rust/src/libcore/intrinsics.rs
2015-11-12 05:16:08 +00:00

691 lines
27 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! rustc compiler intrinsics.
//!
//! The corresponding definitions are in librustc_trans/trans/intrinsic.rs.
//!
//! # Volatiles
//!
//! The volatile intrinsics provide operations intended to act on I/O
//! memory, which are guaranteed to not be reordered by the compiler
//! across other volatile intrinsics. See the LLVM documentation on
//! [[volatile]].
//!
//! [volatile]: http://llvm.org/docs/LangRef.html#volatile-memory-accesses
//!
//! # Atomics
//!
//! The atomic intrinsics provide common atomic operations on machine
//! words, with multiple possible memory orderings. They obey the same
//! semantics as C++11. See the LLVM documentation on [[atomics]].
//!
//! [atomics]: http://llvm.org/docs/Atomics.html
//!
//! A quick refresher on memory ordering:
//!
//! * Acquire - a barrier for acquiring a lock. Subsequent reads and writes
//! take place after the barrier.
//! * Release - a barrier for releasing a lock. Preceding reads and writes
//! take place before the barrier.
//! * Sequentially consistent - sequentially consistent operations are
//! guaranteed to happen in order. This is the standard mode for working
//! with atomic types and is equivalent to Java's `volatile`.
#![unstable(feature = "core_intrinsics",
reason = "intrinsics are unlikely to ever be stabilized, instead \
they should be used through stabilized interfaces \
in the rest of the standard library",
issue = "0")]
#![allow(missing_docs)]
use marker::Sized;
extern "rust-intrinsic" {
// NB: These intrinsics take raw pointers because they mutate aliased
// memory, which is not valid for either `&` or `&mut`.
pub fn atomic_cxchg<T>(dst: *mut T, old: T, src: T) -> T;
pub fn atomic_cxchg_acq<T>(dst: *mut T, old: T, src: T) -> T;
pub fn atomic_cxchg_rel<T>(dst: *mut T, old: T, src: T) -> T;
pub fn atomic_cxchg_acqrel<T>(dst: *mut T, old: T, src: T) -> T;
pub fn atomic_cxchg_relaxed<T>(dst: *mut T, old: T, src: T) -> T;
pub fn atomic_load<T>(src: *const T) -> T;
pub fn atomic_load_acq<T>(src: *const T) -> T;
pub fn atomic_load_relaxed<T>(src: *const T) -> T;
pub fn atomic_load_unordered<T>(src: *const T) -> T;
pub fn atomic_store<T>(dst: *mut T, val: T);
pub fn atomic_store_rel<T>(dst: *mut T, val: T);
pub fn atomic_store_relaxed<T>(dst: *mut T, val: T);
pub fn atomic_store_unordered<T>(dst: *mut T, val: T);
pub fn atomic_xchg<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xchg_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xchg_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xchg_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xchg_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xadd<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xadd_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xadd_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xadd_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xadd_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xsub<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xsub_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xsub_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xsub_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xsub_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_and<T>(dst: *mut T, src: T) -> T;
pub fn atomic_and_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_and_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_and_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_and_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_nand<T>(dst: *mut T, src: T) -> T;
pub fn atomic_nand_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_nand_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_nand_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_nand_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_or<T>(dst: *mut T, src: T) -> T;
pub fn atomic_or_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_or_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_or_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_or_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xor<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xor_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xor_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xor_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_xor_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_max<T>(dst: *mut T, src: T) -> T;
pub fn atomic_max_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_max_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_max_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_max_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_min<T>(dst: *mut T, src: T) -> T;
pub fn atomic_min_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_min_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_min_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_min_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umin<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umin_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umin_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umin_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umin_relaxed<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umax<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umax_acq<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umax_rel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umax_acqrel<T>(dst: *mut T, src: T) -> T;
pub fn atomic_umax_relaxed<T>(dst: *mut T, src: T) -> T;
}
extern "rust-intrinsic" {
pub fn atomic_fence();
pub fn atomic_fence_acq();
pub fn atomic_fence_rel();
pub fn atomic_fence_acqrel();
/// A compiler-only memory barrier.
///
/// Memory accesses will never be reordered across this barrier by the
/// compiler, but no instructions will be emitted for it. This is
/// appropriate for operations on the same thread that may be preempted,
/// such as when interacting with signal handlers.
pub fn atomic_singlethreadfence();
pub fn atomic_singlethreadfence_acq();
pub fn atomic_singlethreadfence_rel();
pub fn atomic_singlethreadfence_acqrel();
/// Aborts the execution of the process.
pub fn abort() -> !;
/// Tells LLVM that this point in the code is not reachable,
/// enabling further optimizations.
