1367 lines
45 KiB
Rust

use crate::vec::{Idx, IndexVec};
use arrayvec::ArrayVec;
use std::fmt;
use std::iter;
use std::marker::PhantomData;
use std::mem;
use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Not, Range, Shl};
use std::slice;
use rustc_macros::{Decodable, Encodable};
#[cfg(test)]
mod tests;
pub type Word = u64;
pub const WORD_BYTES: usize = mem::size_of::<Word>();
pub const WORD_BITS: usize = WORD_BYTES * 8;
pub trait BitRelations<Rhs> {
fn union(&mut self, other: &Rhs) -> bool;
fn subtract(&mut self, other: &Rhs) -> bool;
fn intersect(&mut self, other: &Rhs) -> bool;
}
macro_rules! bit_relations_inherent_impls {
() => {
/// Sets `self = self | other` and returns `true` if `self` changed
/// (i.e., if new bits were added).
pub fn union<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::union(self, other)
}
/// Sets `self = self - other` and returns `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::subtract(self, other)
}
/// Sets `self = self & other` and return `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::intersect(self, other)
}
};
}
/// A fixed-size bitset type with a dense representation.
///
/// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
///
#[derive(Eq, PartialEq, Decodable, Encodable)]
pub struct BitSet<T> {
domain_size: usize,
words: Vec<Word>,
marker: PhantomData<T>,
}
impl<T> BitSet<T> {
/// Gets the domain size.
pub fn domain_size(&self) -> usize {
self.domain_size
}
}
impl<T: Idx> BitSet<T> {
/// Creates a new, empty bitset with a given `domain_size`.
#[inline]
pub fn new_empty(domain_size: usize) -> BitSet<T> {
let num_words = num_words(domain_size);
BitSet { domain_size, words: vec![0; num_words], marker: PhantomData }
}
/// Creates a new, filled bitset with a given `domain_size`.
#[inline]
pub fn new_filled(domain_size: usize) -> BitSet<T> {
let num_words = num_words(domain_size);
let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData };
result.clear_excess_bits();
result
}
/// Clear all elements.
#[inline]
pub fn clear(&mut self) {
for word in &mut self.words {
*word = 0;
}
}
/// Clear excess bits in the final word.
fn clear_excess_bits(&mut self) {
let num_bits_in_final_word = self.domain_size % WORD_BITS;
if num_bits_in_final_word > 0 {
let mask = (1 << num_bits_in_final_word) - 1;
let final_word_idx = self.words.len() - 1;
self.words[final_word_idx] &= mask;
}
}
/// Count the number of set bits in the set.
pub fn count(&self) -> usize {
self.words.iter().map(|e| e.count_ones() as usize).sum()
}
/// Returns `true` if `self` contains `elem`.
#[inline]
pub fn contains(&self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
(self.words[word_index] & mask) != 0
}
/// Is `self` is a (non-strict) superset of `other`?
#[inline]
pub fn superset(&self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
}
/// Is the set empty?
#[inline]
pub fn is_empty(&self) -> bool {
self.words.iter().all(|a| *a == 0)
}
/// Insert `elem`. Returns whether the set has changed.
#[inline]
pub fn insert(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
let word_ref = &mut self.words[word_index];
let word = *word_ref;
let new_word = word | mask;
*word_ref = new_word;
new_word != word
}
/// Sets all bits to true.
pub fn insert_all(&mut self) {
for word in &mut self.words {
*word = !0;
}
self.clear_excess_bits();
}
/// Returns `true` if the set has changed.
#[inline]
pub fn remove(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
let word_ref = &mut self.words[word_index];
let word = *word_ref;
let new_word = word & !mask;
*word_ref = new_word;
new_word != word
}
/// Gets a slice of the underlying words.
pub fn words(&self) -> &[Word] {
&self.words
}
/// Iterates over the indices of set bits in a sorted order.
#[inline]
pub fn iter(&self) -> BitIter<'_, T> {
BitIter::new(&self.words)
}
/// Duplicates the set as a hybrid set.
pub fn to_hybrid(&self) -> HybridBitSet<T> {
// Note: we currently don't bother trying to make a Sparse set.
HybridBitSet::Dense(self.to_owned())
}
/// Set `self = self | other`. In contrast to `union` returns `true` if the set contains at
/// least one bit that is not in `other` (i.e. `other` is not a superset of `self`).
