rust/src/libcore/dlist.rs
2012-12-03 17:45:19 -08:00

919 lines
31 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
A doubly-linked list. Supports O(1) head, tail, count, push, pop, etc.
# Safety note
Do not use ==, !=, <, etc on doubly-linked lists -- it may not terminate.
*/
// NB: transitionary, de-mode-ing.
#[forbid(deprecated_mode)];
#[forbid(deprecated_pattern)];
type DListLink<T> = Option<DListNode<T>>;
enum DListNode<T> = @{
data: T,
mut linked: bool, // for assertions
mut prev: DListLink<T>,
mut next: DListLink<T>
};
pub enum DList<T> {
DList_(@{
mut size: uint,
mut hd: DListLink<T>,
mut tl: DListLink<T>
})
}
priv impl<T> DListNode<T> {
pure fn assert_links() {
match self.next {
Some(neighbour) => match neighbour.prev {
Some(me) => if !managed::ptr_eq(*self, *me) {
fail ~"Asymmetric next-link in dlist node."
},
None => fail ~"One-way next-link in dlist node."
},
None => ()
}
match self.prev {
Some(neighbour) => match neighbour.next {
Some(me) => if !managed::ptr_eq(*me, *self) {
fail ~"Asymmetric prev-link in dlist node."
},
None => fail ~"One-way prev-link in dlist node."
},
None => ()
}
}
}
impl<T> DListNode<T> {
/// Get the next node in the list, if there is one.
pure fn next_link() -> Option<DListNode<T>> {
self.assert_links();
self.next
}
/// Get the next node in the list, failing if there isn't one.
pure fn next_node() -> DListNode<T> {
match self.next_link() {
Some(nobe) => nobe,
None => fail ~"This dlist node has no next neighbour."
}
}
/// Get the previous node in the list, if there is one.
pure fn prev_link() -> Option<DListNode<T>> {
self.assert_links();
self.prev
}
/// Get the previous node in the list, failing if there isn't one.
pure fn prev_node() -> DListNode<T> {
match self.prev_link() {
Some(nobe) => nobe,
None => fail ~"This dlist node has no previous neighbour."
}
}
}
/// Creates a new dlist node with the given data.
pure fn new_dlist_node<T>(data: T) -> DListNode<T> {
DListNode(@{data: move data, mut linked: false,
mut prev: None, mut next: None})
}
/// Creates a new, empty dlist.
pure fn DList<T>() -> DList<T> {
DList_(@{mut size: 0, mut hd: None, mut tl: None})
}
/// Creates a new dlist with a single element
pub pure fn from_elem<T>(data: T) -> DList<T> {
let list = DList();
unsafe { list.push(move data); }
list
}
pub fn from_vec<T: Copy>(vec: &[T]) -> DList<T> {
do vec::foldl(DList(), vec) |list,data| {
list.push(*data); // Iterating left-to-right -- add newly to the tail.
list
}
}
/// Produce a list from a list of lists, leaving no elements behind in the
/// input. O(number of sub-lists).
fn concat<T>(lists: DList<DList<T>>) -> DList<T> {
let result = DList();
while !lists.is_empty() {
result.append(lists.pop().get());
}
result
}
priv impl<T> DList<T> {
pure fn new_link(data: T) -> DListLink<T> {
Some(DListNode(@{data: move data, mut linked: true,
mut prev: None, mut next: None}))
}
pure fn assert_mine(nobe: DListNode<T>) {
// These asserts could be stronger if we had node-root back-pointers,
// but those wouldn't allow for O(1) append.
if self.size == 0 {
fail ~"This dlist is empty; that node can't be on it."
}
if !nobe.linked { fail ~"That node isn't linked to any dlist." }
if !((nobe.prev.is_some()
|| managed::ptr_eq(*self.hd.expect(~"headless dlist?"),
*nobe)) &&
(nobe.next.is_some()
|| managed::ptr_eq(*self.tl.expect(~"tailless dlist?"),
*nobe))) {
fail ~"That node isn't on this dlist."
}
}
fn make_mine(nobe: DListNode<T>) {
if nobe.prev.is_some() || nobe.next.is_some() || nobe.linked {
fail ~"Cannot insert node that's already on a dlist!"