///
/// NB: This is very different from the `unreachable!()` macro!
pub fn unreachable() -> !;
/// Informs the optimizer that a condition is always true.
/// If the condition is false, the behavior is undefined.
///
/// No code is generated for this intrinsic, but the optimizer will try
/// to preserve it (and its condition) between passes, which may interfere
/// with optimization of surrounding code and reduce performance. It should
/// not be used if the invariant can be discovered by the optimizer on its
/// own, or if it does not enable any significant optimizations.
pub fn assume(b: bool);
/// Executes a breakpoint trap, for inspection by a debugger.
pub fn breakpoint();
/// The size of a type in bytes.
///
/// This is the exact number of bytes in memory taken up by a
/// value of the given type. In other words, a memset of this size
/// would *exactly* overwrite a value. When laid out in vectors
/// and structures there may be additional padding between
/// elements.
pub fn size_of<T>() -> usize;
/// Moves a value to an uninitialized memory location.
///
/// Drop glue is not run on the destination.
pub fn move_val_init<T>(dst: *mut T, src: T);
pub fn min_align_of<T>() -> usize;
pub fn pref_align_of<T>() -> usize;
pub fn size_of_val<T: ?Sized>(_: &T) -> usize;
pub fn min_align_of_val<T: ?Sized>(_: &T) -> usize;
/// Executes the destructor (if any) of the pointed-to value.
///
/// This has two use cases:
///
/// * It is *required* to use `drop_in_place` to drop unsized types like
/// trait objects, because they can't be read out onto the stack and
/// dropped normally.
///
/// * It is friendlier to the optimizer to do this over `ptr::read` when
/// dropping manually allocated memory (e.g. when writing Box/Rc/Vec),
/// as the compiler doesn't need to prove that it's sound to elide the
/// copy.
///
/// # Undefined Behavior
///
/// This has all the same safety problems as `ptr::read` with respect to
/// invalid pointers, types, and double drops.
#[unstable(feature = "drop_in_place", reason = "just exposed, needs FCP", issue = "27908")]
pub fn drop_in_place<T: ?Sized>(to_drop: *mut T);
/// Gets a static string slice containing the name of a type.
pub fn type_name<T: ?Sized>() -> &'static str;
/// Gets an identifier which is globally unique to the specified type. This
/// function will return the same value for a type regardless of whichever
/// crate it is invoked in.
pub fn type_id<T: ?Sized + 'static>() -> u64;
/// Creates a value initialized to so that its drop flag,
/// if any, says that it has been dropped.
///
/// `init_dropped` is unsafe because it returns a datum with all
/// of its bytes set to the drop flag, which generally does not
/// correspond to a valid value.
///
/// This intrinsic is likely to be deprecated in the future when
/// Rust moves to non-zeroing dynamic drop (and thus removes the
/// embedded drop flags that are being established by this
/// intrinsic).
pub fn init_dropped<T>() -> T;
/// Creates a value initialized to zero.
///
/// `init` is unsafe because it returns a zeroed-out datum,
/// which is unsafe unless T is `Copy`. Also, even if T is
/// `Copy`, an all-zero value may not correspond to any legitimate
/// state for the type in question.
pub fn init<T>() -> T;
/// Creates an uninitialized value.
///
/// `uninit` is unsafe because there is no guarantee of what its
/// contents are. In particular its drop-flag may be set to any
/// state, which means it may claim either dropped or
/// undropped. In the general case one must use `ptr::write` to
/// initialize memory previous set to the result of `uninit`.
pub fn uninit<T>() -> T;
/// Moves a value out of scope without running drop glue.
pub fn forget<T>(_: T) -> ();
/// Unsafely transforms a value of one type into a value of another type.
///
/// Both types must have the same size.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let array: &[u8] = unsafe { mem::transmute("Rust") };
/// assert_eq!(array, [82, 117, 115, 116]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn transmute<T, U>(e: T) -> U;
/// Gives the address for the return value of the enclosing function.
///
/// Using this intrinsic in a function that does not use an out pointer
/// will trigger a compiler error.
pub fn return_address() -> *const u8;
/// Returns `true` if the actual type given as `T` requires drop
/// glue; returns `false` if the actual type provided for `T`
/// implements `Copy`.
///
/// If the actual type neither requires drop glue nor implements
/// `Copy`, then may return `true` or `false`.
pub fn needs_drop<T>() -> bool;
/// Calculates the offset from a pointer.
///
/// This is implemented as an intrinsic to avoid converting to and from an
/// integer, since the conversion would throw away aliasing information.
