
|
};
|
|
match compile_crate(filename, repl.binary.clone()) {
|
|
Some(_) => loaded_crates.push(crate),
|
|
None => { }
|
|
}
|
|
}
|
|
for crate in loaded_crates.iter() {
|
|
let crate_path = Path(*crate);
|
|
let crate_dir = crate_path.dirname();
|
|
repl.program.record_extern(fmt!("extern mod %s;", *crate));
|
|
if !repl.lib_search_paths.iter().any(|x| x == &crate_dir) {
|
|
repl.lib_search_paths.push(crate_dir);
|
|
}
|
|
}
|
|
if loaded_crates.is_empty() {
|
|
println("no crates loaded");
|
|
} else {
|
|
printfln!("crates loaded: %s", loaded_crates.connect(", "));
|
|
}
|
|
}
|
|
~"{" => {
|
|
let mut multiline_cmd = ~"";
|
|
let mut end_multiline = false;
|
|
while (!end_multiline) {
|
|
match get_line(use_rl, "rusti| ") {
|
|
None => fail!("unterminated multiline command :{ .. :}"),
|
|
Some(line) => {
|
|
if line.trim() == ":}" {
|
|
end_multiline = true;
|
|
} else {
|
|
multiline_cmd.push_str(line);
|
|
multiline_cmd.push_char('\n');
|
|
}
|
|
}
|
|
}
|
|
}
|
|
action = action_run_line(multiline_cmd);
|
|
}
|
|
_ => println(~"unknown cmd: " + cmd)
|
|
}
|
|
return action;
|
|
}
|
|
|
|
/// Executes a line of input, which may either be rust code or a
|
|
/// :command. Returns a new Repl if it has changed.
|
|
pub fn run_line(repl: &mut Repl, input: @io::Reader, out: @io::Writer, line: ~str,
|
|
use_rl: bool) -> bool
|
|
{
|
|
if line.starts_with(":") {
|
|
// drop the : and the \n (one byte each)
|
|
let full = line.slice(1, line.len());
|
|
let split: ~[~str] = full.word_iter().transform(|s| s.to_owned()).collect();
|
|
let len = split.len();
|
|
|
|
if len > 0 {
|
|
let cmd = split[0].clone();
|
|
|
|
if !cmd.is_empty() {
|
|
let args = if len > 1 {
|
|
split.slice(1, len).to_owned()
|
|
} else { ~[] };
|
|
|
|
match run_cmd(repl, input, out, cmd, args, use_rl) {
|
|
action_none => { }
|
|
action_run_line(multiline_cmd) => {
|
|
if !multiline_cmd.is_empty() {
|
|
return run_line(repl, input, out, multiline_cmd, use_rl);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
let line = Cell::new(line);
|
|
let program = Cell::new(repl.program.clone());
|
|
let lib_search_paths = Cell::new(repl.lib_search_paths.clone());
|
|
let binary = Cell::new(repl.binary.clone());
|
|
let result = do task::try {
|
|
run(program.take(), binary.take(), lib_search_paths.take(), line.take())
|
|
};
|
|
|
|
match result {
|
|
Ok((program, engine)) => {
|
|
repl.program = program;
|
|
match engine {
|
|
Some(e) => { repl.engines.push(e); }
|
|
None => {}
|
|
}
|
|
return true;
|
|
}
|
|
Err(*) => { return false; }
|
|
}
|
|
}
|
|
|
|
pub fn main() {
|
|
let args = os::args();
|
|
let input = io::stdin();
|
|
let out = io::stdout();
|
|
let mut repl = Repl {
|
|
prompt: ~"rusti> ",
|
|
binary: args[0].clone(),
|
|
running: true,
|
|
lib_search_paths: ~[],
|
|
engines: ~[],
|
|
|
|
program: ~Program::new(),
|
|
};
|
|
|
|
let istty = unsafe { libc::isatty(libc::STDIN_FILENO as i32) } != 0;
|
|
|
|
// only print this stuff if the user is actually typing into rusti
|
|
if istty {
|
|
println("WARNING: The Rust REPL is experimental and may be");
|
|
println("unstable. If you encounter problems, please use the");
|
|
println("compiler instead. Type :help for help.");
|
|
|
|
unsafe {
|
|
do rl::complete |line, suggest| {
|
|
if line.starts_with(":") {
|
|
suggest(~":clear");
|
|
suggest(~":exit");
|
|
suggest(~":help");
|
|
suggest(~":load");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
while repl.running {
|
|
match get_line(istty, repl.prompt) {
|
|
None => break,
|
|
Some(line) => {
|
|
if line.is_empty() {
|
|
if istty {
|
|
println("()");
|
|
}
|
|
loop;
|
|
}
|
|
run_line(&mut repl, input, out, line, istty);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::io;
|
|
use program::Program;
|
|
use super::*;
|
|
|
|
fn repl() -> Repl {
|
|
Repl {
|
|
prompt: ~"rusti> ",
|
|
binary: ~"rusti",
|
|
running: true,
|
|
lib_search_paths: ~[],
|
|
engines: ~[],
|
|
program: ~Program::new(),
|
|
}
|
|
}
|
|
|
|
// FIXME: #7220 rusti on 32bit mac doesn't work.