///
/// This is an optimization for union of a hybrid bitset.
fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
assert!(sparse.domain_size == self.domain_size);
self.clear_excess_bits();
let mut not_already = false;
// Index of the current word not yet merged.
let mut current_index = 0;
// Mask of bits that came from the sparse set in the current word.
let mut new_bit_mask = 0;
for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) {
// Next bit is in a word not inspected yet.
if word_index > current_index {
self.words[current_index] |= new_bit_mask;
// Were there any bits in the old word that did not occur in the sparse set?
not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
// Check all words we skipped for any set bit.
not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0);
// Update next word.
current_index = word_index;
// Reset bit mask, no bits have been merged yet.
new_bit_mask = 0;
}
// Add bit and mark it as coming from the sparse set.
// self.words[word_index] |= mask;
new_bit_mask |= mask;
}
self.words[current_index] |= new_bit_mask;
// Any bits in the last inspected word that were not in the sparse set?
not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
// Any bits in the tail? Note `clear_excess_bits` before.
not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0);
not_already
}
bit_relations_inherent_impls! {}
}
// dense REL dense
impl<T: Idx> BitRelations<BitSet<T>> for BitSet<T> {
fn union(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a | b)
}
fn subtract(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & !b)
}
fn intersect(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & b)
}
}
// Applies a function to mutate a bitset, and returns true if any
// of the applications return true
fn sequential_update<T: Idx>(
mut self_update: impl FnMut(T) -> bool,
it: impl Iterator<Item = T>,
) -> bool {
let mut changed = false;
for elem in it {
changed |= self_update(elem);
}
changed
}
// Optimization of intersection for SparseBitSet that's generic
// over the RHS
fn sparse_intersect<T: Idx>(
set: &mut SparseBitSet<T>,
other_contains: impl Fn(&T) -> bool,
) -> bool {
let size = set.elems.len();
set.elems.retain(|elem| other_contains(elem));
set.elems.len() != size
}
// Optimization of dense/sparse intersection. The resulting set is
// guaranteed to be at most the size of the sparse set, and hence can be
// represented as a sparse set. Therefore the sparse set is copied and filtered,
// then returned as the new set.
fn dense_sparse_intersect<T: Idx>(
dense: &BitSet<T>,
sparse: &SparseBitSet<T>,
) -> (SparseBitSet<T>, bool) {
let mut sparse_copy = sparse.clone();
sparse_intersect(&mut sparse_copy, |el| dense.contains(*el));
let n = sparse_copy.len();
(sparse_copy, n != dense.count())
}
// hybrid REL dense
impl<T: Idx> BitRelations<BitSet<T>> for HybridBitSet<T> {
fn union(&mut self, other: &BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => {
// `self` is sparse and `other` is dense. To
// merge them, we have two available strategies:
// * Densify `self` then merge other
// * Clone other then integrate bits from `self`
// The second strategy requires dedicated method
// since the usual `union` returns the wrong
// result. In the dedicated case the computation
// is slightly faster if the bits of the sparse
// bitset map to only few words of the dense
// representation, i.e. indices are near each
// other.
//
// Benchmarking seems to suggest that the second
// option is worth it.
let mut new_dense = other.clone();
let changed = new_dense.reverse_union_sparse(sparse);
*self = HybridBitSet::Dense(new_dense);
changed
}
HybridBitSet::Dense(dense) => dense.union(other),
}
}
fn subtract(&mut self, other: &BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => {
sequential_update(|elem| sparse.remove(elem), other.iter())
}
HybridBitSet::Dense(dense) => dense.subtract(other),
}
}
fn intersect(&mut self, other: &BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse_intersect(sparse, |elem| other.contains(*elem)),
HybridBitSet::Dense(dense) => dense.intersect(other),
}
}
}
// dense REL hybrid
impl<T: Idx> BitRelations<HybridBitSet<T>> for BitSet<T> {
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size());
match other {
HybridBitSet::Sparse(sparse) => {
sequential_update(|elem| self.insert(elem), sparse.iter().cloned())
}
HybridBitSet::Dense(dense) => self.union(dense),
}
}
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size());
match other {
HybridBitSet::Sparse(sparse) => {
sequential_update(|elem| self.remove(elem), sparse.iter().cloned())
}
HybridBitSet::Dense(dense) => self.subtract(dense),
}
}
fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size());
match other {
HybridBitSet::Sparse(sparse) => {
let (updated, changed) = dense_sparse_intersect(self, sparse);
// We can't directly assign the BitSet to the SparseBitSet, and
// doing `*self = updated.to_dense()` would cause a drop / reallocation. Instead,
// the BitSet is cleared and `updated` is copied into `self`.