}
nobe.linked = true;
}
// Link two nodes together. If either of them are 'none', also sets
// the head and/or tail pointers appropriately.
#[inline(always)]
fn link(before: DListLink<T>, after: DListLink<T>) {
match before {
Some(neighbour) => neighbour.next = after,
None => self.hd = after
}
match after {
Some(neighbour) => neighbour.prev = before,
None => self.tl = before
}
}
// Remove a node from the list.
fn unlink(nobe: DListNode<T>) {
self.assert_mine(nobe);
assert self.size > 0;
self.link(nobe.prev, nobe.next);
nobe.prev = None; // Release extraneous references.
nobe.next = None;
nobe.linked = false;
self.size -= 1;
}
fn add_head(nobe: DListLink<T>) {
self.link(nobe, self.hd); // Might set tail too.
self.hd = nobe;
self.size += 1;
}
fn add_tail(nobe: DListLink<T>) {
self.link(self.tl, nobe); // Might set head too.
self.tl = nobe;
self.size += 1;
}
fn insert_left(nobe: DListLink<T>, neighbour: DListNode<T>) {
self.assert_mine(neighbour);
assert self.size > 0;
self.link(neighbour.prev, nobe);
self.link(nobe, Some(neighbour));
self.size += 1;
}
fn insert_right(neighbour: DListNode<T>, nobe: DListLink<T>) {
self.assert_mine(neighbour);
assert self.size > 0;
self.link(nobe, neighbour.next);
self.link(Some(neighbour), nobe);
self.size += 1;
}
}
impl<T> DList<T> {
/// Get the size of the list. O(1).
pure fn len() -> uint { self.size }
/// Returns true if the list is empty. O(1).
pure fn is_empty() -> bool { self.len() == 0 }
/// Returns true if the list is not empty. O(1).
pure fn is_not_empty() -> bool { self.len() != 0 }
/// Add data to the head of the list. O(1).
fn push_head(data: T) {
self.add_head(self.new_link(move data));
}
/**
* Add data to the head of the list, and get the new containing
* node. O(1).
*/
fn push_head_n(data: T) -> DListNode<T> {
let mut nobe = self.new_link(move data);
self.add_head(nobe);
option::get(nobe)
}
/// Add data to the tail of the list. O(1).
fn push(data: T) {
self.add_tail(self.new_link(move data));
}
/**
* Add data to the tail of the list, and get the new containing
* node. O(1).
*/
fn push_n(data: T) -> DListNode<T> {
let mut nobe = self.new_link(move data);
self.add_tail(nobe);
option::get(nobe)
}
/**
* Insert data into the middle of the list, left of the given node.
* O(1).
*/
fn insert_before(data: T, neighbour: DListNode<T>) {
self.insert_left(self.new_link(move data), neighbour);
}
/**
* Insert an existing node in the middle of the list, left of the
* given node. O(1).
*/
fn insert_n_before(nobe: DListNode<T>, neighbour: DListNode<T>) {
self.make_mine(nobe);
self.insert_left(Some(nobe), neighbour);
}
/**
* Insert data in the middle of the list, left of the given node,
* and get its containing node. O(1).
*/
fn insert_before_n(data: T, neighbour: DListNode<T>) -> DListNode<T> {
let mut nobe = self.new_link(move data);
self.insert_left(nobe, neighbour);
option::get(nobe)
}
/**
* Insert data into the middle of the list, right of the given node.
* O(1).
*/
fn insert_after(data: T, neighbour: DListNode<T>) {
self.insert_right(neighbour, self.new_link(move data));
}
/**
* Insert an existing node in the middle of the list, right of the
* given node. O(1).
*/
fn insert_n_after(nobe: DListNode<T>, neighbour: DListNode<T>) {
self.make_mine(nobe);
self.insert_right(neighbour, Some(nobe));
}
/**
* Insert data in the middle of the list, right of the given node,
* and get its containing node. O(1).
