rust/src/librustc_data_structures/accumulate_vec.rs

243 lines
6.6 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A vector type intended to be used for collecting from iterators onto the stack.
//!
//! Space for up to N elements is provided on the stack. If more elements are collected, Vec is
//! used to store the values on the heap.
//!
//! The N above is determined by Array's implementor, by way of an associated constant.
use std::ops::{Deref, DerefMut, RangeBounds};
use std::iter::{self, IntoIterator, FromIterator};
use std::slice;
use std::vec;
use rustc_serialize::{Encodable, Encoder, Decodable, Decoder};
use array_vec::{self, Array, ArrayVec};
#[derive(Hash, Debug)]
pub enum AccumulateVec<A: Array> {
Array(ArrayVec<A>),
Heap(Vec<A::Element>)
}
impl<A> Clone for AccumulateVec<A>
where A: Array,
A::Element: Clone {
fn clone(&self) -> Self {
match *self {
AccumulateVec::Array(ref arr) => AccumulateVec::Array(arr.clone()),
AccumulateVec::Heap(ref vec) => AccumulateVec::Heap(vec.clone()),
}
}
}
impl<A: Array> AccumulateVec<A> {
pub fn new() -> AccumulateVec<A> {
AccumulateVec::Array(ArrayVec::new())
}
pub fn is_array(&self) -> bool {
match self {
AccumulateVec::Array(..) => true,
AccumulateVec::Heap(..) => false,
}
}
pub fn one(el: A::Element) -> Self {
iter::once(el).collect()
}
pub fn many<I: IntoIterator<Item=A::Element>>(iter: I) -> Self {
iter.into_iter().collect()
}
pub fn len(&self) -> usize {
match *self {
AccumulateVec::Array(ref arr) => arr.len(),
AccumulateVec::Heap(ref vec) => vec.len(),
}
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn pop(&mut self) -> Option<A::Element> {
match *self {
AccumulateVec::Array(ref mut arr) => arr.pop(),
AccumulateVec::Heap(ref mut vec) => vec.pop(),
}
}
pub fn drain<R>(&mut self, range: R) -> Drain<A>
where R: RangeBounds<usize>
{
match *self {
AccumulateVec::Array(ref mut v) => {
Drain::Array(v.drain(range))
},
AccumulateVec::Heap(ref mut v) => {
Drain::Heap(v.drain(range))
},
}
}
}
impl<A: Array> Deref for AccumulateVec<A> {
type Target = [A::Element];
fn deref(&self) -> &Self::Target {
match *self {
AccumulateVec::Array(ref v) => v,
AccumulateVec::Heap(ref v) => v,
}
}
}
impl<A: Array> DerefMut for AccumulateVec<A> {
fn deref_mut(&mut self) -> &mut [A::Element] {
match *self {
AccumulateVec::Array(ref mut v) => v,
AccumulateVec::Heap(ref mut v) => v,
}
}
}
impl<A: Array> FromIterator<A::Element> for AccumulateVec<A> {
fn from_iter<I>(iter: I) -> AccumulateVec<A> where I: IntoIterator<Item=A::Element> {
let iter = iter.into_iter();
if iter.size_hint().1.map_or(false, |n| n <= A::LEN) {
let mut v = ArrayVec::new();
v.extend(iter);
AccumulateVec::Array(v)
} else {
AccumulateVec::Heap(iter.collect())
}
}
}
pub struct IntoIter<A: Array> {
repr: IntoIterRepr<A>,
}
enum IntoIterRepr<A: Array> {
Array(array_vec::Iter<A>),
Heap(vec::IntoIter<A::Element>),
}
impl<A: Array> Iterator for IntoIter<A> {
type Item = A::Element;
fn next(&mut self) -> Option<A::Element> {
match self.repr {
IntoIterRepr::Array(ref mut arr) => arr.next(),
IntoIterRepr::Heap(ref mut iter) => iter.next(),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match self.repr {
IntoIterRepr::Array(ref iter) => iter.size_hint(),
IntoIterRepr::Heap(ref iter) => iter.size_hint(),
}
}
}
pub enum Drain<'a, A: Array>
where A::Element: 'a
{
Array(array_vec::Drain<'a, A>),
Heap(vec::Drain<'a, A::Element>),
}
impl<'a, A: Array> Iterator for Drain<'a, A> {
type Item = A::Element;
fn next(&mut self) -> Option<A::Element> {
match *self {
Drain::Array(ref mut drain) => drain.next(),
Drain::Heap(ref mut drain) => drain.next(),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match *self {
Drain::Array(ref drain) => drain.size_hint(),
Drain::Heap(ref drain) => drain.size_hint(),
}
}
}
impl<A: Array> IntoIterator for AccumulateVec<A> {
type Item = A::Element;
type IntoIter = IntoIter<A>;
fn into_iter(self) -> Self::IntoIter {
IntoIter {
repr: match self {
AccumulateVec::Array(arr) => IntoIterRepr::Array(arr.into_iter()),
AccumulateVec::Heap(vec) => IntoIterRepr::Heap(vec.into_iter()),
}
}
}
}
impl<'a, A: Array> IntoIterator for &'a AccumulateVec<A> {
type Item = &'a A::Element;
type IntoIter = slice::Iter<'a, A::Element>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, A: Array> IntoIterator for &'a mut AccumulateVec<A> {
type Item = &'a mut A::Element;
type IntoIter = slice::IterMut<'a, A::Element>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<A: Array> From<Vec<A::Element>> for AccumulateVec<A> {
fn from(v: Vec<A::Element>) -> AccumulateVec<A> {
AccumulateVec::many(v)
}
}
impl<A: Array> Default for AccumulateVec<A> {
fn default() -> AccumulateVec<A> {
AccumulateVec::new()
}
}
impl<A> Encodable for AccumulateVec<A>
where A: Array,
A::Element: Encodable {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_seq(self.len(), |s| {
for (i, e) in self.iter().enumerate() {
s.emit_seq_elt(i, |s| e.encode(s))?;
}
Ok(())
})
}
}
impl<A> Decodable for AccumulateVec<A>
where A: Array,
A::Element: Decodable {
fn decode<D: Decoder>(d: &mut D) -> Result<AccumulateVec<A>, D::Error> {
d.read_seq(|d, len| {
(0..len).map(|i| d.read_seq_elt(i, |d| Decodable::decode(d))).collect()
})
}
}