///
/// # Safety
///
/// Both the starting and resulting pointer must be either in bounds or one
/// byte past the end of an allocated object. If either pointer is out of
/// bounds or arithmetic overflow occurs then any further use of the
/// returned value will result in undefined behavior.
pub fn offset<T>(dst: *const T, offset: isize) -> *const T;
/// Calculates the offset from a pointer, potentially wrapping.
///
/// This is implemented as an intrinsic to avoid converting to and from an
/// integer, since the conversion inhibits certain optimizations.
///
/// # Safety
///
/// Unlike the `offset` intrinsic, this intrinsic does not restrict the
/// resulting pointer to point into or one byte past the end of an allocated
/// object, and it wraps with two's complement arithmetic. The resulting
/// value is not necessarily valid to be used to actually access memory.
pub fn arith_offset<T>(dst: *const T, offset: isize) -> *const T;
/// Copies `count * size_of<T>` bytes from `src` to `dst`. The source
/// and destination may *not* overlap.
///
/// `copy_nonoverlapping` is semantically equivalent to C's `memcpy`.
///
/// # Safety
///
/// Beyond requiring that the program must be allowed to access both regions
/// of memory, it is Undefined Behavior for source and destination to
/// overlap. Care must also be taken with the ownership of `src` and
/// `dst`. This method semantically moves the values of `src` into `dst`.
/// However it does not drop the contents of `dst`, or prevent the contents
/// of `src` from being dropped or used.
///
/// # Examples
///
/// A safe swap function:
///
/// ```
/// use std::mem;
/// use std::ptr;
///
/// # #[allow(dead_code)]
/// fn swap<T>(x: &mut T, y: &mut T) {
/// unsafe {
/// // Give ourselves some scratch space to work with
/// let mut t: T = mem::uninitialized();
///
/// // Perform the swap, `&mut` pointers never alias
/// ptr::copy_nonoverlapping(x, &mut t, 1);
/// ptr::copy_nonoverlapping(y, x, 1);
/// ptr::copy_nonoverlapping(&t, y, 1);
///
/// // y and t now point to the same thing, but we need to completely forget `tmp`
/// // because it's no longer relevant.
/// mem::forget(t);
/// }
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
/// Copies `count * size_of<T>` bytes from `src` to `dst`. The source
/// and destination may overlap.
///
/// `copy` is semantically equivalent to C's `memmove`.
///
/// # Safety
///
/// Care must be taken with the ownership of `src` and `dst`.
/// This method semantically moves the values of `src` into `dst`.
/// However it does not drop the contents of `dst`, or prevent the contents of `src`
/// from being dropped or used.
///
/// # Examples
///
/// Efficiently create a Rust vector from an unsafe buffer:
///
/// ```
/// use std::ptr;
///
/// # #[allow(dead_code)]
/// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> {
/// let mut dst = Vec::with_capacity(elts);
/// dst.set_len(elts);
/// ptr::copy(ptr, dst.as_mut_ptr(), elts);
/// dst
/// }
/// ```
///
#[stable(feature = "rust1", since = "1.0.0")]
pub fn copy<T>(src: *const T, dst: *mut T, count: usize);
/// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
/// bytes of memory starting at `dst` to `val`.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write_bytes<T>(dst: *mut T, val: u8, count: usize);
/// Equivalent to the appropriate `llvm.memcpy.p0i8.0i8.*` intrinsic, with
/// a size of `count` * `size_of::<T>()` and an alignment of
/// `min_align_of::<T>()`
///
/// The volatile parameter is set to `true`, so it will not be optimized out.
pub fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T,
count: usize);
/// Equivalent to the appropriate `llvm.memmove.p0i8.0i8.*` intrinsic, with
/// a size of `count` * `size_of::<T>()` and an alignment of
/// `min_align_of::<T>()`
///
/// The volatile parameter is set to `true`, so it will not be optimized out.
pub fn volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize);
/// Equivalent to the appropriate `llvm.memset.p0i8.*` intrinsic, with a
/// size of `count` * `size_of::<T>()` and an alignment of
/// `min_align_of::<T>()`.
