rust/clippy_lints/src/loops.rs
2018-08-29 11:08:29 -07:00

2244 lines
78 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use itertools::Itertools;
use crate::reexport::*;
use rustc::hir::*;
use rustc::hir::def::Def;
use rustc::hir::def_id;
use rustc::hir::intravisit::{walk_block, walk_decl, walk_expr, walk_pat, walk_stmt, NestedVisitorMap, Visitor};
use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass, in_external_macro, LintContext};
use rustc::{declare_tool_lint, lint_array};
use if_chain::if_chain;
use rustc::middle::region;
// use rustc::middle::region::CodeExtent;
use rustc::middle::expr_use_visitor::*;
use rustc::middle::mem_categorization::Categorization;
use rustc::middle::mem_categorization::cmt_;
use rustc::ty::{self, Ty};
use rustc::ty::subst::Subst;
use std::collections::{HashMap, HashSet};
use std::iter::{once, Iterator};
use syntax::ast;
use syntax::source_map::Span;
use crate::utils::{sugg, sext};
use crate::utils::usage::mutated_variables;
use crate::consts::{constant, Constant};
use crate::utils::{get_enclosing_block, get_parent_expr, higher, is_integer_literal, is_refutable,
last_path_segment, match_trait_method, match_type, match_var, multispan_sugg, snippet, snippet_opt,
span_help_and_lint, span_lint, span_lint_and_sugg, span_lint_and_then, SpanlessEq};
use crate::utils::paths;
/// **What it does:** Checks for for-loops that manually copy items between
/// slices that could be optimized by having a memcpy.
///
/// **Why is this bad?** It is not as fast as a memcpy.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for i in 0..src.len() {
/// dst[i + 64] = src[i];
/// }
/// ```
declare_clippy_lint! {
pub MANUAL_MEMCPY,
perf,
"manually copying items between slices"
}
/// **What it does:** Checks for looping over the range of `0..len` of some
/// collection just to get the values by index.
///
/// **Why is this bad?** Just iterating the collection itself makes the intent
/// more clear and is probably faster.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for i in 0..vec.len() {
/// println!("{}", vec[i]);
/// }
/// ```
declare_clippy_lint! {
pub NEEDLESS_RANGE_LOOP,
style,
"for-looping over a range of indices where an iterator over items would do"
}
/// **What it does:** Checks for loops on `x.iter()` where `&x` will do, and
/// suggests the latter.
///
/// **Why is this bad?** Readability.
///
/// **Known problems:** False negatives. We currently only warn on some known
/// types.
///
/// **Example:**
/// ```rust
/// // with `y` a `Vec` or slice:
/// for x in y.iter() { .. }
/// ```
/// can be rewritten to
/// ```rust
/// for x in &y { .. }
/// ```
declare_clippy_lint! {
pub EXPLICIT_ITER_LOOP,
style,
"for-looping over `_.iter()` or `_.iter_mut()` when `&_` or `&mut _` would do"
}
/// **What it does:** Checks for loops on `y.into_iter()` where `y` will do, and
/// suggests the latter.
///
/// **Why is this bad?** Readability.
///
/// **Known problems:** None
///
/// **Example:**
/// ```rust
/// // with `y` a `Vec` or slice:
/// for x in y.into_iter() { .. }
/// ```
/// can be rewritten to
/// ```rust
/// for x in y { .. }
/// ```
declare_clippy_lint! {
pub EXPLICIT_INTO_ITER_LOOP,
style,
"for-looping over `_.into_iter()` when `_` would do"
}
/// **What it does:** Checks for loops on `x.next()`.
///
/// **Why is this bad?** `next()` returns either `Some(value)` if there was a
/// value, or `None` otherwise. The insidious thing is that `Option<_>`
/// implements `IntoIterator`, so that possibly one value will be iterated,
/// leading to some hard to find bugs. No one will want to write such code
/// [except to win an Underhanded Rust
/// Contest](https://www.reddit.com/r/rust/comments/3hb0wm/underhanded_rust_contest/cu5yuhr).
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for x in y.next() { .. }
/// ```
declare_clippy_lint! {
pub ITER_NEXT_LOOP,
correctness,
"for-looping over `_.next()` which is probably not intended"
}
/// **What it does:** Checks for `for` loops over `Option` values.
///
/// **Why is this bad?** Readability. This is more clearly expressed as an `if
/// let`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for x in option { .. }
/// ```
///
/// This should be
/// ```rust
/// if let Some(x) = option { .. }
/// ```
declare_clippy_lint! {
pub FOR_LOOP_OVER_OPTION,
correctness,
"for-looping over an `Option`, which is more clearly expressed as an `if let`"
}
/// **What it does:** Checks for `for` loops over `Result` values.
///
/// **Why is this bad?** Readability. This is more clearly expressed as an `if
/// let`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for x in result { .. }
/// ```
///
/// This should be
/// ```rust
/// if let Ok(x) = result { .. }
/// ```
declare_clippy_lint! {
pub FOR_LOOP_OVER_RESULT,
correctness,
"for-looping over a `Result`, which is more clearly expressed as an `if let`"
}
/// **What it does:** Detects `loop + match` combinations that are easier
/// written as a `while let` loop.
///
/// **Why is this bad?** The `while let` loop is usually shorter and more
/// readable.
///
/// **Known problems:** Sometimes the wrong binding is displayed (#383).
///
/// **Example:**
/// ```rust
/// loop {
/// let x = match y {
/// Some(x) => x,
/// None => break,
/// }
/// // .. do something with x
/// }
/// // is easier written as
/// while let Some(x) = y {
/// // .. do something with x
/// }
/// ```
declare_clippy_lint! {
pub WHILE_LET_LOOP,
complexity,
"`loop { if let { ... } else break }`, which can be written as a `while let` loop"
}
/// **What it does:** Checks for using `collect()` on an iterator without using
/// the result.
///
/// **Why is this bad?** It is more idiomatic to use a `for` loop over the
/// iterator instead.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// vec.iter().map(|x| /* some operation returning () */).collect::<Vec<_>>();
/// ```
declare_clippy_lint! {
pub UNUSED_COLLECT,
perf,
"`collect()`ing an iterator without using the result; this is usually better \
written as a for loop"
}
/// **What it does:** Checks for loops over ranges `x..y` where both `x` and `y`
/// are constant and `x` is greater or equal to `y`, unless the range is
/// reversed or has a negative `.step_by(_)`.
///
/// **Why is it bad?** Such loops will either be skipped or loop until
/// wrap-around (in debug code, this may `panic!()`). Both options are probably
/// not intended.
///
/// **Known problems:** The lint cannot catch loops over dynamically defined
/// ranges. Doing this would require simulating all possible inputs and code
/// paths through the program, which would be complex and error-prone.
///
/// **Example:**
/// ```rust
/// for x in 5..10-5 { .. } // oops, stray `-`
/// ```
declare_clippy_lint! {
pub REVERSE_RANGE_LOOP,
correctness,
"iteration over an empty range, such as `10..0` or `5..5`"
}
/// **What it does:** Checks `for` loops over slices with an explicit counter
/// and suggests the use of `.enumerate()`.
///
/// **Why is it bad?** Not only is the version using `.enumerate()` more
/// readable, the compiler is able to remove bounds checks which can lead to
/// faster code in some instances.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for i in 0..v.len() { foo(v[i]);
/// for i in 0..v.len() { bar(i, v[i]); }
/// ```
declare_clippy_lint! {
pub EXPLICIT_COUNTER_LOOP,
complexity,
"for-looping with an explicit counter when `_.enumerate()` would do"
}
/// **What it does:** Checks for empty `loop` expressions.
///
/// **Why is this bad?** Those busy loops burn CPU cycles without doing
/// anything. Think of the environment and either block on something or at least
/// make the thread sleep for some microseconds.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// loop {}
/// ```
declare_clippy_lint! {
pub EMPTY_LOOP,
style,
"empty `loop {}`, which should block or sleep"
}
/// **What it does:** Checks for `while let` expressions on iterators.
///
/// **Why is this bad?** Readability. A simple `for` loop is shorter and conveys
/// the intent better.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// while let Some(val) = iter() { .. }
/// ```
declare_clippy_lint! {
pub WHILE_LET_ON_ITERATOR,
style,
"using a while-let loop instead of a for loop on an iterator"
}
/// **What it does:** Checks for iterating a map (`HashMap` or `BTreeMap`) and
/// ignoring either the keys or values.