self.clear();
for elem in updated.iter() {
self.insert(*elem);
}
changed
}
HybridBitSet::Dense(dense) => self.intersect(dense),
}
}
}
// hybrid REL hybrid
impl<T: Idx> BitRelations<HybridBitSet<T>> for HybridBitSet<T> {
fn union(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size());
match self {
HybridBitSet::Sparse(_) => {
match other {
HybridBitSet::Sparse(other_sparse) => {
// Both sets are sparse. Add the elements in
// `other_sparse` to `self` one at a time. This
// may or may not cause `self` to be densified.
assert_eq!(self.domain_size(), other.domain_size());
let mut changed = false;
for elem in other_sparse.iter() {
changed |= self.insert(*elem);
}
changed
}
HybridBitSet::Dense(other_dense) => self.union(other_dense),
}
}
HybridBitSet::Dense(self_dense) => self_dense.union(other),
}
}
fn subtract(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size());
match self {
HybridBitSet::Sparse(self_sparse) => {
sequential_update(|elem| self_sparse.remove(elem), other.iter())
}
HybridBitSet::Dense(self_dense) => self_dense.subtract(other),
}
}
fn intersect(&mut self, other: &HybridBitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size());
match self {
HybridBitSet::Sparse(self_sparse) => {
sparse_intersect(self_sparse, |elem| other.contains(*elem))
}
HybridBitSet::Dense(self_dense) => match other {
HybridBitSet::Sparse(other_sparse) => {
let (updated, changed) = dense_sparse_intersect(self_dense, other_sparse);
*self = HybridBitSet::Sparse(updated);
changed
}
HybridBitSet::Dense(other_dense) => self_dense.intersect(other_dense),
},
}
}
}
impl<T> Clone for BitSet<T> {
fn clone(&self) -> Self {
BitSet { domain_size: self.domain_size, words: self.words.clone(), marker: PhantomData }
}
fn clone_from(&mut self, from: &Self) {
if self.domain_size != from.domain_size {
self.words.resize(from.domain_size, 0);
self.domain_size = from.domain_size;
}
self.words.copy_from_slice(&from.words);
}
}
impl<T: Idx> fmt::Debug for BitSet<T> {
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
w.debug_list().entries(self.iter()).finish()
}
}
impl<T: Idx> ToString for BitSet<T> {
fn to_string(&self) -> String {
let mut result = String::new();
let mut sep = '[';
// Note: this is a little endian printout of bytes.
// i tracks how many bits we have printed so far.
let mut i = 0;
for word in &self.words {
let mut word = *word;
for _ in 0..WORD_BYTES {
// for each byte in `word`:
let remain = self.domain_size - i;
// If less than a byte remains, then mask just that many bits.
let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
assert!(mask <= 0xFF);
let byte = word & mask;
result.push_str(&format!("{}{:02x}", sep, byte));
if remain <= 8 {
break;
}
word >>= 8;
i += 8;
sep = '-';
}
sep = '|';
}
result.push(']');
result
}
}
pub struct BitIter<'a, T: Idx> {
/// A copy of the current word, but with any already-visited bits cleared.
/// (This lets us use `trailing_zeros()` to find the next set bit.) When it
/// is reduced to 0, we move onto the next word.
word: Word,
/// The offset (measured in bits) of the current word.
offset: usize,
/// Underlying iterator over the words.
iter: slice::Iter<'a, Word>,
marker: PhantomData<T>,
}
impl<'a, T: Idx> BitIter<'a, T> {
#[inline]
fn new(words: &'a [Word]) -> BitIter<'a, T> {
// We initialize `word` and `offset` to degenerate values. On the first
// call to `next()` we will fall through to getting the first word from
// `iter`, which sets `word` to the first word (if there is one) and
// `offset` to 0. Doing it this way saves us from having to maintain
// additional state about whether we have started.
BitIter {
word: 0,
offset: usize::MAX - (WORD_BITS - 1),
iter: words.iter(),
marker: PhantomData,
}
}
}
impl<'a, T: Idx> Iterator for BitIter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
loop {
if self.word != 0 {
// Get the position of the next set bit in the current word,
// then clear the bit.
let bit_pos = self.word.trailing_zeros() as usize;
let bit = 1 << bit_pos;
self.word ^= bit;
return Some(T::new(bit_pos + self.offset));
}
// Move onto the next word. `wrapping_add()` is needed to handle
// the degenerate initial value given to `offset` in `new()`.
let word = self.iter.next()?;
self.word = *word;
self.offset = self.offset.wrapping_add(WORD_BITS);
}
}
}
#[inline]
fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool
where
Op: Fn(Word, Word) -> Word,
{
assert_eq!(out_vec.len(), in_vec.len());
let mut changed = 0;
for (out_elem, in_elem) in iter::zip(out_vec, in_vec) {
let old_val = *out_elem;
let new_val = op(old_val, *in_elem);
*out_elem = new_val;
// This is essentially equivalent to a != with changed being a bool, but
// in practice this code gets auto-vectorized by the compiler for most
// operators. Using != here causes us to generate quite poor code as the
// compiler tries to go back to a boolean on each loop iteration.
changed |= old_val ^ new_val;
}
changed != 0
}
const SPARSE_MAX: usize = 8;
/// A fixed-size bitset type with a sparse representation and a maximum of
/// `SPARSE_MAX` elements. The elements are stored as a sorted `ArrayVec` with
/// no duplicates.
