We need to supply sext/zext attributes to LLVM to ensure that arguments are extended to the appropriate width in the correct way. Most platforms extend integers less than 32 bits, though not all.
243 lines
6.9 KiB
Rust
243 lines
6.9 KiB
Rust
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#![allow(non_upper_case_globals)]
|
|
|
|
use llvm::{Integer, Pointer, Float, Double, Struct, Array, Vector};
|
|
use abi::{FnType, ArgType};
|
|
use context::CrateContext;
|
|
use type_::Type;
|
|
|
|
use std::cmp;
|
|
|
|
fn align_up_to(off: usize, a: usize) -> usize {
|
|
return (off + a - 1) / a * a;
|
|
}
|
|
|
|
fn align(off: usize, ty: Type) -> usize {
|
|
let a = ty_align(ty);
|
|
return align_up_to(off, a);
|
|
}
|
|
|
|
fn ty_align(ty: Type) -> usize {
|
|
match ty.kind() {
|
|
Integer => ((ty.int_width() as usize) + 7) / 8,
|
|
Pointer => 8,
|
|
Float => 4,
|
|
Double => 8,
|
|
Struct => {
|
|
if ty.is_packed() {
|
|
1
|
|
} else {
|
|
let str_tys = ty.field_types();
|
|
str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t)))
|
|
}
|
|
}
|
|
Array => {
|
|
let elt = ty.element_type();
|
|
ty_align(elt)
|
|
}
|
|
Vector => {
|
|
let len = ty.vector_length();
|
|
let elt = ty.element_type();
|
|
ty_align(elt) * len
|
|
}
|
|
_ => bug!("ty_align: unhandled type")
|
|
}
|
|
}
|
|
|
|
fn ty_size(ty: Type) -> usize {
|
|
match ty.kind() {
|
|
Integer => ((ty.int_width() as usize) + 7) / 8,
|
|
Pointer => 8,
|
|
Float => 4,
|
|
Double => 8,
|
|
Struct => {
|
|
if ty.is_packed() {
|
|
let str_tys = ty.field_types();
|
|
str_tys.iter().fold(0, |s, t| s + ty_size(*t))
|
|
} else {
|
|
let str_tys = ty.field_types();
|
|
let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t));
|
|
align(size, ty)
|
|
}
|
|
}
|
|
Array => {
|
|
let len = ty.array_length();
|
|
let elt = ty.element_type();
|
|
let eltsz = ty_size(elt);
|
|
len * eltsz
|
|
}
|
|
Vector => {
|
|
let len = ty.vector_length();
|
|
let elt = ty.element_type();
|
|
let eltsz = ty_size(elt);
|
|
len * eltsz
|
|
}
|
|
_ => bug!("ty_size: unhandled type")
|
|
}
|
|
}
|
|
|
|
fn is_homogenous_aggregate_ty(ty: Type) -> Option<(Type, u64)> {
|
|
fn check_array(ty: Type) -> Option<(Type, u64)> {
|
|
let len = ty.array_length() as u64;
|
|
if len == 0 {
|
|
return None
|
|
}
|
|
let elt = ty.element_type();
|
|
|
|
// if our element is an HFA/HVA, so are we; multiply members by our len
|
|
is_homogenous_aggregate_ty(elt).map(|(base_ty, members)| (base_ty, len * members))
|
|
}
|
|
|
|
fn check_struct(ty: Type) -> Option<(Type, u64)> {
|
|
let str_tys = ty.field_types();
|
|
if str_tys.len() == 0 {
|
|
return None
|
|
}
|
|
|
|
let mut prev_base_ty = None;
|
|
let mut members = 0;
|
|
for opt_homog_agg in str_tys.iter().map(|t| is_homogenous_aggregate_ty(*t)) {
|
|
match (prev_base_ty, opt_homog_agg) {
|
|
// field isn't itself an HFA, so we aren't either
|
|
(_, None) => return None,
|
|
|
|
// first field - store its type and number of members
|
|
(None, Some((field_ty, field_members))) => {
|
|
prev_base_ty = Some(field_ty);
|
|
members = field_members;
|
|
},
|
|
|
|
// 2nd or later field - give up if it's a different type; otherwise incr. members
|
|
(Some(prev_ty), Some((field_ty, field_members))) => {
|
|
if prev_ty != field_ty {
|
|
return None;
|
|
}
|
|
members += field_members;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Because of previous checks, we know prev_base_ty is Some(...) because
|
|
// 1. str_tys has at least one element; and
|
|
// 2. prev_base_ty was filled in (or we would've returned early)
|
|
let (base_ty, members) = (prev_base_ty.unwrap(), members);
|
|
|
|
// Ensure there is no padding.