///
/// **Why is this bad?** Readability. There are `keys` and `values` methods that
/// can be used to express that don't need the values or keys.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// for (k, _) in &map { .. }
/// ```
///
/// could be replaced by
///
/// ```rust
/// for k in map.keys() { .. }
/// ```
declare_clippy_lint! {
pub FOR_KV_MAP,
style,
"looping on a map using `iter` when `keys` or `values` would do"
}
/// **What it does:** Checks for loops that will always `break`, `return` or
/// `continue` an outer loop.
///
/// **Why is this bad?** This loop never loops, all it does is obfuscating the
/// code.
///
/// **Known problems:** None
///
/// **Example:**
/// ```rust
/// loop { ..; break; }
/// ```
declare_clippy_lint! {
pub NEVER_LOOP,
correctness,
"any loop that will always `break` or `return`"
}
/// **What it does:** Checks for loops which have a range bound that is a mutable variable
///
/// **Why is this bad?** One might think that modifying the mutable variable changes the loop bounds
///
/// **Known problems:** None
///
/// **Example:**
/// ```rust
/// let mut foo = 42;
/// for i in 0..foo {
/// foo -= 1;
/// println!("{}", i); // prints numbers from 0 to 42, not 0 to 21
/// }
/// ```
declare_clippy_lint! {
pub MUT_RANGE_BOUND,
complexity,
"for loop over a range where one of the bounds is a mutable variable"
}
/// **What it does:** Checks whether variables used within while loop condition
/// can be (and are) mutated in the body.
///
/// **Why is this bad?** If the condition is unchanged, entering the body of the loop
/// will lead to an infinite loop.
///
/// **Known problems:** If the `while`-loop is in a closure, the check for mutation of the
/// condition variables in the body can cause false negatives. For example when only `Upvar` `a` is
/// in the condition and only `Upvar` `b` gets mutated in the body, the lint will not trigger.
///
/// **Example:**
/// ```rust
/// let i = 0;
/// while i > 10 {
/// println!("let me loop forever!");
/// }
/// ```
declare_clippy_lint! {
pub WHILE_IMMUTABLE_CONDITION,
correctness,
"variables used within while expression are not mutated in the body"
}
#[derive(Copy, Clone)]
pub struct Pass;
impl LintPass for Pass {
fn get_lints(&self) -> LintArray {
lint_array!(
MANUAL_MEMCPY,
NEEDLESS_RANGE_LOOP,
EXPLICIT_ITER_LOOP,
EXPLICIT_INTO_ITER_LOOP,
ITER_NEXT_LOOP,
FOR_LOOP_OVER_RESULT,
FOR_LOOP_OVER_OPTION,
WHILE_LET_LOOP,
UNUSED_COLLECT,
REVERSE_RANGE_LOOP,
EXPLICIT_COUNTER_LOOP,
EMPTY_LOOP,
WHILE_LET_ON_ITERATOR,
FOR_KV_MAP,
NEVER_LOOP,
MUT_RANGE_BOUND,
WHILE_IMMUTABLE_CONDITION,
)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass {
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
if let Some((pat, arg, body)) = higher::for_loop(expr) {
check_for_loop(cx, pat, arg, body, expr);
}
// check for never_loop
match expr.node {
ExprKind::While(_, ref block, _) | ExprKind::Loop(ref block, _, _) => {
match never_loop_block(block, expr.id) {
NeverLoopResult::AlwaysBreak =>
span_lint(cx, NEVER_LOOP, expr.span, "this loop never actually loops"),
NeverLoopResult::MayContinueMainLoop | NeverLoopResult::Otherwise => (),
}
},
_ => (),
}
// check for `loop { if let {} else break }` that could be `while let`
// (also matches an explicit "match" instead of "if let")
// (even if the "match" or "if let" is used for declaration)
if let ExprKind::Loop(ref block, _, LoopSource::Loop) = expr.node {
// also check for empty `loop {}` statements
if block.stmts.is_empty() && block.expr.is_none() {
span_lint(
cx,
EMPTY_LOOP,
expr.span,
"empty `loop {}` detected. You may want to either use `panic!()` or add \
`std::thread::sleep(..);` to the loop body.",
);
}
// extract the expression from the first statement (if any) in a block
let inner_stmt_expr = extract_expr_from_first_stmt(block);
// or extract the first expression (if any) from the block
if let Some(inner) = inner_stmt_expr.or_else(|| extract_first_expr(block)) {
if let ExprKind::Match(ref matchexpr, ref arms, ref source) = inner.node {
// ensure "if let" compatible match structure
match *source {
MatchSource::Normal | MatchSource::IfLetDesugar { .. } => {
if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none()
&& arms[1].pats.len() == 1 && arms[1].guard.is_none()
&& is_simple_break_expr(&arms[1].body)
{
if in_external_macro(cx.sess(), expr.span) {
return;
}
// NOTE: we used to make build a body here instead of using
// ellipsis, this was removed because:
// 1) it was ugly with big bodies;
// 2) it was not indented properly;
// 3) it wasnt very smart (see #675).
span_lint_and_sugg(
cx,
WHILE_LET_LOOP,
expr.span,
"this loop could be written as a `while let` loop",
"try",
format!(
"while let {} = {} {{ .. }}",
snippet(cx, arms[0].pats[0].span, ".."),
snippet(cx, matchexpr.span, "..")
),
);
}
},
_ => (),
}
}
}
}
if let ExprKind::Match(ref match_expr, ref arms, MatchSource::WhileLetDesugar) = expr.node {
let pat = &arms[0].pats[0].node;
if let (
&PatKind::TupleStruct(ref qpath, ref pat_args, _),
&ExprKind::MethodCall(ref method_path, _, ref method_args),
) = (pat, &match_expr.node)
{
let iter_expr = &method_args[0];
let lhs_constructor = last_path_segment(qpath);
if method_path.ident.name == "next" && match_trait_method(cx, match_expr, &paths::ITERATOR)
&& lhs_constructor.ident.name == "Some" && (
pat_args.is_empty()
|| !is_refutable(cx, &pat_args[0])
&& !is_iterator_used_after_while_let(cx, iter_expr)
&& !is_nested(cx, expr, &method_args[0]))
{
let iterator = snippet(cx, method_args[0].span, "_");
let loop_var = if pat_args.is_empty() {
"_".to_string()
} else {
snippet(cx, pat_args[0].span, "_").into_owned()
};
span_lint_and_sugg(
cx,
WHILE_LET_ON_ITERATOR,
expr.span,
"this loop could be written as a `for` loop",
"try",
format!("for {} in {} {{ .. }}", loop_var, iterator),
);
}
}
}
// check for while loops which conditions never change
if let ExprKind::While(ref cond, _, _) = expr.node {
check_infinite_loop(cx, cond, expr);
}
}
fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, stmt: &'tcx Stmt) {
if let StmtKind::Semi(ref expr, _) = stmt.node {
if let ExprKind::MethodCall(ref method, _, ref args) = expr.node {
if args.len() == 1 && method.ident.name == "collect" && match_trait_method(cx, expr, &paths::ITERATOR) {
span_lint(
cx,
UNUSED_COLLECT,
expr.span,
"you are collect()ing an iterator and throwing away the result. \
Consider using an explicit for loop to exhaust the iterator",
);
}
}
}
}
}
enum NeverLoopResult {
// A break/return always get triggered but not necessarily for the main loop.
AlwaysBreak,
// A continue may occur for the main loop.
MayContinueMainLoop,
Otherwise,
}
fn absorb_break(arg: &NeverLoopResult) -> NeverLoopResult {
match *arg {
NeverLoopResult::AlwaysBreak |
NeverLoopResult::Otherwise => NeverLoopResult::Otherwise,
NeverLoopResult::MayContinueMainLoop => NeverLoopResult::MayContinueMainLoop,
}
}
// Combine two results for parts that are called in order.
fn combine_seq(first: NeverLoopResult, second: NeverLoopResult) -> NeverLoopResult {
match first {
NeverLoopResult::AlwaysBreak | NeverLoopResult::MayContinueMainLoop => first,
NeverLoopResult::Otherwise => second,
}
}
// Combine two results where both parts are called but not necessarily in order.
fn combine_both(left: NeverLoopResult, right: NeverLoopResult) -> NeverLoopResult {
match (left, right) {
(NeverLoopResult::MayContinueMainLoop, _) | (_, NeverLoopResult::MayContinueMainLoop) =>
NeverLoopResult::MayContinueMainLoop,
(NeverLoopResult::AlwaysBreak, _) | (_, NeverLoopResult::AlwaysBreak) =>
NeverLoopResult::AlwaysBreak,
(NeverLoopResult::Otherwise, NeverLoopResult::Otherwise) =>
NeverLoopResult::Otherwise,
}
}
// Combine two results where only one of the part may have been executed.