///
/// This type is used by `HybridBitSet`; do not use directly.
#[derive(Clone, Debug)]
pub struct SparseBitSet<T> {
domain_size: usize,
elems: ArrayVec<T, SPARSE_MAX>,
}
impl<T: Idx> SparseBitSet<T> {
fn new_empty(domain_size: usize) -> Self {
SparseBitSet { domain_size, elems: ArrayVec::new() }
}
fn len(&self) -> usize {
self.elems.len()
}
fn is_empty(&self) -> bool {
self.elems.len() == 0
}
fn contains(&self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
self.elems.contains(&elem)
}
fn insert(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) {
if self.elems[i] == elem {
// `elem` is already in the set.
false
} else {
// `elem` is smaller than one or more existing elements.
self.elems.insert(i, elem);
true
}
} else {
// `elem` is larger than all existing elements.
self.elems.push(elem);
true
};
assert!(self.len() <= SPARSE_MAX);
changed
}
fn remove(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
if let Some(i) = self.elems.iter().position(|&e| e == elem) {
self.elems.remove(i);
true
} else {
false
}
}
fn to_dense(&self) -> BitSet<T> {
let mut dense = BitSet::new_empty(self.domain_size);
for elem in self.elems.iter() {
dense.insert(*elem);
}
dense
}
fn iter(&self) -> slice::Iter<'_, T> {
self.elems.iter()
}
bit_relations_inherent_impls! {}
}
/// A fixed-size bitset type with a hybrid representation: sparse when there
/// are up to a `SPARSE_MAX` elements in the set, but dense when there are more
/// than `SPARSE_MAX`.
///
/// This type is especially efficient for sets that typically have a small
/// number of elements, but a large `domain_size`, and are cleared frequently.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
#[derive(Clone)]
pub enum HybridBitSet<T> {
Sparse(SparseBitSet<T>),
Dense(BitSet<T>),
}
impl<T: Idx> fmt::Debug for HybridBitSet<T> {
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Sparse(b) => b.fmt(w),
Self::Dense(b) => b.fmt(w),
}
}
}
impl<T: Idx> HybridBitSet<T> {
pub fn new_empty(domain_size: usize) -> Self {
HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size))
}
pub fn domain_size(&self) -> usize {
match self {
HybridBitSet::Sparse(sparse) => sparse.domain_size,
HybridBitSet::Dense(dense) => dense.domain_size,
}
}
pub fn clear(&mut self) {
let domain_size = self.domain_size();
*self = HybridBitSet::new_empty(domain_size);
}
pub fn contains(&self, elem: T) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.contains(elem),
HybridBitSet::Dense(dense) => dense.contains(elem),
}
}
pub fn superset(&self, other: &HybridBitSet<T>) -> bool {
match (self, other) {
(HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => {
self_dense.superset(other_dense)
}
_ => {
assert!(self.domain_size() == other.domain_size());
other.iter().all(|elem| self.contains(elem))
}
}
}
pub fn is_empty(&self) -> bool {
match self {
HybridBitSet::Sparse(sparse) => sparse.is_empty(),
HybridBitSet::Dense(dense) => dense.is_empty(),
}
}
pub fn insert(&mut self, elem: T) -> bool {
// No need to check `elem` against `self.domain_size` here because all
// the match cases check it, one way or another.
match self {
HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => {
// The set is sparse and has space for `elem`.
sparse.insert(elem)
}
HybridBitSet::Sparse(sparse) if sparse.contains(elem) => {
// The set is sparse and does not have space for `elem`, but
// that doesn't matter because `elem` is already present.
false
}
HybridBitSet::Sparse(sparse) => {
// The set is sparse and full. Convert to a dense set.
let mut dense = sparse.to_dense();
let changed = dense.insert(elem);
assert!(changed);
*self = HybridBitSet::Dense(dense);
changed
}
HybridBitSet::Dense(dense) => dense.insert(elem),
}
}
pub fn insert_all(&mut self) {
let domain_size = self.domain_size();
match self {
HybridBitSet::Sparse(_) => {
*self = HybridBitSet::Dense(BitSet::new_filled(domain_size));
}
HybridBitSet::Dense(dense) => dense.insert_all(),
}
}
pub fn remove(&mut self, elem: T) -> bool {
// Note: we currently don't bother going from Dense back to Sparse.