|
|
if ty_size(ty) == ty_size(base_ty) * (members as usize) {
|
|
Some((base_ty, members))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
let homog_agg = match ty.kind() {
|
|
Float => Some((ty, 1)),
|
|
Double => Some((ty, 1)),
|
|
Array => check_array(ty),
|
|
Struct => check_struct(ty),
|
|
Vector => match ty_size(ty) {
|
|
4|8 => Some((ty, 1)),
|
|
_ => None
|
|
},
|
|
_ => None
|
|
};
|
|
|
|
// Ensure we have at most four uniquely addressable members
|
|
homog_agg.and_then(|(base_ty, members)| {
|
|
if members > 0 && members <= 4 {
|
|
Some((base_ty, members))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
}
|
|
|
|
fn classify_ret_ty(ccx: &CrateContext, ret: &mut ArgType) {
|
|
if is_reg_ty(ret.ty) {
|
|
ret.extend_integer_width_to(32);
|
|
return;
|
|
}
|
|
if let Some((base_ty, members)) = is_homogenous_aggregate_ty(ret.ty) {
|
|
ret.cast = Some(Type::array(&base_ty, members));
|
|
return;
|
|
}
|
|
let size = ty_size(ret.ty);
|
|
if size <= 16 {
|
|
let llty = if size <= 1 {
|
|
Type::i8(ccx)
|
|
} else if size <= 2 {
|
|
Type::i16(ccx)
|
|
} else if size <= 4 {
|
|
Type::i32(ccx)
|
|
} else if size <= 8 {
|
|
Type::i64(ccx)
|
|
} else {
|
|
Type::array(&Type::i64(ccx), ((size + 7 ) / 8 ) as u64)
|
|
};
|
|
ret.cast = Some(llty);
|
|
return;
|
|
}
|
|
ret.make_indirect(ccx);
|
|
}
|
|
|
|
fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType) {
|
|
if is_reg_ty(arg.ty) {
|
|
arg.extend_integer_width_to(32);
|
|
return;
|
|
}
|
|
if let Some((base_ty, members)) = is_homogenous_aggregate_ty(arg.ty) {
|
|
arg.cast = Some(Type::array(&base_ty, members));
|
|
return;
|
|
}
|
|
let size = ty_size(arg.ty);
|
|
if size <= 16 {
|
|
let llty = if size == 0 {
|
|
Type::array(&Type::i64(ccx), 0)
|
|
} else if size == 1 {
|
|
Type::i8(ccx)
|
|
} else if size == 2 {
|
|
Type::i16(ccx)
|
|
} else if size <= 4 {
|
|
Type::i32(ccx)
|
|
} else if size <= 8 {
|
|
Type::i64(ccx)
|
|
} else {
|
|
Type::array(&Type::i64(ccx), ((size + 7 ) / 8 ) as u64)
|
|
};
|
|
arg.cast = Some(llty);
|
|
return;
|
|
}
|
|
arg.make_indirect(ccx);
|
|
}
|
|
|
|
fn is_reg_ty(ty: Type) -> bool {
|
|
match ty.kind() {
|
|
Integer
|
|
| Pointer
|
|
| Float
|
|
| Double
|
|
| Vector => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn compute_abi_info(ccx: &CrateContext, fty: &mut FnType) {
|
|
if !fty.ret.is_ignore() {
|
|
classify_ret_ty(ccx, &mut fty.ret);
|
|
}
|
|
|
|
for arg in &mut fty.args {
|
|
if arg.is_ignore() { continue; }
|
|
classify_arg_ty(ccx, arg);
|
|
}
|
|
}
|