fn combine_branches(b1: NeverLoopResult, b2: NeverLoopResult) -> NeverLoopResult {
match (b1, b2) {
(NeverLoopResult::AlwaysBreak, NeverLoopResult::AlwaysBreak) =>
NeverLoopResult::AlwaysBreak,
(NeverLoopResult::MayContinueMainLoop, _) | (_, NeverLoopResult::MayContinueMainLoop) =>
NeverLoopResult::MayContinueMainLoop,
(NeverLoopResult::Otherwise, _) | (_, NeverLoopResult::Otherwise) =>
NeverLoopResult::Otherwise,
}
}
fn never_loop_block(block: &Block, main_loop_id: NodeId) -> NeverLoopResult {
let stmts = block.stmts.iter().map(stmt_to_expr);
let expr = once(block.expr.as_ref().map(|p| &**p));
let mut iter = stmts.chain(expr).filter_map(|e| e);
never_loop_expr_seq(&mut iter, main_loop_id)
}
fn stmt_to_expr(stmt: &Stmt) -> Option<&Expr> {
match stmt.node {
StmtKind::Semi(ref e, ..) | StmtKind::Expr(ref e, ..) => Some(e),
StmtKind::Decl(ref d, ..) => decl_to_expr(d),
}
}
fn decl_to_expr(decl: &Decl) -> Option<&Expr> {
match decl.node {
DeclKind::Local(ref local) => local.init.as_ref().map(|p| &**p),
_ => None,
}
}
fn never_loop_expr(expr: &Expr, main_loop_id: NodeId) -> NeverLoopResult {
match expr.node {
ExprKind::Box(ref e) |
ExprKind::Unary(_, ref e) |
ExprKind::Cast(ref e, _) |
ExprKind::Type(ref e, _) |
ExprKind::Field(ref e, _) |
ExprKind::AddrOf(_, ref e) |
ExprKind::Struct(_, _, Some(ref e)) |
ExprKind::Repeat(ref e, _) => never_loop_expr(e, main_loop_id),
ExprKind::Array(ref es) | ExprKind::MethodCall(_, _, ref es) | ExprKind::Tup(ref es) => {
never_loop_expr_all(&mut es.iter(), main_loop_id)
},
ExprKind::Call(ref e, ref es) => never_loop_expr_all(&mut once(&**e).chain(es.iter()), main_loop_id),
ExprKind::Binary(_, ref e1, ref e2) |
ExprKind::Assign(ref e1, ref e2) |
ExprKind::AssignOp(_, ref e1, ref e2) |
ExprKind::Index(ref e1, ref e2) => never_loop_expr_all(&mut [&**e1, &**e2].iter().cloned(), main_loop_id),
ExprKind::If(ref e, ref e2, ref e3) => {
let e1 = never_loop_expr(e, main_loop_id);
let e2 = never_loop_expr(e2, main_loop_id);
let e3 = e3.as_ref().map_or(NeverLoopResult::Otherwise, |e| never_loop_expr(e, main_loop_id));
combine_seq(e1, combine_branches(e2, e3))
},
ExprKind::Loop(ref b, _, _) => {
// Break can come from the inner loop so remove them.
absorb_break(&never_loop_block(b, main_loop_id))
},
ExprKind::While(ref e, ref b, _) => {
let e = never_loop_expr(e, main_loop_id);
let result = never_loop_block(b, main_loop_id);
// Break can come from the inner loop so remove them.
combine_seq(e, absorb_break(&result))
},
ExprKind::Match(ref e, ref arms, _) => {
let e = never_loop_expr(e, main_loop_id);
if arms.is_empty() {
e
} else {
let arms = never_loop_expr_branch(&mut arms.iter().map(|a| &*a.body), main_loop_id);
combine_seq(e, arms)
}
},
ExprKind::Block(ref b, _) => never_loop_block(b, main_loop_id),
ExprKind::Continue(d) => {
let id = d.target_id
.expect("target id can only be missing in the presence of compilation errors");
if id == main_loop_id {
NeverLoopResult::MayContinueMainLoop
} else {
NeverLoopResult::AlwaysBreak
}
},
ExprKind::Break(_, _) => {
NeverLoopResult::AlwaysBreak
},
ExprKind::Ret(ref e) => {
if let Some(ref e) = *e {
combine_seq(never_loop_expr(e, main_loop_id), NeverLoopResult::AlwaysBreak)
} else {
NeverLoopResult::AlwaysBreak
}
},
ExprKind::Struct(_, _, None) |
ExprKind::Yield(_) |
ExprKind::Closure(_, _, _, _, _) |
ExprKind::InlineAsm(_, _, _) |
ExprKind::Path(_) |
ExprKind::Lit(_) => NeverLoopResult::Otherwise,
}
}
fn never_loop_expr_seq<'a, T: Iterator<Item=&'a Expr>>(es: &mut T, main_loop_id: NodeId) -> NeverLoopResult {
es.map(|e| never_loop_expr(e, main_loop_id))
.fold(NeverLoopResult::Otherwise, combine_seq)
}
fn never_loop_expr_all<'a, T: Iterator<Item=&'a Expr>>(es: &mut T, main_loop_id: NodeId) -> NeverLoopResult {
es.map(|e| never_loop_expr(e, main_loop_id))
.fold(NeverLoopResult::Otherwise, combine_both)
}
fn never_loop_expr_branch<'a, T: Iterator<Item=&'a Expr>>(e: &mut T, main_loop_id: NodeId) -> NeverLoopResult {
e.map(|e| never_loop_expr(e, main_loop_id))
.fold(NeverLoopResult::AlwaysBreak, combine_branches)
}
fn check_for_loop<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
pat: &'tcx Pat,
arg: &'tcx Expr,
body: &'tcx Expr,
expr: &'tcx Expr,
) {
check_for_loop_range(cx, pat, arg, body, expr);
check_for_loop_reverse_range(cx, arg, expr);
check_for_loop_arg(cx, pat, arg, expr);
check_for_loop_explicit_counter(cx, arg, body, expr);
check_for_loop_over_map_kv(cx, pat, arg, body, expr);
check_for_mut_range_bound(cx, arg, body);
detect_manual_memcpy(cx, pat, arg, body, expr);
}
fn same_var<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &Expr, var: ast::NodeId) -> bool {
if_chain! {
if let ExprKind::Path(ref qpath) = expr.node;
if let QPath::Resolved(None, ref path) = *qpath;
if path.segments.len() == 1;
if let Def::Local(local_id) = cx.tables.qpath_def(qpath, expr.hir_id);
// our variable!
if local_id == var;
then {
return true;
}
}
false
}
struct Offset {
value: String,
negate: bool,
}
impl Offset {
fn negative(s: String) -> Self {
Self {
value: s,
negate: true,
}
}
fn positive(s: String) -> Self {
Self {
value: s,
negate: false,
}
}
}
struct FixedOffsetVar {
var_name: String,
offset: Offset,
}
fn is_slice_like<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'_>) -> bool {
let is_slice = match ty.sty {
ty::Ref(_, subty, _) => is_slice_like(cx, subty),
ty::Slice(..) | ty::Array(..) => true,
_ => false,
};
is_slice || match_type(cx, ty, &paths::VEC) || match_type(cx, ty, &paths::VEC_DEQUE)
}
fn get_fixed_offset_var<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &Expr, var: ast::NodeId) -> Option<FixedOffsetVar> {
fn extract_offset<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, e: &Expr, var: ast::NodeId) -> Option<String> {
match e.node {
ExprKind::Lit(ref l) => match l.node {
ast::LitKind::Int(x, _ty) => Some(x.to_string()),
_ => None,
},
ExprKind::Path(..) if !same_var(cx, e, var) => Some(snippet_opt(cx, e.span).unwrap_or_else(|| "??".into())),
_ => None,
}
}
if let ExprKind::Index(ref seqexpr, ref idx) = expr.node {
let ty = cx.tables.expr_ty(seqexpr);
if !is_slice_like(cx, ty) {
return None;
}
let offset = match idx.node {
ExprKind::Binary(op, ref lhs, ref rhs) => match op.node {
BinOpKind::Add => {
let offset_opt = if same_var(cx, lhs, var) {
extract_offset(cx, rhs, var)
} else if same_var(cx, rhs, var) {
extract_offset(cx, lhs, var)
} else {
None
};
offset_opt.map(Offset::positive)
},
BinOpKind::Sub if same_var(cx, lhs, var) => extract_offset(cx, rhs, var).map(Offset::negative),
_ => None,
},
ExprKind::Path(..) => if same_var(cx, idx, var) {
Some(Offset::positive("0".into()))
} else {
None
},
_ => None,
};
offset.map(|o| {
FixedOffsetVar {
var_name: snippet_opt(cx, seqexpr.span).unwrap_or_else(|| "???".into()),
offset: o,
}
})
} else {
None
}
}
fn fetch_cloned_fixed_offset_var<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
expr: &Expr,
var: ast::NodeId,
) -> Option<FixedOffsetVar> {
if_chain! {
if let ExprKind::MethodCall(ref method, _, ref args) = expr.node;
if method.ident.name == "clone";
if args.len() == 1;
if let Some(arg) = args.get(0);
then {
return get_fixed_offset_var(cx, arg, var);
}
}
get_fixed_offset_var(cx, expr, var)
}
fn get_indexed_assignments<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
body: &Expr,
var: ast::NodeId,
) -> Vec<(FixedOffsetVar, FixedOffsetVar)> {
fn get_assignment<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
e: &Expr,
var: ast::NodeId,
) -> Option<(FixedOffsetVar, FixedOffsetVar)> {
if let ExprKind::Assign(ref lhs, ref rhs) = e.node {
match (get_fixed_offset_var(cx, lhs, var), fetch_cloned_fixed_offset_var(cx, rhs, var)) {
(Some(offset_left), Some(offset_right)) => {
// Source and destination must be different
if offset_left.var_name == offset_right.var_name {
None
} else {
Some((offset_left, offset_right))
}
},
_ => None,
}
} else {
None
}
}
if let ExprKind::Block(ref b, _) = body.node {
let Block {
ref stmts,
ref expr,
..