*/
fn insert_after_n(data: T, neighbour: DListNode<T>) -> DListNode<T> {
let mut nobe = self.new_link(move data);
self.insert_right(neighbour, nobe);
option::get(nobe)
}
/// Remove a node from the head of the list. O(1).
fn pop_n() -> Option<DListNode<T>> {
let hd = self.peek_n();
hd.map(|nobe| self.unlink(*nobe));
hd
}
/// Remove a node from the tail of the list. O(1).
fn pop_tail_n() -> Option<DListNode<T>> {
let tl = self.peek_tail_n();
tl.map(|nobe| self.unlink(*nobe));
tl
}
/// Get the node at the list's head. O(1).
pure fn peek_n() -> Option<DListNode<T>> { self.hd }
/// Get the node at the list's tail. O(1).
pure fn peek_tail_n() -> Option<DListNode<T>> { self.tl }
/// Get the node at the list's head, failing if empty. O(1).
pure fn head_n() -> DListNode<T> {
match self.hd {
Some(nobe) => nobe,
None => fail ~"Attempted to get the head of an empty dlist."
}
}
/// Get the node at the list's tail, failing if empty. O(1).
pure fn tail_n() -> DListNode<T> {
match self.tl {
Some(nobe) => nobe,
None => fail ~"Attempted to get the tail of an empty dlist."
}
}
/// Remove a node from anywhere in the list. O(1).
fn remove(nobe: DListNode<T>) { self.unlink(nobe); }
/**
* Empty another list onto the end of this list, joining this list's tail
* to the other list's head. O(1).
*/
fn append(them: DList<T>) {
if managed::ptr_eq(*self, *them) {
fail ~"Cannot append a dlist to itself!"
}
if them.len() > 0 {
self.link(self.tl, them.hd);
self.tl = them.tl;
self.size += them.size;
them.size = 0;
them.hd = None;
them.tl = None;
}
}
/**
* Empty another list onto the start of this list, joining the other
* list's tail to this list's head. O(1).
*/
fn prepend(them: DList<T>) {
if managed::ptr_eq(*self, *them) {
fail ~"Cannot prepend a dlist to itself!"
}
if them.len() > 0 {
self.link(them.tl, self.hd);
self.hd = them.hd;
self.size += them.size;
them.size = 0;
them.hd = None;
them.tl = None;
}
}
/// Reverse the list's elements in place. O(n).
fn reverse() {
do option::while_some(self.hd) |nobe| {
let next_nobe = nobe.next;
self.remove(nobe);
self.make_mine(nobe);
self.add_head(Some(nobe));
next_nobe
}
}
/**
* Remove everything from the list. This is important because the cyclic
* links won't otherwise be automatically refcounted-collected. O(n).
*/
fn clear() {
// Cute as it would be to simply detach the list and proclaim "O(1)!",
// the GC would still be a hidden O(n). Better to be honest about it.
while !self.is_empty() {
let _ = self.pop_n();
}
}
/// Iterate over nodes.
pure fn each_node(f: fn(DListNode<T>) -> bool) {
let mut link = self.peek_n();
while link.is_some() {
let nobe = link.get();
if !f(nobe) { break; }
link = nobe.next_link();
}
}
/// Check data structure integrity. O(n).
fn assert_consistent() {
if option::is_none(&self.hd) || option::is_none(&self.tl) {
assert option::is_none(&self.hd) && option::is_none(&self.tl);
}
// iterate forwards
let mut count = 0;
let mut link = self.peek_n();
let mut rabbit = link;
while option::is_some(&link) {
let nobe = option::get(link);
assert nobe.linked;
// check cycle
if option::is_some(&rabbit) {
rabbit = option::get(rabbit).next;
}
if option::is_some(&rabbit) {
rabbit = option::get(rabbit).next;
}
if option::is_some(&rabbit) {
assert !managed::ptr_eq(*option::get(rabbit), *nobe);
}
// advance
link = nobe.next_link();
count += 1;
}
assert count == self.len();
// iterate backwards - some of this is probably redundant.
link = self.peek_tail_n();
rabbit = link;
while option::is_some(&link) {
let nobe = option::get(link);
assert nobe.linked;
// check cycle
if option::is_some(&rabbit) {
rabbit = option::get(rabbit).prev;
}
if option::is_some(&rabbit) {
rabbit = option::get(rabbit).prev;
}
if option::is_some(&rabbit) {
assert !managed::ptr_eq(*option::get(rabbit), *nobe);
}
// advance
link = nobe.prev_link();
count -= 1;
}
assert count == 0;
}
}
impl<T: Copy> DList<T> {
/// Remove data from the head of the list. O(1).