match self {
HybridBitSet::Sparse(sparse) => sparse.remove(elem),
HybridBitSet::Dense(dense) => dense.remove(elem),
}
}
/// Converts to a dense set, consuming itself in the process.
pub fn to_dense(self) -> BitSet<T> {
match self {
HybridBitSet::Sparse(sparse) => sparse.to_dense(),
HybridBitSet::Dense(dense) => dense,
}
}
pub fn iter(&self) -> HybridIter<'_, T> {
match self {
HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()),
HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
}
}
bit_relations_inherent_impls! {}
}
pub enum HybridIter<'a, T: Idx> {
Sparse(slice::Iter<'a, T>),
Dense(BitIter<'a, T>),
}
impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
match self {
HybridIter::Sparse(sparse) => sparse.next().copied(),
HybridIter::Dense(dense) => dense.next(),
}
}
}
/// A resizable bitset type with a dense representation.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size.
#[derive(Clone, Debug, PartialEq)]
pub struct GrowableBitSet<T: Idx> {
bit_set: BitSet<T>,
}
impl<T: Idx> GrowableBitSet<T> {
/// Ensure that the set can hold at least `min_domain_size` elements.
pub fn ensure(&mut self, min_domain_size: usize) {
if self.bit_set.domain_size < min_domain_size {
self.bit_set.domain_size = min_domain_size;
}
let min_num_words = num_words(min_domain_size);
if self.bit_set.words.len() < min_num_words {
self.bit_set.words.resize(min_num_words, 0)
}
}
pub fn new_empty() -> GrowableBitSet<T> {
GrowableBitSet { bit_set: BitSet::new_empty(0) }
}
pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> {
GrowableBitSet { bit_set: BitSet::new_empty(capacity) }
}
/// Returns `true` if the set has changed.
#[inline]
pub fn insert(&mut self, elem: T) -> bool {
self.ensure(elem.index() + 1);
self.bit_set.insert(elem)
}
/// Returns `true` if the set has changed.
#[inline]
pub fn remove(&mut self, elem: T) -> bool {
self.ensure(elem.index() + 1);
self.bit_set.remove(elem)
}
#[inline]
pub fn is_empty(&self) -> bool {
self.bit_set.is_empty()
}
#[inline]
pub fn contains(&self, elem: T) -> bool {
let (word_index, mask) = word_index_and_mask(elem);
if let Some(word) = self.bit_set.words.get(word_index) { (word & mask) != 0 } else { false }
}
}
/// A fixed-size 2D bit matrix type with a dense representation.
///
/// `R` and `C` are index types used to identify rows and columns respectively;
/// typically newtyped `usize` wrappers, but they can also just be `usize`.
///
/// All operations that involve a row and/or column index will panic if the
/// index exceeds the relevant bound.
#[derive(Clone, Eq, PartialEq, Decodable, Encodable)]
pub struct BitMatrix<R: Idx, C: Idx> {
num_rows: usize,
num_columns: usize,
words: Vec<Word>,
marker: PhantomData<(R, C)>,
}
impl<R: Idx, C: Idx> BitMatrix<R, C> {
/// Creates a new `rows x columns` matrix, initially empty.
pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
// For every element, we need one bit for every other
// element. Round up to an even number of words.
let words_per_row = num_words(num_columns);
BitMatrix {
num_rows,
num_columns,
words: vec![0; num_rows * words_per_row],
marker: PhantomData,
}
}
/// Creates a new matrix, with `row` used as the value for every row.
pub fn from_row_n(row: &BitSet<C>, num_rows: usize) -> BitMatrix<R, C> {
let num_columns = row.domain_size();
let words_per_row = num_words(num_columns);
assert_eq!(words_per_row, row.words().len());
BitMatrix {
num_rows,
num_columns,
words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(),
marker: PhantomData,
}
}
pub fn rows(&self) -> impl Iterator<Item = R> {
(0..self.num_rows).map(R::new)
}
/// The range of bits for a given row.
fn range(&self, row: R) -> (usize, usize) {
let words_per_row = num_words(self.num_columns);
let start = row.index() * words_per_row;
(start, start + words_per_row)
}
/// Sets the cell at `(row, column)` to true. Put another way, insert
/// `column` to the bitset for `row`.