} = **b;
stmts
.iter()
.map(|stmt| match stmt.node {
StmtKind::Decl(..) => None,
StmtKind::Expr(ref e, _node_id) | StmtKind::Semi(ref e, _node_id) => Some(get_assignment(cx, e, var)),
})
.chain(
expr.as_ref()
.into_iter()
.map(|e| Some(get_assignment(cx, &*e, var))),
)
.filter_map(|op| op)
.collect::<Option<Vec<_>>>()
.unwrap_or_else(|| vec![])
} else {
get_assignment(cx, body, var).into_iter().collect()
}
}
/// Check for for loops that sequentially copy items from one slice-like
/// object to another.
fn detect_manual_memcpy<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
pat: &'tcx Pat,
arg: &'tcx Expr,
body: &'tcx Expr,
expr: &'tcx Expr,
) {
if let Some(higher::Range {
start: Some(start),
ref end,
limits,
}) = higher::range(cx, arg)
{
// the var must be a single name
if let PatKind::Binding(_, canonical_id, _, _) = pat.node {
let print_sum = |arg1: &Offset, arg2: &Offset| -> String {
match (&arg1.value[..], arg1.negate, &arg2.value[..], arg2.negate) {
("0", _, "0", _) => "".into(),
("0", _, x, false) | (x, false, "0", false) => x.into(),
("0", _, x, true) | (x, false, "0", true) => format!("-{}", x),
(x, false, y, false) => format!("({} + {})", x, y),
(x, false, y, true) => format!("({} - {})", x, y),
(x, true, y, false) => format!("({} - {})", y, x),
(x, true, y, true) => format!("-({} + {})", x, y),
}
};
let print_limit = |end: &Option<&Expr>, offset: Offset, var_name: &str| if let Some(end) = *end {
if_chain! {
if let ExprKind::MethodCall(ref method, _, ref len_args) = end.node;
if method.ident.name == "len";
if len_args.len() == 1;
if let Some(arg) = len_args.get(0);
if snippet(cx, arg.span, "??") == var_name;
then {
return if offset.negate {
format!("({} - {})", snippet(cx, end.span, "<src>.len()"), offset.value)
} else {
"".to_owned()
};
}
}
let end_str = match limits {
ast::RangeLimits::Closed => {
let end = sugg::Sugg::hir(cx, end, "<count>");
format!("{}", end + sugg::ONE)
},
ast::RangeLimits::HalfOpen => format!("{}", snippet(cx, end.span, "..")),
};
print_sum(&Offset::positive(end_str), &offset)
} else {
"..".into()
};
// The only statements in the for loops can be indexed assignments from
// indexed retrievals.
let manual_copies = get_indexed_assignments(cx, body, canonical_id);
let big_sugg = manual_copies
.into_iter()
.map(|(dst_var, src_var)| {
let start_str = Offset::positive(snippet_opt(cx, start.span).unwrap_or_else(|| "".into()));
let dst_offset = print_sum(&start_str, &dst_var.offset);
let dst_limit = print_limit(end, dst_var.offset, &dst_var.var_name);
let src_offset = print_sum(&start_str, &src_var.offset);
let src_limit = print_limit(end, src_var.offset, &src_var.var_name);
let dst = if dst_offset == "" && dst_limit == "" {
dst_var.var_name
} else {
format!("{}[{}..{}]", dst_var.var_name, dst_offset, dst_limit)
};
format!("{}.clone_from_slice(&{}[{}..{}])", dst, src_var.var_name, src_offset, src_limit)
})
.join("\n ");
if !big_sugg.is_empty() {
span_lint_and_sugg(
cx,
MANUAL_MEMCPY,
expr.span,
"it looks like you're manually copying between slices",
"try replacing the loop by",
big_sugg,
);
}
}
}
}
/// Check for looping over a range and then indexing a sequence with it.
/// The iteratee must be a range literal.
fn check_for_loop_range<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
pat: &'tcx Pat,
arg: &'tcx Expr,
body: &'tcx Expr,
expr: &'tcx Expr,
) {
if let Some(higher::Range {
start: Some(start),
ref end,
limits,
}) = higher::range(cx, arg)
{
// the var must be a single name
if let PatKind::Binding(_, canonical_id, ident, _) = pat.node {
let mut visitor = VarVisitor {
cx,
var: canonical_id,
indexed_mut: HashSet::new(),
indexed_indirectly: HashMap::new(),
indexed_directly: HashMap::new(),
referenced: HashSet::new(),
nonindex: false,
prefer_mutable: false,
};
walk_expr(&mut visitor, body);
// linting condition: we only indexed one variable, and indexed it directly
if visitor.indexed_indirectly.is_empty() && visitor.indexed_directly.len() == 1 {
let (indexed, indexed_extent) = visitor
.indexed_directly
.into_iter()
.next()
.expect("already checked that we have exactly 1 element");
// ensure that the indexed variable was declared before the loop, see #601
if let Some(indexed_extent) = indexed_extent {
let parent_id = cx.tcx.hir.get_parent(expr.id);
let parent_def_id = cx.tcx.hir.local_def_id(parent_id);
let region_scope_tree = cx.tcx.region_scope_tree(parent_def_id);
let pat_extent = region_scope_tree.var_scope(pat.hir_id.local_id);
if region_scope_tree.is_subscope_of(indexed_extent, pat_extent) {
return;
}
}
// don't lint if the container that is indexed into is also used without
// indexing
if visitor.referenced.contains(&indexed) {
return;
}
let starts_at_zero = is_integer_literal(start, 0);
let skip = if starts_at_zero {
"".to_owned()
} else {
format!(".skip({})", snippet(cx, start.span, ".."))
};
let take = if let Some(end) = *end {
if is_len_call(end, indexed) {
"".to_owned()
} else {
match limits {
ast::RangeLimits::Closed => {
let end = sugg::Sugg::hir(cx, end, "<count>");
format!(".take({})", end + sugg::ONE)
},
ast::RangeLimits::HalfOpen => format!(".take({})", snippet(cx, end.span, "..")),
}
}
} else {
"".to_owned()
};
let (ref_mut, method) = if visitor.indexed_mut.contains(&indexed) {
("mut ", "iter_mut")
} else {
("", "iter")
};
if visitor.nonindex {
span_lint_and_then(
cx,
NEEDLESS_RANGE_LOOP,
expr.span,
&format!("the loop variable `{}` is used to index `{}`", ident.name, indexed),
|db| {
multispan_sugg(
db,
"consider using an iterator".to_string(),
vec![
(pat.span, format!("({}, <item>)", ident.name)),
(arg.span, format!("{}.{}().enumerate(){}{}", indexed, method, take, skip)),
],
);
},
);
} else {
let repl = if starts_at_zero && take.is_empty() {
format!("&{}{}", ref_mut, indexed)
} else {
format!("{}.{}(){}{}", indexed, method, take, skip)
};
span_lint_and_then(
cx,
NEEDLESS_RANGE_LOOP,
expr.span,
&format!("the loop variable `{}` is only used to index `{}`.", ident.name, indexed),
|db| {
multispan_sugg(
db,
"consider using an iterator".to_string(),
vec![(pat.span, "<item>".to_string()), (arg.span, repl)],
);
},
);
}
}
}
}
}
fn is_len_call(expr: &Expr, var: Name) -> bool {
if_chain! {
if let ExprKind::MethodCall(ref method, _, ref len_args) = expr.node;
if len_args.len() == 1;
if method.ident.name == "len";
if let ExprKind::Path(QPath::Resolved(_, ref path)) = len_args[0].node;
if path.segments.len() == 1;
if path.segments[0].ident.name == var;
then {
return true;
}
}
false
}
fn check_for_loop_reverse_range<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, arg: &'tcx Expr, expr: &'tcx Expr) {
// if this for loop is iterating over a two-sided range...