fn pop() -> Option<T> { self.pop_n().map (|nobe| nobe.data) }
/// Remove data from the tail of the list. O(1).
fn pop_tail() -> Option<T> { self.pop_tail_n().map (|nobe| nobe.data) }
/// Get data at the list's head. O(1).
pure fn peek() -> Option<T> { self.peek_n().map (|nobe| nobe.data) }
/// Get data at the list's tail. O(1).
pure fn peek_tail() -> Option<T> {
self.peek_tail_n().map (|nobe| nobe.data)
}
/// Get data at the list's head, failing if empty. O(1).
pure fn head() -> T { self.head_n().data }
/// Get data at the list's tail, failing if empty. O(1).
pure fn tail() -> T { self.tail_n().data }
/// Get the elements of the list as a vector. O(n).
pure fn to_vec() -> ~[T] {
let mut v = vec::with_capacity(self.size);
unsafe {
// Take this out of the unchecked when iter's functions are pure
for self.eachi |index,data| {
v[index] = *data;
}
}
move v
}
}
#[cfg(test)]
mod tests {
#[legacy_exports];
#[test]
fn test_dlist_concat() {
let a = from_vec(~[1,2]);
let b = from_vec(~[3,4]);
let c = from_vec(~[5,6]);
let d = from_vec(~[7,8]);
let ab = from_vec(~[a,b]);
let cd = from_vec(~[c,d]);
let abcd = concat(concat(from_vec(~[ab,cd])));
abcd.assert_consistent(); assert abcd.len() == 8;
abcd.assert_consistent(); assert abcd.pop().get() == 1;
abcd.assert_consistent(); assert abcd.pop().get() == 2;
abcd.assert_consistent(); assert abcd.pop().get() == 3;
abcd.assert_consistent(); assert abcd.pop().get() == 4;
abcd.assert_consistent(); assert abcd.pop().get() == 5;
abcd.assert_consistent(); assert abcd.pop().get() == 6;
abcd.assert_consistent(); assert abcd.pop().get() == 7;
abcd.assert_consistent(); assert abcd.pop().get() == 8;
abcd.assert_consistent(); assert abcd.is_empty();
}
#[test]
fn test_dlist_append() {
let a = from_vec(~[1,2,3]);
let b = from_vec(~[4,5,6]);
a.append(b);
assert a.len() == 6;
assert b.len() == 0;
b.assert_consistent();
a.assert_consistent(); assert a.pop().get() == 1;
a.assert_consistent(); assert a.pop().get() == 2;
a.assert_consistent(); assert a.pop().get() == 3;
a.assert_consistent(); assert a.pop().get() == 4;
a.assert_consistent(); assert a.pop().get() == 5;
a.assert_consistent(); assert a.pop().get() == 6;
a.assert_consistent(); assert a.is_empty();
}
#[test]
fn test_dlist_append_empty() {
let a = from_vec(~[1,2,3]);
let b = DList::<int>();
a.append(b);
assert a.len() == 3;
assert b.len() == 0;
b.assert_consistent();
a.assert_consistent(); assert a.pop().get() == 1;
a.assert_consistent(); assert a.pop().get() == 2;
a.assert_consistent(); assert a.pop().get() == 3;
a.assert_consistent(); assert a.is_empty();
}
#[test]
fn test_dlist_append_to_empty() {
let a = DList::<int>();
let b = from_vec(~[4,5,6]);
a.append(b);
assert a.len() == 3;
assert b.len() == 0;
b.assert_consistent();
a.assert_consistent(); assert a.pop().get() == 4;
a.assert_consistent(); assert a.pop().get() == 5;
a.assert_consistent(); assert a.pop().get() == 6;
a.assert_consistent(); assert a.is_empty();
}
#[test]
fn test_dlist_append_two_empty() {
let a = DList::<int>();
let b = DList::<int>();
a.append(b);
assert a.len() == 0;
assert b.len() == 0;
b.assert_consistent();
a.assert_consistent();
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_dlist_append_self() {
let a = DList::<int>();
a.append(a);
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_dlist_prepend_self() {
let a = DList::<int>();
a.prepend(a);
}
#[test]
fn test_dlist_prepend() {
let a = from_vec(~[1,2,3]);
let b = from_vec(~[4,5,6]);
b.prepend(a);
assert a.len() == 0;
assert b.len() == 6;
a.assert_consistent();
b.assert_consistent(); assert b.pop().get() == 1;
b.assert_consistent(); assert b.pop().get() == 2;
b.assert_consistent(); assert b.pop().get() == 3;
b.assert_consistent(); assert b.pop().get() == 4;
b.assert_consistent(); assert b.pop().get() == 5;
b.assert_consistent(); assert b.pop().get() == 6;
b.assert_consistent(); assert b.is_empty();
}
#[test]
fn test_dlist_reverse() {
let a = from_vec(~[5,4,3,2,1]);