///
/// Returns `true` if this changed the matrix.
pub fn insert(&mut self, row: R, column: C) -> bool {
assert!(row.index() < self.num_rows && column.index() < self.num_columns);
let (start, _) = self.range(row);
let (word_index, mask) = word_index_and_mask(column);
let words = &mut self.words[..];
let word = words[start + word_index];
let new_word = word | mask;
words[start + word_index] = new_word;
word != new_word
}
/// Do the bits from `row` contain `column`? Put another way, is
/// the matrix cell at `(row, column)` true? Put yet another way,
/// if the matrix represents (transitive) reachability, can
/// `row` reach `column`?
pub fn contains(&self, row: R, column: C) -> bool {
assert!(row.index() < self.num_rows && column.index() < self.num_columns);
let (start, _) = self.range(row);
let (word_index, mask) = word_index_and_mask(column);
(self.words[start + word_index] & mask) != 0
}
/// Returns those indices that are true in rows `a` and `b`. This
/// is an *O*(*n*) operation where *n* is the number of elements
/// (somewhat independent from the actual size of the
/// intersection, in particular).
pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
let (row1_start, row1_end) = self.range(row1);
let (row2_start, row2_end) = self.range(row2);
let mut result = Vec::with_capacity(self.num_columns);
for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
let mut v = self.words[i] & self.words[j];
for bit in 0..WORD_BITS {
if v == 0 {
break;
}
if v & 0x1 != 0 {
result.push(C::new(base * WORD_BITS + bit));
}
v >>= 1;
}
}
result
}
/// Adds the bits from row `read` to the bits from row `write`, and
/// returns `true` if anything changed.
///
/// This is used when computing transitive reachability because if
/// you have an edge `write -> read`, because in that case
/// `write` can reach everything that `read` can (and
/// potentially more).
pub fn union_rows(&mut self, read: R, write: R) -> bool {
assert!(read.index() < self.num_rows && write.index() < self.num_rows);
let (read_start, read_end) = self.range(read);
let (write_start, write_end) = self.range(write);
let words = &mut self.words[..];
let mut changed = false;
for (read_index, write_index) in iter::zip(read_start..read_end, write_start..write_end) {
let word = words[write_index];
let new_word = word | words[read_index];
words[write_index] = new_word;
changed |= word != new_word;
}
changed
}
/// Adds the bits from `with` to the bits from row `write`, and
/// returns `true` if anything changed.
pub fn union_row_with(&mut self, with: &BitSet<C>, write: R) -> bool {
assert!(write.index() < self.num_rows);
assert_eq!(with.domain_size(), self.num_columns);
let (write_start, write_end) = self.range(write);
let mut changed = false;
for (read_index, write_index) in iter::zip(0..with.words().len(), write_start..write_end) {
let word = self.words[write_index];
let new_word = word | with.words()[read_index];
self.words[write_index] = new_word;
changed |= word != new_word;
}
changed
}
/// Sets every cell in `row` to true.
pub fn insert_all_into_row(&mut self, row: R) {
assert!(row.index() < self.num_rows);
let (start, end) = self.range(row);
let words = &mut self.words[..];
for index in start..end {
words[index] = !0;
}
self.clear_excess_bits(row);
}
/// Clear excess bits in the final word of the row.
fn clear_excess_bits(&mut self, row: R) {
let num_bits_in_final_word = self.num_columns % WORD_BITS;
if num_bits_in_final_word > 0 {
let mask = (1 << num_bits_in_final_word) - 1;
let (_, end) = self.range(row);
let final_word_idx = end - 1;
self.words[final_word_idx] &= mask;
}
}
/// Gets a slice of the underlying words.
pub fn words(&self) -> &[Word] {
&self.words
}
/// Iterates through all the columns set to true in a given row of
/// the matrix.
pub fn iter(&self, row: R) -> BitIter<'_, C> {
assert!(row.index() < self.num_rows);
let (start, end) = self.range(row);
BitIter::new(&self.words[start..end])
}
/// Returns the number of elements in `row`.
pub fn count(&self, row: R) -> usize {
let (start, end) = self.range(row);
self.words[start..end].iter().map(|e| e.count_ones() as usize).sum()
}
}
impl<R: Idx, C: Idx> fmt::Debug for BitMatrix<R, C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
/// Forces its contents to print in regular mode instead of alternate mode.
struct OneLinePrinter<T>(T);
impl<T: fmt::Debug> fmt::Debug for OneLinePrinter<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "{:?}", self.0)
}
}
write!(fmt, "BitMatrix({}x{}) ", self.num_rows, self.num_columns)?;
let items = self.rows().flat_map(|r| self.iter(r).map(move |c| (r, c)));
fmt.debug_set().entries(items.map(OneLinePrinter)).finish()
}
}
/// A fixed-column-size, variable-row-size 2D bit matrix with a moderately
/// sparse representation.