if let Some(higher::Range {
start: Some(start),
end: Some(end),
limits,
}) = higher::range(cx, arg)
{
// ...and both sides are compile-time constant integers...
if let Some((start_idx, _)) = constant(cx, cx.tables, start) {
if let Some((end_idx, _)) = constant(cx, cx.tables, end) {
// ...and the start index is greater than the end index,
// this loop will never run. This is often confusing for developers
// who think that this will iterate from the larger value to the
// smaller value.
let ty = cx.tables.expr_ty(start);
let (sup, eq) = match (start_idx, end_idx) {
(
Constant::Int(start_idx),
Constant::Int(end_idx),
) => (match ty.sty {
ty::Int(ity) => sext(cx.tcx, start_idx, ity) > sext(cx.tcx, end_idx, ity),
ty::Uint(_) => start_idx > end_idx,
_ => false,
}, start_idx == end_idx),
_ => (false, false),
};
if sup {
let start_snippet = snippet(cx, start.span, "_");
let end_snippet = snippet(cx, end.span, "_");
let dots = if limits == ast::RangeLimits::Closed {
"..."
} else {
".."
};
span_lint_and_then(
cx,
REVERSE_RANGE_LOOP,
expr.span,
"this range is empty so this for loop will never run",
|db| {
db.span_suggestion(
arg.span,
"consider using the following if you are attempting to iterate over this \
range in reverse",
format!(
"({end}{dots}{start}).rev()",
end = end_snippet,
dots = dots,
start = start_snippet
),
);
},
);
} else if eq && limits != ast::RangeLimits::Closed {
// if they are equal, it's also problematic - this loop
// will never run.
span_lint(
cx,
REVERSE_RANGE_LOOP,
expr.span,
"this range is empty so this for loop will never run",
);
}
}
}
}
}
fn lint_iter_method(cx: &LateContext<'_, '_>, args: &[Expr], arg: &Expr, method_name: &str) {
let object = snippet(cx, args[0].span, "_");
let muta = if method_name == "iter_mut" {
"mut "
} else {
""
};
span_lint_and_sugg(
cx,
EXPLICIT_ITER_LOOP,
arg.span,
"it is more idiomatic to loop over references to containers instead of using explicit \
iteration methods",
"to write this more concisely, try",
format!("&{}{}", muta, object),
)
}
fn check_for_loop_arg(cx: &LateContext<'_, '_>, pat: &Pat, arg: &Expr, expr: &Expr) {
let mut next_loop_linted = false; // whether or not ITER_NEXT_LOOP lint was used
if let ExprKind::MethodCall(ref method, _, ref args) = arg.node {
// just the receiver, no arguments
if args.len() == 1 {
let method_name = &*method.ident.as_str();
// check for looping over x.iter() or x.iter_mut(), could use &x or &mut x
if method_name == "iter" || method_name == "iter_mut" {
if is_ref_iterable_type(cx, &args[0]) {
lint_iter_method(cx, args, arg, method_name);
}
} else if method_name == "into_iter" && match_trait_method(cx, arg, &paths::INTO_ITERATOR) {
let def_id = cx.tables.type_dependent_defs()[arg.hir_id].def_id();
let substs = cx.tables.node_substs(arg.hir_id);
let method_type = cx.tcx.type_of(def_id).subst(cx.tcx, substs);
let fn_arg_tys = method_type.fn_sig(cx.tcx).inputs();
assert_eq!(fn_arg_tys.skip_binder().len(), 1);
if fn_arg_tys.skip_binder()[0].is_region_ptr() {
match cx.tables.expr_ty(&args[0]).sty {
// If the length is greater than 32 no traits are implemented for array and
// therefore we cannot use `&`.
ty::TyKind::Array(_, size) if size.assert_usize(cx.tcx).expect("array size") > 32 => (),
_ => lint_iter_method(cx, args, arg, method_name),
};
} else {
let object = snippet(cx, args[0].span, "_");
span_lint_and_sugg(
cx,
EXPLICIT_INTO_ITER_LOOP,
arg.span,
"it is more idiomatic to loop over containers instead of using explicit \
iteration methods`",
"to write this more concisely, try",
object.to_string(),
);
}
} else if method_name == "next" && match_trait_method(cx, arg, &paths::ITERATOR) {
span_lint(
cx,
ITER_NEXT_LOOP,
expr.span,
"you are iterating over `Iterator::next()` which is an Option; this will compile but is \
probably not what you want",
);
next_loop_linted = true;
}
}
}
if !next_loop_linted {
check_arg_type(cx, pat, arg);
}
}
/// Check for `for` loops over `Option`s and `Results`
fn check_arg_type(cx: &LateContext<'_, '_>, pat: &Pat, arg: &Expr) {
let ty = cx.tables.expr_ty(arg);
if match_type(cx, ty, &paths::OPTION) {
span_help_and_lint(
cx,
FOR_LOOP_OVER_OPTION,
arg.span,
&format!(
"for loop over `{0}`, which is an `Option`. This is more readably written as an \
`if let` statement.",
snippet(cx, arg.span, "_")
),
&format!(
"consider replacing `for {0} in {1}` with `if let Some({0}) = {1}`",
snippet(cx, pat.span, "_"),
snippet(cx, arg.span, "_")
),
);
} else if match_type(cx, ty, &paths::RESULT) {
span_help_and_lint(
cx,
FOR_LOOP_OVER_RESULT,
arg.span,
&format!(
"for loop over `{0}`, which is a `Result`. This is more readably written as an \
`if let` statement.",
snippet(cx, arg.span, "_")
),
&format!(
"consider replacing `for {0} in {1}` with `if let Ok({0}) = {1}`",
snippet(cx, pat.span, "_"),
snippet(cx, arg.span, "_")
),
);
}
}
fn check_for_loop_explicit_counter<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
arg: &'tcx Expr,
body: &'tcx Expr,
expr: &'tcx Expr,
) {
// Look for variables that are incremented once per loop iteration.
let mut visitor = IncrementVisitor {
cx,
states: HashMap::new(),
depth: 0,
done: false,
};
walk_expr(&mut visitor, body);
// For each candidate, check the parent block to see if
// it's initialized to zero at the start of the loop.
let map = &cx.tcx.hir;
let parent_scope = map.get_enclosing_scope(expr.id)
.and_then(|id| map.get_enclosing_scope(id));
if let Some(parent_id) = parent_scope {
if let Node::Block(block) = map.get(parent_id) {
for (id, _) in visitor
.states
.iter()
.filter(|&(_, v)| *v == VarState::IncrOnce)
{
let mut visitor2 = InitializeVisitor {
cx,
end_expr: expr,
var_id: *id,
state: VarState::IncrOnce,
name: None,
depth: 0,
past_loop: false,
};
walk_block(&mut visitor2, block);
if visitor2.state == VarState::Warn {
if let Some(name) = visitor2.name {
span_lint(
cx,
EXPLICIT_COUNTER_LOOP,
expr.span,
&format!(
"the variable `{0}` is used as a loop counter. Consider using `for ({0}, \
item) in {1}.enumerate()` or similar iterators",
name,
snippet(cx, arg.span, "_")
),
);
}
}
}
}
}
}
/// Check for the `FOR_KV_MAP` lint.