a.reverse();
assert a.len() == 5;
a.assert_consistent(); assert a.pop().get() == 1;
a.assert_consistent(); assert a.pop().get() == 2;
a.assert_consistent(); assert a.pop().get() == 3;
a.assert_consistent(); assert a.pop().get() == 4;
a.assert_consistent(); assert a.pop().get() == 5;
a.assert_consistent(); assert a.is_empty();
}
#[test]
fn test_dlist_reverse_empty() {
let a = DList::<int>();
a.reverse();
assert a.len() == 0;
a.assert_consistent();
}
#[test]
fn test_dlist_each_node() {
let a = from_vec(~[1,2,4,5]);
for a.each_node |nobe| {
if nobe.data > 3 {
a.insert_before(3, nobe);
}
}
assert a.len() == 6;
a.assert_consistent(); assert a.pop().get() == 1;
a.assert_consistent(); assert a.pop().get() == 2;
a.assert_consistent(); assert a.pop().get() == 3;
a.assert_consistent(); assert a.pop().get() == 4;
a.assert_consistent(); assert a.pop().get() == 3;
a.assert_consistent(); assert a.pop().get() == 5;
a.assert_consistent(); assert a.is_empty();
}
#[test]
fn test_dlist_clear() {
let a = from_vec(~[5,4,3,2,1]);
a.clear();
assert a.len() == 0;
a.assert_consistent();
}
#[test]
fn test_dlist_is_empty() {
let empty = DList::<int>();
let full1 = from_vec(~[1,2,3]);
assert empty.is_empty();
assert !full1.is_empty();
assert !empty.is_not_empty();
assert full1.is_not_empty();
}
#[test]
fn test_dlist_head_tail() {
let l = from_vec(~[1,2,3]);
assert l.head() == 1;
assert l.tail() == 3;
assert l.len() == 3;
}
#[test]
fn test_dlist_pop() {
let l = from_vec(~[1,2,3]);
assert l.pop().get() == 1;
assert l.tail() == 3;
assert l.head() == 2;
assert l.pop().get() == 2;
assert l.tail() == 3;
assert l.head() == 3;
assert l.pop().get() == 3;
assert l.is_empty();
assert l.pop().is_none();
}
#[test]
fn test_dlist_pop_tail() {
let l = from_vec(~[1,2,3]);
assert l.pop_tail().get() == 3;
assert l.tail() == 2;
assert l.head() == 1;
assert l.pop_tail().get() == 2;
assert l.tail() == 1;
assert l.head() == 1;
assert l.pop_tail().get() == 1;
assert l.is_empty();
assert l.pop_tail().is_none();
}
#[test]
fn test_dlist_push() {
let l = DList::<int>();
l.push(1);
assert l.head() == 1;
assert l.tail() == 1;
l.push(2);
assert l.head() == 1;
assert l.tail() == 2;
l.push(3);
assert l.head() == 1;
assert l.tail() == 3;
assert l.len() == 3;
}
#[test]
fn test_dlist_push_head() {
let l = DList::<int>();
l.push_head(3);
assert l.head() == 3;
assert l.tail() == 3;
l.push_head(2);
assert l.head() == 2;
assert l.tail() == 3;
l.push_head(1);
assert l.head() == 1;
assert l.tail() == 3;
assert l.len() == 3;
}
#[test]
fn test_dlist_foldl() {
let l = from_vec(vec::from_fn(101, |x|x));
assert iter::foldl(&l, 0, |accum,elem| *accum+*elem) == 5050;
}
#[test]
fn test_dlist_break_early() {
let l = from_vec(~[1,2,3,4,5]);
let mut x = 0;
for l.each |i| {
x += 1;
if (*i == 3) { break; }
}
assert x == 3;
}
#[test]
fn test_dlist_remove_head() {
let l = DList::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); let _three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(one);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); assert l.head() == 2;
l.assert_consistent(); assert l.tail() == 3;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_mid() {
let l = DList::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let _three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(two);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 3;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_tail() {
let l = DList::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); let three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(three);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_one_two() {
let l = DList::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let _three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(one);
l.assert_consistent(); l.remove(two);
// and through and through, the vorpal blade went snicker-snack
l.assert_consistent(); assert l.len() == 1;
l.assert_consistent(); assert l.head() == 3;
