59524410a7
... rather than being gated by -Z saturating-float-casts. There are several reasons for this: 1. Const eval already implements this behavior. 2. Unlike with float->int casts, this behavior is uncontroversially the right behavior and it is not as performance critical. Thus there is no particular need to make the bug fix for u128->f32 casts opt-in. 3. Having two orthogonal features under one flag is silly, and never should have happened in the first place. 4. Benchmarking float->int casts with the -Z flag should not pick up performance changes due to the u128->f32 casts (assuming there are any). Fixes #41799
59 lines
2.6 KiB
Rust
59 lines
2.6 KiB
Rust
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// ignore-emscripten u128 not supported
|
|
|
|
#![feature(test, i128, i128_type)]
|
|
#![deny(overflowing_literals)]
|
|
extern crate test;
|
|
|
|
use std::f32;
|
|
use std::u128;
|
|
use test::black_box;
|
|
|
|
macro_rules! test {
|
|
($val:expr, $src_ty:ident -> $dest_ty:ident, $expected:expr) => ({
|
|
{
|
|
const X: $src_ty = $val;
|
|
const Y: $dest_ty = X as $dest_ty;
|
|
assert_eq!(Y, $expected,
|
|
"const eval {} -> {}", stringify!($src_ty), stringify!($dest_ty));
|
|
}
|
|
// black_box disables constant evaluation to test run-time conversions:
|
|
assert_eq!(black_box::<$src_ty>($val) as $dest_ty, $expected,
|
|
"run-time {} -> {}", stringify!($src_ty), stringify!($dest_ty));
|
|
});
|
|
}
|
|
|
|
pub fn main() {
|
|
// nextDown(f32::MAX) = 2^128 - 2 * 2^104
|
|
const SECOND_LARGEST_F32: f32 = 340282326356119256160033759537265639424.;
|
|
|
|
// f32::MAX - 0.5 ULP and smaller should be rounded down
|
|
test!(0xfffffe00000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
|
|
test!(0xfffffe7fffffffffffffffffffffffff, u128 -> f32, SECOND_LARGEST_F32);
|
|
test!(0xfffffe80000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
|
|
// numbers within < 0.5 ULP of f32::MAX it should be rounded to f32::MAX
|
|
test!(0xfffffe80000000000000000000000001, u128 -> f32, f32::MAX);
|
|
test!(0xfffffeffffffffffffffffffffffffff, u128 -> f32, f32::MAX);
|
|
test!(0xffffff00000000000000000000000000, u128 -> f32, f32::MAX);
|
|
test!(0xffffff00000000000000000000000001, u128 -> f32, f32::MAX);
|
|
test!(0xffffff7fffffffffffffffffffffffff, u128 -> f32, f32::MAX);
|
|
// f32::MAX + 0.5 ULP and greater should be rounded to infinity
|
|
test!(0xffffff80000000000000000000000000, u128 -> f32, f32::INFINITY);
|
|
test!(0xffffff80000000f00000000000000000, u128 -> f32, f32::INFINITY);
|
|
test!(0xffffff87ffffffffffffffff00000001, u128 -> f32, f32::INFINITY);
|
|
|
|
// u128->f64 should not be affected by the u128->f32 checks
|
|
test!(0xffffff80000000000000000000000000, u128 -> f64,
|
|
340282356779733661637539395458142568448.0);
|
|
test!(u128::MAX, u128 -> f64, 340282366920938463463374607431768211455.0);
|
|
}
|