fn check_for_loop_over_map_kv<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
pat: &'tcx Pat,
arg: &'tcx Expr,
body: &'tcx Expr,
expr: &'tcx Expr,
) {
let pat_span = pat.span;
if let PatKind::Tuple(ref pat, _) = pat.node {
if pat.len() == 2 {
let arg_span = arg.span;
let (new_pat_span, kind, ty, mutbl) = match cx.tables.expr_ty(arg).sty {
ty::Ref(_, ty, mutbl) => match (&pat[0].node, &pat[1].node) {
(key, _) if pat_is_wild(key, body) => (pat[1].span, "value", ty, mutbl),
(_, value) if pat_is_wild(value, body) => (pat[0].span, "key", ty, MutImmutable),
_ => return,
},
_ => return,
};
let mutbl = match mutbl {
MutImmutable => "",
MutMutable => "_mut",
};
let arg = match arg.node {
ExprKind::AddrOf(_, ref expr) => &**expr,
_ => arg,
};
if match_type(cx, ty, &paths::HASHMAP) || match_type(cx, ty, &paths::BTREEMAP) {
span_lint_and_then(
cx,
FOR_KV_MAP,
expr.span,
&format!("you seem to want to iterate on a map's {}s", kind),
|db| {
let map = sugg::Sugg::hir(cx, arg, "map");
multispan_sugg(
db,
"use the corresponding method".into(),
vec![
(pat_span, snippet(cx, new_pat_span, kind).into_owned()),
(arg_span, format!("{}.{}s{}()", map.maybe_par(), kind, mutbl)),
],
);
},
);
}
}
}
}
struct MutatePairDelegate {
node_id_low: Option<NodeId>,
node_id_high: Option<NodeId>,
span_low: Option<Span>,
span_high: Option<Span>,
}
impl<'tcx> Delegate<'tcx> for MutatePairDelegate {
fn consume(&mut self, _: NodeId, _: Span, _: &cmt_<'tcx>, _: ConsumeMode) {}
fn matched_pat(&mut self, _: &Pat, _: &cmt_<'tcx>, _: MatchMode) {}
fn consume_pat(&mut self, _: &Pat, _: &cmt_<'tcx>, _: ConsumeMode) {}
fn borrow(&mut self, _: NodeId, sp: Span, cmt: &cmt_<'tcx>, _: ty::Region<'_>, bk: ty::BorrowKind, _: LoanCause) {
if let ty::BorrowKind::MutBorrow = bk {
if let Categorization::Local(id) = cmt.cat {
if Some(id) == self.node_id_low {
self.span_low = Some(sp)
}
if Some(id) == self.node_id_high {
self.span_high = Some(sp)
}
}
}
}
fn mutate(&mut self, _: NodeId, sp: Span, cmt: &cmt_<'tcx>, _: MutateMode) {
if let Categorization::Local(id) = cmt.cat {
if Some(id) == self.node_id_low {
self.span_low = Some(sp)
}
if Some(id) == self.node_id_high {
self.span_high = Some(sp)
}
}
}
fn decl_without_init(&mut self, _: NodeId, _: Span) {}
}
impl<'tcx> MutatePairDelegate {
fn mutation_span(&self) -> (Option<Span>, Option<Span>) {
(self.span_low, self.span_high)
}
}
fn check_for_mut_range_bound(cx: &LateContext<'_, '_>, arg: &Expr, body: &Expr) {
if let Some(higher::Range {
start: Some(start),
end: Some(end),
..
}) = higher::range(cx, arg)
{
let mut_ids = vec![
check_for_mutability(cx, start),
check_for_mutability(cx, end),
];
if mut_ids[0].is_some() || mut_ids[1].is_some() {
let (span_low, span_high) = check_for_mutation(cx, body, &mut_ids);
mut_warn_with_span(cx, span_low);
mut_warn_with_span(cx, span_high);
}
}
}
fn mut_warn_with_span(cx: &LateContext<'_, '_>, span: Option<Span>) {
if let Some(sp) = span {
span_lint(
cx,
MUT_RANGE_BOUND,
sp,
"attempt to mutate range bound within loop; note that the range of the loop is unchanged",
);
}
}
fn check_for_mutability(cx: &LateContext<'_, '_>, bound: &Expr) -> Option<NodeId> {
if_chain! {
if let ExprKind::Path(ref qpath) = bound.node;
if let QPath::Resolved(None, _) = *qpath;
then {
let def = cx.tables.qpath_def(qpath, bound.hir_id);
if let Def::Local(node_id) = def {
let node_str = cx.tcx.hir.get(node_id);
if_chain! {
if let Node::Binding(pat) = node_str;
if let PatKind::Binding(bind_ann, _, _, _) = pat.node;
if let BindingAnnotation::Mutable = bind_ann;
then {
return Some(node_id);
}
}
}
}
}
None
}
fn check_for_mutation(cx: &LateContext<'_, '_>, body: &Expr, bound_ids: &[Option<NodeId>]) -> (Option<Span>, Option<Span>) {
let mut delegate = MutatePairDelegate {
node_id_low: bound_ids[0],
node_id_high: bound_ids[1],
span_low: None,
span_high: None,
};
let def_id = def_id::DefId::local(body.hir_id.owner);
let region_scope_tree = &cx.tcx.region_scope_tree(def_id);
ExprUseVisitor::new(&mut delegate, cx.tcx, cx.param_env, region_scope_tree, cx.tables, None).walk_expr(body);
delegate.mutation_span()
}
/// Return true if the pattern is a `PatWild` or an ident prefixed with `'_'`.
fn pat_is_wild<'tcx>(pat: &'tcx PatKind, body: &'tcx Expr) -> bool {
match *pat {
PatKind::Wild => true,
PatKind::Binding(_, _, ident, None) if ident.as_str().starts_with('_') => {
let mut visitor = UsedVisitor {
var: ident.name,
used: false,
};
walk_expr(&mut visitor, body);
!visitor.used
},
_ => false,
}
}
struct UsedVisitor {
var: ast::Name, // var to look for
used: bool, // has the var been used otherwise?
}
impl<'tcx> Visitor<'tcx> for UsedVisitor {
fn visit_expr(&mut self, expr: &'tcx Expr) {
if match_var(expr, self.var) {
self.used = true;
} else {
walk_expr(self, expr);
}
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
struct LocalUsedVisitor<'a, 'tcx: 'a> {
cx: &'a LateContext<'a, 'tcx>,
local: ast::NodeId,
used: bool,
}
impl<'a, 'tcx: 'a> Visitor<'tcx> for LocalUsedVisitor<'a, 'tcx> {
fn visit_expr(&mut self, expr: &'tcx Expr) {
if same_var(self.cx, expr, self.local) {
self.used = true;
} else {
walk_expr(self, expr);
}
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
struct VarVisitor<'a, 'tcx: 'a> {
/// context reference
cx: &'a LateContext<'a, 'tcx>,
/// var name to look for as index
var: ast::NodeId,
/// indexed variables that are used mutably
indexed_mut: HashSet<Name>,
/// indirectly indexed variables (`v[(i + 4) % N]`), the extend is `None` for global
indexed_indirectly: HashMap<Name, Option<region::Scope>>,
/// subset of `indexed` of vars that are indexed directly: `v[i]`
/// this will not contain cases like `v[calc_index(i)]` or `v[(i + 4) % N]`
indexed_directly: HashMap<Name, Option<region::Scope>>,
/// Any names that are used outside an index operation.
/// Used to detect things like `&mut vec` used together with `vec[i]`
referenced: HashSet<Name>,
/// has the loop variable been used in expressions other than the index of
/// an index op?