|
|
// FIXME: #7641 rusti on 32bit linux cross compile doesn't work
|
|
// FIXME: #7115 re-enable once LLVM has been upgraded
|
|
#[cfg(thiswillneverbeacfgflag)]
|
|
fn run_program(prog: &str) {
|
|
let mut r = repl();
|
|
for cmd in prog.split_iter('\n') {
|
|
assert!(run_line(&mut r, io::stdin(), io::stdout(),
|
|
cmd.to_owned(), false),
|
|
"the command '%s' failed", cmd);
|
|
}
|
|
}
|
|
fn run_program(_: &str) {}
|
|
|
|
#[test]
|
|
fn super_basic() {
|
|
run_program("");
|
|
}
|
|
|
|
#[test]
|
|
fn regression_5937() {
|
|
run_program("use std::hashmap;");
|
|
}
|
|
|
|
#[test]
|
|
fn regression_5784() {
|
|
run_program("let a = 3;");
|
|
}
|
|
|
|
#[test] #[ignore]
|
|
fn new_tasks() {
|
|
// XXX: can't spawn new tasks because the JIT code is cleaned up
|
|
// after the main function is done.
|
|
run_program("
|
|
spawn( || println(\"Please don't segfault\") );
|
|
do spawn { println(\"Please?\"); }
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn inferred_integers_usable() {
|
|
run_program("let a = 2;\n()\n");
|
|
run_program("
|
|
let a = 3;
|
|
let b = 4u;
|
|
assert!((a as uint) + b == 7)
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn local_variables_allow_shadowing() {
|
|
run_program("
|
|
let a = 3;
|
|
let a = 5;
|
|
assert!(a == 5)
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn string_usable() {
|
|
run_program("
|
|
let a = ~\"\";
|
|
let b = \"\";
|
|
let c = @\"\";
|
|
let d = a + b + c;
|
|
assert!(d.len() == 0);
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn vectors_usable() {
|
|
run_program("
|
|
let a = ~[1, 2, 3];
|
|
let b = &[1, 2, 3];
|
|
let c = @[1, 2, 3];
|
|
let d = a + b + c;
|
|
assert!(d.len() == 9);
|
|
let e: &[int] = [];
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn structs_usable() {
|
|
run_program("
|
|
struct A{ a: int }
|
|
let b = A{ a: 3 };
|
|
assert!(b.a == 3)
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn mutable_variables_work() {
|
|
run_program("
|
|
let mut a = 3;
|
|
a = 5;
|
|
let mut b = std::hashmap::HashSet::new::<int>();
|
|
b.insert(a);
|
|
assert!(b.contains(&5))
|
|
assert!(b.len() == 1)
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn functions_saved() {
|
|
run_program("
|
|
fn fib(x: int) -> int { if x < 2 {x} else { fib(x - 1) + fib(x - 2) } }
|
|
let a = fib(3);
|
|
let a = a + fib(4);
|
|
assert!(a == 5)
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn modules_saved() {
|
|
run_program("
|
|
mod b { pub fn foo() -> uint { 3 } }
|
|
assert!(b::foo() == 3)
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn multiple_functions() {
|
|
run_program("
|
|
fn f() {}
|
|
fn f() {}
|
|
f()
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn multiple_items_same_name() {
|
|
run_program("
|
|
fn f() {}
|
|
mod f {}
|
|
struct f;
|
|
enum f {}
|
|
fn f() {}
|
|
f()
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn simultaneous_definition_and_expression() {
|
|
run_program("
|
|
let a = 3; a as u8
|
|
");
|
|
}
|
|
|
|
#[test]
|
|
fn exit_quits() {
|
|
let mut r = repl();
|
|
assert!(r.running);
|
|
let result = run_line(&mut r, io::stdin(), io::stdout(),
|
|
~":exit", false);
|
|
assert!(result);
|
|
assert!(!r.running);
|
|
}
|
|
}
|