l.assert_consistent(); assert l.tail() == 3;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_one_three() {
let l = DList::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); let three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(one);
l.assert_consistent(); l.remove(three);
l.assert_consistent(); assert l.len() == 1;
l.assert_consistent(); assert l.head() == 2;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_two_three() {
let l = DList::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(two);
l.assert_consistent(); l.remove(three);
l.assert_consistent(); assert l.len() == 1;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 1;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_remove_all() {
let l = DList::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let three = l.push_n(3);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); l.remove(two);
l.assert_consistent(); l.remove(three);
l.assert_consistent(); l.remove(one); // Twenty-three is number one!
l.assert_consistent(); assert l.peek().is_none();
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_insert_n_before() {
let l = DList::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); let three = new_dlist_node(3);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); l.insert_n_before(three, two);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_insert_n_after() {
let l = DList::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); let three = new_dlist_node(3);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); l.insert_n_after(three, one);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_insert_before_head() {
let l = DList::<int>();
l.assert_consistent(); let one = l.push_n(1);
l.assert_consistent(); let _two = l.push_n(2);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); l.insert_before(3, one);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); assert l.head() == 3;
l.assert_consistent(); assert l.tail() == 2;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.is_empty();
}
#[test]
fn test_dlist_insert_after_tail() {
let l = DList::<int>();
l.assert_consistent(); let _one = l.push_n(1);
l.assert_consistent(); let two = l.push_n(2);
l.assert_consistent(); assert l.len() == 2;
l.assert_consistent(); l.insert_after(3, two);
l.assert_consistent(); assert l.len() == 3;
l.assert_consistent(); assert l.head() == 1;
l.assert_consistent(); assert l.tail() == 3;
l.assert_consistent(); assert l.pop().get() == 1;
l.assert_consistent(); assert l.pop().get() == 2;
l.assert_consistent(); assert l.pop().get() == 3;
l.assert_consistent(); assert l.is_empty();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_dlist_asymmetric_link() {
let l = DList::<int>();
let _one = l.push_n(1);
let two = l.push_n(2);
two.prev = None;
l.assert_consistent();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_dlist_cyclic_list() {
let l = DList::<int>();
let one = l.push_n(1);
let _two = l.push_n(2);
let three = l.push_n(3);
three.next = Some(one);
one.prev = Some(three);
l.assert_consistent();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_dlist_headless() {
DList::<int>().head();
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_dlist_insert_already_present_before() {
let l = DList::<int>();
let one = l.push_n(1);
let two = l.push_n(2);
l.insert_n_before(two, one);
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_dlist_insert_already_present_after() {
let l = DList::<int>();
let one = l.push_n(1);
let two = l.push_n(2);
l.insert_n_after(one, two);
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_dlist_insert_before_orphan() {
let l = DList::<int>();
let one = new_dlist_node(1);
let two = new_dlist_node(2);
l.insert_n_before(one, two);
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn test_dlist_insert_after_orphan() {
let l = DList::<int>();
let one = new_dlist_node(1);
let two = new_dlist_node(2);
l.insert_n_after(two, one);
}
}