nonindex: bool,
/// Whether we are inside the `$` in `&mut $` or `$ = foo` or `$.bar`, where bar
/// takes `&mut self`
prefer_mutable: bool,
}
impl<'a, 'tcx> VarVisitor<'a, 'tcx> {
fn check(&mut self, idx: &'tcx Expr, seqexpr: &'tcx Expr, expr: &'tcx Expr) -> bool {
if_chain! {
// the indexed container is referenced by a name
if let ExprKind::Path(ref seqpath) = seqexpr.node;
if let QPath::Resolved(None, ref seqvar) = *seqpath;
if seqvar.segments.len() == 1;
then {
let index_used_directly = same_var(self.cx, idx, self.var);
let indexed_indirectly = {
let mut used_visitor = LocalUsedVisitor {
cx: self.cx,
local: self.var,
used: false,
};
walk_expr(&mut used_visitor, idx);
used_visitor.used
};
if indexed_indirectly || index_used_directly {
if self.prefer_mutable {
self.indexed_mut.insert(seqvar.segments[0].ident.name);
}
let def = self.cx.tables.qpath_def(seqpath, seqexpr.hir_id);
match def {
Def::Local(node_id) | Def::Upvar(node_id, ..) => {
let hir_id = self.cx.tcx.hir.node_to_hir_id(node_id);
let parent_id = self.cx.tcx.hir.get_parent(expr.id);
let parent_def_id = self.cx.tcx.hir.local_def_id(parent_id);
let extent = self.cx.tcx.region_scope_tree(parent_def_id).var_scope(hir_id.local_id);
if indexed_indirectly {
self.indexed_indirectly.insert(seqvar.segments[0].ident.name, Some(extent));
}
if index_used_directly {
self.indexed_directly.insert(seqvar.segments[0].ident.name, Some(extent));
}
return false; // no need to walk further *on the variable*
}
Def::Static(..) | Def::Const(..) => {
if indexed_indirectly {
self.indexed_indirectly.insert(seqvar.segments[0].ident.name, None);
}
if index_used_directly {
self.indexed_directly.insert(seqvar.segments[0].ident.name, None);
}
return false; // no need to walk further *on the variable*
}
_ => (),
}
}
}
}
true
}
}
impl<'a, 'tcx> Visitor<'tcx> for VarVisitor<'a, 'tcx> {
fn visit_expr(&mut self, expr: &'tcx Expr) {
if_chain! {
// a range index op
if let ExprKind::MethodCall(ref meth, _, ref args) = expr.node;
if (meth.ident.name == "index" && match_trait_method(self.cx, expr, &paths::INDEX))
|| (meth.ident.name == "index_mut" && match_trait_method(self.cx, expr, &paths::INDEX_MUT));
if !self.check(&args[1], &args[0], expr);
then { return }
}
if_chain! {
// an index op
if let ExprKind::Index(ref seqexpr, ref idx) = expr.node;
if !self.check(idx, seqexpr, expr);
then { return }
}
if_chain! {
// directly using a variable
if let ExprKind::Path(ref qpath) = expr.node;
if let QPath::Resolved(None, ref path) = *qpath;
if path.segments.len() == 1;
if let Def::Local(local_id) = self.cx.tables.qpath_def(qpath, expr.hir_id);
then {
if local_id == self.var {
// we are not indexing anything, record that
self.nonindex = true;
} else {
// not the correct variable, but still a variable
self.referenced.insert(path.segments[0].ident.name);
}
}
}
let old = self.prefer_mutable;
match expr.node {
ExprKind::AssignOp(_, ref lhs, ref rhs) |
ExprKind::Assign(ref lhs, ref rhs) => {
self.prefer_mutable = true;
self.visit_expr(lhs);
self.prefer_mutable = false;
self.visit_expr(rhs);
},
ExprKind::AddrOf(mutbl, ref expr) => {
if mutbl == MutMutable {
self.prefer_mutable = true;
}
self.visit_expr(expr);
},
ExprKind::Call(ref f, ref args) => {
self.visit_expr(f);
for expr in args {
let ty = self.cx.tables.expr_ty_adjusted(expr);
self.prefer_mutable = false;
if let ty::Ref(_, _, mutbl) = ty.sty {
if mutbl == MutMutable {
self.prefer_mutable = true;
}
}
self.visit_expr(expr);
}
},
ExprKind::MethodCall(_, _, ref args) => {
let def_id = self.cx.tables.type_dependent_defs()[expr.hir_id].def_id();
for (ty, expr) in self.cx.tcx.fn_sig(def_id).inputs().skip_binder().iter().zip(args) {
self.prefer_mutable = false;
if let ty::Ref(_, _, mutbl) = ty.sty {
if mutbl == MutMutable {
self.prefer_mutable = true;
}
}
self.visit_expr(expr);
}
},
_ => walk_expr(self, expr),
}
self.prefer_mutable = old;
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
fn is_iterator_used_after_while_let<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, iter_expr: &'tcx Expr) -> bool {
let def_id = match var_def_id(cx, iter_expr) {
Some(id) => id,
None => return false,
};
let mut visitor = VarUsedAfterLoopVisitor {
cx,
def_id,
iter_expr_id: iter_expr.id,
past_while_let: false,
var_used_after_while_let: false,
};
if let Some(enclosing_block) = get_enclosing_block(cx, def_id) {
walk_block(&mut visitor, enclosing_block);
}
visitor.var_used_after_while_let
}
struct VarUsedAfterLoopVisitor<'a, 'tcx: 'a> {
cx: &'a LateContext<'a, 'tcx>,
def_id: NodeId,
iter_expr_id: NodeId,
past_while_let: bool,
var_used_after_while_let: bool,
}
impl<'a, 'tcx> Visitor<'tcx> for VarUsedAfterLoopVisitor<'a, 'tcx> {
fn visit_expr(&mut self, expr: &'tcx Expr) {
if self.past_while_let {
if Some(self.def_id) == var_def_id(self.cx, expr) {
self.var_used_after_while_let = true;
}
} else if self.iter_expr_id == expr.id {
self.past_while_let = true;
}
walk_expr(self, expr);
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
/// Return true if the type of expr is one that provides `IntoIterator` impls
/// for `&T` and `&mut T`, such as `Vec`.
#[rustfmt::skip]
fn is_ref_iterable_type(cx: &LateContext<'_, '_>, e: &Expr) -> bool {
// no walk_ptrs_ty: calling iter() on a reference can make sense because it
// will allow further borrows afterwards
let ty = cx.tables.expr_ty(e);
is_iterable_array(ty, cx) ||
match_type(cx, ty, &paths::VEC) ||
match_type(cx, ty, &paths::LINKED_LIST) ||
match_type(cx, ty, &paths::HASHMAP) ||
match_type(cx, ty, &paths::HASHSET) ||
match_type(cx, ty, &paths::VEC_DEQUE) ||
match_type(cx, ty, &paths::BINARY_HEAP) ||
match_type(cx, ty, &paths::BTREEMAP) ||
match_type(cx, ty, &paths::BTREESET)
}
fn is_iterable_array(ty: Ty<'_>, cx: &LateContext<'_, '_>) -> bool {
// IntoIterator is currently only implemented for array sizes <= 32 in rustc
match ty.sty {
ty::Array(_, n) => (0..=32).contains(&n.assert_usize(cx.tcx).expect("array length")),
_ => false,
}
}
/// If a block begins with a statement (possibly a `let` binding) and has an
/// expression, return it.
fn extract_expr_from_first_stmt(block: &Block) -> Option<&Expr> {
if block.stmts.is_empty() {
return None;
}
if let StmtKind::Decl(ref decl, _) = block.stmts[0].node {
if let DeclKind::Local(ref local) = decl.node {
if let Some(ref expr) = local.init {
Some(expr)
} else {
None
}
} else {
None
}
} else {
None
}
}
/// If a block begins with an expression (with or without semicolon), return it.
fn extract_first_expr(block: &Block) -> Option<&Expr> {
match block.expr {
Some(ref expr) if block.stmts.is_empty() => Some(expr),
None if !block.stmts.is_empty() => match block.stmts[0].node {
StmtKind::Expr(ref expr, _) | StmtKind::Semi(ref expr, _) => Some(expr),
StmtKind::Decl(..) => None,
},
_ => None,
}
}
/// Return true if expr contains a single break expr without destination label
/// and
/// passed expression. The expression may be within a block.
fn is_simple_break_expr(expr: &Expr) -> bool {
match expr.node {
ExprKind::Break(dest, ref passed_expr) if dest.label.is_none() && passed_expr.is_none() => true,
ExprKind::Block(ref b, _) => match extract_first_expr(b) {
Some(subexpr) => is_simple_break_expr(subexpr),
None => false,
},
_ => false,
}
}
// To trigger the EXPLICIT_COUNTER_LOOP lint, a variable must be
// incremented exactly once in the loop body, and initialized to zero
// at the start of the loop.
#[derive(PartialEq)]
enum VarState {
Initial, // Not examined yet
IncrOnce, // Incremented exactly once, may be a loop counter
Declared, // Declared but not (yet) initialized to zero
Warn,
DontWarn,
}
/// Scan a for loop for variables that are incremented exactly once.
struct IncrementVisitor<'a, 'tcx: 'a> {
cx: &'a LateContext<'a, 'tcx>, // context reference
states: HashMap<NodeId, VarState>, // incremented variables
depth: u32, // depth of conditional expressions
done: bool,
}
impl<'a, 'tcx> Visitor<'tcx> for IncrementVisitor<'a, 'tcx> {
fn visit_expr(&mut self, expr: &'tcx Expr) {
if self.done {
return;
}
// If node is a variable
if let Some(def_id) = var_def_id(self.cx, expr) {
if let Some(parent) = get_parent_expr(self.cx, expr) {
let state = self.states.entry(def_id).or_insert(VarState::Initial);
match parent.node {
ExprKind::AssignOp(op, ref lhs, ref rhs) => {
if lhs.id == expr.id {
if op.node == BinOpKind::Add && is_integer_literal(rhs, 1) {
*state = match *state {
VarState::Initial if self.depth == 0 => VarState::IncrOnce,
_ => VarState::DontWarn,
};
} else {
// Assigned some other value
*state = VarState::DontWarn;
}
}
},
ExprKind::Assign(ref lhs, _) if lhs.id == expr.id => *state = VarState::DontWarn,
ExprKind::AddrOf(mutability, _) if mutability == MutMutable => *state = VarState::DontWarn,
_ => (),
}
}
} else if is_loop(expr) {
self.states.clear();
self.done = true;
return;
} else if is_conditional(expr) {
self.depth += 1;
walk_expr(self, expr);
self.depth -= 1;
return;
}
walk_expr(self, expr);
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
/// Check whether a variable is initialized to zero at the start of a loop.