///
/// Initially, every row has no explicit representation. If any bit within a
/// row is set, the entire row is instantiated as `Some(<HybridBitSet>)`.
/// Furthermore, any previously uninstantiated rows prior to it will be
/// instantiated as `None`. Those prior rows may themselves become fully
/// instantiated later on if any of their bits are set.
///
/// `R` and `C` are index types used to identify rows and columns respectively;
/// typically newtyped `usize` wrappers, but they can also just be `usize`.
#[derive(Clone, Debug)]
pub struct SparseBitMatrix<R, C>
where
R: Idx,
C: Idx,
{
num_columns: usize,
rows: IndexVec<R, Option<HybridBitSet<C>>>,
}
impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
/// Creates a new empty sparse bit matrix with no rows or columns.
pub fn new(num_columns: usize) -> Self {
Self { num_columns, rows: IndexVec::new() }
}
pub fn ensure_row(&mut self, row: R) -> &mut HybridBitSet<C> {
// Instantiate any missing rows up to and including row `row` with an
// empty HybridBitSet.
self.rows.ensure_contains_elem(row, || None);
// Then replace row `row` with a full HybridBitSet if necessary.
let num_columns = self.num_columns;
self.rows[row].get_or_insert_with(|| HybridBitSet::new_empty(num_columns))
}
/// Sets the cell at `(row, column)` to true. Put another way, insert
/// `column` to the bitset for `row`.
///
/// Returns `true` if this changed the matrix.
pub fn insert(&mut self, row: R, column: C) -> bool {
self.ensure_row(row).insert(column)
}
/// Sets the cell at `(row, column)` to false. Put another way, delete
/// `column` from the bitset for `row`. Has no effect if `row` does not
/// exist.
///
/// Returns `true` if this changed the matrix.
pub fn remove(&mut self, row: R, column: C) -> bool {
match self.rows.get_mut(row) {
Some(Some(row)) => row.remove(column),
_ => false,
}
}
/// Sets all columns at `row` to false. Has no effect if `row` does
/// not exist.
pub fn clear(&mut self, row: R) {
if let Some(Some(row)) = self.rows.get_mut(row) {
row.clear();
}
}
/// Do the bits from `row` contain `column`? Put another way, is
/// the matrix cell at `(row, column)` true? Put yet another way,
/// if the matrix represents (transitive) reachability, can
/// `row` reach `column`?
pub fn contains(&self, row: R, column: C) -> bool {
self.row(row).map_or(false, |r| r.contains(column))
}
/// Adds the bits from row `read` to the bits from row `write`, and
/// returns `true` if anything changed.
///
/// This is used when computing transitive reachability because if
/// you have an edge `write -> read`, because in that case
/// `write` can reach everything that `read` can (and
/// potentially more).
pub fn union_rows(&mut self, read: R, write: R) -> bool {
if read == write || self.row(read).is_none() {
return false;
}
self.ensure_row(write);
if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) {
write_row.union(read_row)
} else {
unreachable!()
}
}
/// Insert all bits in the given row.
pub fn insert_all_into_row(&mut self, row: R) {
self.ensure_row(row).insert_all();
}
pub fn rows(&self) -> impl Iterator<Item = R> {
self.rows.indices()
}
/// Iterates through all the columns set to true in a given row of
/// the matrix.
pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
self.row(row).into_iter().flat_map(|r| r.iter())
}
pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
}
/// Interescts `row` with `set`. `set` can be either `BitSet` or
/// `HybridBitSet`. Has no effect if `row` does not exist.
///
/// Returns true if the row was changed.
pub fn intersect_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
match self.rows.get_mut(row) {
Some(Some(row)) => row.intersect(set),
_ => false,
}
}
/// Subtracts `set from `row`. `set` can be either `BitSet` or
/// `HybridBitSet`. Has no effect if `row` does not exist.
///
/// Returns true if the row was changed.
pub fn subtract_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
match self.rows.get_mut(row) {
Some(Some(row)) => row.subtract(set),
_ => false,
}
}
/// Unions `row` with `set`. `set` can be either `BitSet` or
/// `HybridBitSet`.