struct InitializeVisitor<'a, 'tcx: 'a> {
cx: &'a LateContext<'a, 'tcx>, // context reference
end_expr: &'tcx Expr, // the for loop. Stop scanning here.
var_id: NodeId,
state: VarState,
name: Option<Name>,
depth: u32, // depth of conditional expressions
past_loop: bool,
}
impl<'a, 'tcx> Visitor<'tcx> for InitializeVisitor<'a, 'tcx> {
fn visit_decl(&mut self, decl: &'tcx Decl) {
// Look for declarations of the variable
if let DeclKind::Local(ref local) = decl.node {
if local.pat.id == self.var_id {
if let PatKind::Binding(_, _, ident, _) = local.pat.node {
self.name = Some(ident.name);
self.state = if let Some(ref init) = local.init {
if is_integer_literal(init, 0) {
VarState::Warn
} else {
VarState::Declared
}
} else {
VarState::Declared
}
}
}
}
walk_decl(self, decl);
}
fn visit_expr(&mut self, expr: &'tcx Expr) {
if self.state == VarState::DontWarn {
return;
}
if SpanlessEq::new(self.cx).eq_expr(&expr, self.end_expr) {
self.past_loop = true;
return;
}
// No need to visit expressions before the variable is
// declared
if self.state == VarState::IncrOnce {
return;
}
// If node is the desired variable, see how it's used
if var_def_id(self.cx, expr) == Some(self.var_id) {
if let Some(parent) = get_parent_expr(self.cx, expr) {
match parent.node {
ExprKind::AssignOp(_, ref lhs, _) if lhs.id == expr.id => {
self.state = VarState::DontWarn;
},
ExprKind::Assign(ref lhs, ref rhs) if lhs.id == expr.id => {
self.state = if is_integer_literal(rhs, 0) && self.depth == 0 {
VarState::Warn
} else {
VarState::DontWarn
}
},
ExprKind::AddrOf(mutability, _) if mutability == MutMutable => self.state = VarState::DontWarn,
_ => (),
}
}
if self.past_loop {
self.state = VarState::DontWarn;
return;
}
} else if !self.past_loop && is_loop(expr) {
self.state = VarState::DontWarn;
return;
} else if is_conditional(expr) {
self.depth += 1;
walk_expr(self, expr);
self.depth -= 1;
return;
}
walk_expr(self, expr);
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
fn var_def_id(cx: &LateContext<'_, '_>, expr: &Expr) -> Option<NodeId> {
if let ExprKind::Path(ref qpath) = expr.node {
let path_res = cx.tables.qpath_def(qpath, expr.hir_id);
if let Def::Local(node_id) = path_res {
return Some(node_id);
}
}
None
}
fn is_loop(expr: &Expr) -> bool {
match expr.node {
ExprKind::Loop(..) | ExprKind::While(..) => true,
_ => false,
}
}
fn is_conditional(expr: &Expr) -> bool {
match expr.node {
ExprKind::If(..) | ExprKind::Match(..) => true,
_ => false,
}
}
fn is_nested(cx: &LateContext<'_, '_>, match_expr: &Expr, iter_expr: &Expr) -> bool {
if_chain! {
if let Some(loop_block) = get_enclosing_block(cx, match_expr.id);
if let Some(Node::Expr(loop_expr)) = cx.tcx.hir.find(cx.tcx.hir.get_parent_node(loop_block.id));
then {
return is_loop_nested(cx, loop_expr, iter_expr)
}
}
false
}
fn is_loop_nested(cx: &LateContext<'_, '_>, loop_expr: &Expr, iter_expr: &Expr) -> bool {
let mut id = loop_expr.id;
let iter_name = if let Some(name) = path_name(iter_expr) {
name
} else {
return true;
};
loop {
let parent = cx.tcx.hir.get_parent_node(id);
if parent == id {
return false;
}
match cx.tcx.hir.find(parent) {
Some(Node::Expr(expr)) => match expr.node {
ExprKind::Loop(..) | ExprKind::While(..) => {
return true;
},
_ => (),
},
Some(Node::Block(block)) => {
let mut block_visitor = LoopNestVisitor {
id,
iterator: iter_name,
nesting: Unknown,
};
walk_block(&mut block_visitor, block);
if block_visitor.nesting == RuledOut {
return false;
}
},
Some(Node::Stmt(_)) => (),
_ => {
return false;
},
}
id = parent;
}
}
#[derive(PartialEq, Eq)]
enum Nesting {
Unknown, // no nesting detected yet
RuledOut, // the iterator is initialized or assigned within scope
LookFurther, // no nesting detected, no further walk required
}
use self::Nesting::{LookFurther, RuledOut, Unknown};
struct LoopNestVisitor {
id: NodeId,
iterator: Name,
nesting: Nesting,
}
impl<'tcx> Visitor<'tcx> for LoopNestVisitor {
fn visit_stmt(&mut self, stmt: &'tcx Stmt) {
if stmt.node.id() == self.id {
self.nesting = LookFurther;
} else if self.nesting == Unknown {
walk_stmt(self, stmt);
}
}
fn visit_expr(&mut self, expr: &'tcx Expr) {
if self.nesting != Unknown {
return;
}
if expr.id == self.id {
self.nesting = LookFurther;
return;
}
match expr.node {
ExprKind::Assign(ref path, _) | ExprKind::AssignOp(_, ref path, _) => if match_var(path, self.iterator) {
self.nesting = RuledOut;
},
_ => walk_expr(self, expr),
}
}
fn visit_pat(&mut self, pat: &'tcx Pat) {
if self.nesting != Unknown {
return;
}
if let PatKind::Binding(_, _, span_name, _) = pat.node {
if self.iterator == span_name.name {
self.nesting = RuledOut;
return;
}
}
walk_pat(self, pat)
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}
fn path_name(e: &Expr) -> Option<Name> {
if let ExprKind::Path(QPath::Resolved(_, ref path)) = e.node {
let segments = &path.segments;
if segments.len() == 1 {
return Some(segments[0].ident.name);
}
};
None
}
fn check_infinite_loop<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, cond: &'tcx Expr, expr: &'tcx Expr) {
if constant(cx, cx.tables, cond).is_some() {
// A pure constant condition (e.g. while false) is not linted.
return;
}
let mut var_visitor = VarCollectorVisitor {
cx,
ids: HashSet::new(),
def_ids: HashMap::new(),
skip: false,
};
var_visitor.visit_expr(cond);
if var_visitor.skip {
return;
}
let used_in_condition = &var_visitor.ids;
let no_cond_variable_mutated = if let Some(used_mutably) = mutated_variables(expr, cx) {
used_in_condition.is_disjoint(&used_mutably)
} else {
return
};
let mutable_static_in_cond = var_visitor.def_ids.iter().any(|(_, v)| *v);
if no_cond_variable_mutated && !mutable_static_in_cond {
span_lint(
cx,
WHILE_IMMUTABLE_CONDITION,
cond.span,
"Variable in the condition are not mutated in the loop body. This either leads to an infinite or to a never running loop.",
);
}
}
/// Collects the set of variables in an expression
/// Stops analysis if a function call is found
/// Note: In some cases such as `self`, there are no mutable annotation,
/// All variables definition IDs are collected
struct VarCollectorVisitor<'a, 'tcx: 'a> {
cx: &'a LateContext<'a, 'tcx>,
ids: HashSet<NodeId>,
def_ids: HashMap<def_id::DefId, bool>,
skip: bool,
}
impl<'a, 'tcx> VarCollectorVisitor<'a, 'tcx> {
fn insert_def_id(&mut self, ex: &'tcx Expr) {
if_chain! {
if let ExprKind::Path(ref qpath) = ex.node;
if let QPath::Resolved(None, _) = *qpath;
let def = self.cx.tables.qpath_def(qpath, ex.hir_id);
then {
match def {
Def::Local(node_id) | Def::Upvar(node_id, ..) => {
self.ids.insert(node_id);
},
Def::Static(def_id, mutable) => {
self.def_ids.insert(def_id, mutable);
},
_ => {},
}
}
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for VarCollectorVisitor<'a, 'tcx> {
fn visit_expr(&mut self, ex: &'tcx Expr) {
match ex.node {
ExprKind::Path(_) => self.insert_def_id(ex),
// If there is any function/method call… we just stop analysis
ExprKind::Call(..) | ExprKind::MethodCall(..) => self.skip = true,
_ => walk_expr(self, ex),
}
}
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
}