///
/// Returns true if the row was changed.
pub fn union_row<Set>(&mut self, row: R, set: &Set) -> bool
where
HybridBitSet<C>: BitRelations<Set>,
{
self.ensure_row(row).union(set)
}
}
#[inline]
fn num_words<T: Idx>(domain_size: T) -> usize {
(domain_size.index() + WORD_BITS - 1) / WORD_BITS
}
#[inline]
fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
let elem = elem.index();
let word_index = elem / WORD_BITS;
let mask = 1 << (elem % WORD_BITS);
(word_index, mask)
}
/// Integral type used to represent the bit set.
pub trait FiniteBitSetTy:
BitAnd<Output = Self>
+ BitAndAssign
+ BitOrAssign
+ Clone
+ Copy
+ Shl
+ Not<Output = Self>
+ PartialEq
+ Sized
{
/// Size of the domain representable by this type, e.g. 64 for `u64`.
const DOMAIN_SIZE: u32;
/// Value which represents the `FiniteBitSet` having every bit set.
const FILLED: Self;
/// Value which represents the `FiniteBitSet` having no bits set.
const EMPTY: Self;
/// Value for one as the integral type.
const ONE: Self;
/// Value for zero as the integral type.
const ZERO: Self;
/// Perform a checked left shift on the integral type.
fn checked_shl(self, rhs: u32) -> Option<Self>;
/// Perform a checked right shift on the integral type.
fn checked_shr(self, rhs: u32) -> Option<Self>;
}
impl FiniteBitSetTy for u32 {
const DOMAIN_SIZE: u32 = 32;
const FILLED: Self = Self::MAX;
const EMPTY: Self = Self::MIN;
const ONE: Self = 1u32;
const ZERO: Self = 0u32;
fn checked_shl(self, rhs: u32) -> Option<Self> {
self.checked_shl(rhs)
}
fn checked_shr(self, rhs: u32) -> Option<Self> {
self.checked_shr(rhs)
}
}
impl std::fmt::Debug for FiniteBitSet<u32> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:032b}", self.0)
}
}
impl FiniteBitSetTy for u64 {
const DOMAIN_SIZE: u32 = 64;
const FILLED: Self = Self::MAX;
const EMPTY: Self = Self::MIN;
const ONE: Self = 1u64;
const ZERO: Self = 0u64;
fn checked_shl(self, rhs: u32) -> Option<Self> {
self.checked_shl(rhs)
}
fn checked_shr(self, rhs: u32) -> Option<Self> {
self.checked_shr(rhs)
}
}
impl std::fmt::Debug for FiniteBitSet<u64> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:064b}", self.0)
}
}
impl FiniteBitSetTy for u128 {
const DOMAIN_SIZE: u32 = 128;
const FILLED: Self = Self::MAX;
const EMPTY: Self = Self::MIN;
const ONE: Self = 1u128;
const ZERO: Self = 0u128;
fn checked_shl(self, rhs: u32) -> Option<Self> {
self.checked_shl(rhs)
}
fn checked_shr(self, rhs: u32) -> Option<Self> {
self.checked_shr(rhs)
}
}
impl std::fmt::Debug for FiniteBitSet<u128> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:0128b}", self.0)
}
}
/// A fixed-sized bitset type represented by an integer type. Indices outwith than the range
/// representable by `T` are considered set.
#[derive(Copy, Clone, Eq, PartialEq, Decodable, Encodable)]
pub struct FiniteBitSet<T: FiniteBitSetTy>(pub T);
impl<T: FiniteBitSetTy> FiniteBitSet<T> {
/// Creates a new, empty bitset.
pub fn new_empty() -> Self {
Self(T::EMPTY)
}
/// Sets the `index`th bit.
pub fn set(&mut self, index: u32) {
self.0 |= T::ONE.checked_shl(index).unwrap_or(T::ZERO);
}
/// Unsets the `index`th bit.
pub fn clear(&mut self, index: u32) {
self.0 &= !T::ONE.checked_shl(index).unwrap_or(T::ZERO);
}
/// Sets the `i`th to `j`th bits.
pub fn set_range(&mut self, range: Range<u32>) {
let bits = T::FILLED
.checked_shl(range.end - range.start)
.unwrap_or(T::ZERO)
.not()
.checked_shl(range.start)
.unwrap_or(T::ZERO);
self.0 |= bits;
}
/// Is the set empty?
pub fn is_empty(&self) -> bool {
self.0 == T::EMPTY
}
/// Returns the domain size of the bitset.
pub fn within_domain(&self, index: u32) -> bool {
index < T::DOMAIN_SIZE
}
/// Returns if the `index`th bit is set.
pub fn contains(&self, index: u32) -> Option<bool> {
self.within_domain(index)
.then(|| ((self.0.checked_shr(index).unwrap_or(T::ONE)) & T::ONE) == T::ONE)
}
}
impl<T: FiniteBitSetTy> Default for FiniteBitSet<T> {
fn default() -> Self {
Self::new_empty()
}
}