///
/// The volatile parameter is set to `true`, so it will not be optimized out.
pub fn volatile_set_memory<T>(dst: *mut T, val: u8, count: usize);
/// Perform a volatile load from the `src` pointer.
pub fn volatile_load<T>(src: *const T) -> T;
/// Perform a volatile store to the `dst` pointer.
pub fn volatile_store<T>(dst: *mut T, val: T);
/// Returns the square root of an `f32`
pub fn sqrtf32(x: f32) -> f32;
/// Returns the square root of an `f64`
pub fn sqrtf64(x: f64) -> f64;
/// Raises an `f32` to an integer power.
pub fn powif32(a: f32, x: i32) -> f32;
/// Raises an `f64` to an integer power.
pub fn powif64(a: f64, x: i32) -> f64;
/// Returns the sine of an `f32`.
pub fn sinf32(x: f32) -> f32;
/// Returns the sine of an `f64`.
pub fn sinf64(x: f64) -> f64;
/// Returns the cosine of an `f32`.
pub fn cosf32(x: f32) -> f32;
/// Returns the cosine of an `f64`.
pub fn cosf64(x: f64) -> f64;
/// Raises an `f32` to an `f32` power.
pub fn powf32(a: f32, x: f32) -> f32;
/// Raises an `f64` to an `f64` power.
pub fn powf64(a: f64, x: f64) -> f64;
/// Returns the exponential of an `f32`.
pub fn expf32(x: f32) -> f32;
/// Returns the exponential of an `f64`.
pub fn expf64(x: f64) -> f64;
/// Returns 2 raised to the power of an `f32`.
pub fn exp2f32(x: f32) -> f32;
/// Returns 2 raised to the power of an `f64`.
pub fn exp2f64(x: f64) -> f64;
/// Returns the natural logarithm of an `f32`.
pub fn logf32(x: f32) -> f32;
/// Returns the natural logarithm of an `f64`.
pub fn logf64(x: f64) -> f64;
/// Returns the base 10 logarithm of an `f32`.
pub fn log10f32(x: f32) -> f32;
/// Returns the base 10 logarithm of an `f64`.
pub fn log10f64(x: f64) -> f64;
/// Returns the base 2 logarithm of an `f32`.
pub fn log2f32(x: f32) -> f32;
/// Returns the base 2 logarithm of an `f64`.
pub fn log2f64(x: f64) -> f64;
/// Returns `a * b + c` for `f32` values.
pub fn fmaf32(a: f32, b: f32, c: f32) -> f32;
/// Returns `a * b + c` for `f64` values.
pub fn fmaf64(a: f64, b: f64, c: f64) -> f64;
/// Returns the absolute value of an `f32`.
pub fn fabsf32(x: f32) -> f32;
/// Returns the absolute value of an `f64`.
pub fn fabsf64(x: f64) -> f64;
/// Copies the sign from `y` to `x` for `f32` values.
pub fn copysignf32(x: f32, y: f32) -> f32;
/// Copies the sign from `y` to `x` for `f64` values.
pub fn copysignf64(x: f64, y: f64) -> f64;
/// Returns the largest integer less than or equal to an `f32`.
pub fn floorf32(x: f32) -> f32;
/// Returns the largest integer less than or equal to an `f64`.
pub fn floorf64(x: f64) -> f64;
/// Returns the smallest integer greater than or equal to an `f32`.
pub fn ceilf32(x: f32) -> f32;
/// Returns the smallest integer greater than or equal to an `f64`.
pub fn ceilf64(x: f64) -> f64;
/// Returns the integer part of an `f32`.
pub fn truncf32(x: f32) -> f32;
/// Returns the integer part of an `f64`.
pub fn truncf64(x: f64) -> f64;
/// Returns the nearest integer to an `f32`. May raise an inexact floating-point exception
/// if the argument is not an integer.
pub fn rintf32(x: f32) -> f32;
/// Returns the nearest integer to an `f64`. May raise an inexact floating-point exception
/// if the argument is not an integer.
pub fn rintf64(x: f64) -> f64;
/// Returns the nearest integer to an `f32`.
pub fn nearbyintf32(x: f32) -> f32;
/// Returns the nearest integer to an `f64`.
pub fn nearbyintf64(x: f64) -> f64;
/// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero.
pub fn roundf32(x: f32) -> f32;
/// Returns the nearest integer to an `f64`. Rounds half-way cases away from zero.
pub fn roundf64(x: f64) -> f64;
/// Returns the number of bits set in a `u8`.
#[cfg(stage0)]
pub fn ctpop8(x: u8) -> u8;
/// Returns the number of bits set in a `u16`.
#[cfg(stage0)]
pub fn ctpop16(x: u16) -> u16;
/// Returns the number of bits set in a `u32`.
#[cfg(stage0)]
pub fn ctpop32(x: u32) -> u32;
/// Returns the number of bits set in a `u64`.
#[cfg(stage0)]
pub fn ctpop64(x: u64) -> u64;
/// Returns the number of bits set in an integer type `T`
#[cfg(not(stage0))]
pub fn ctpop<T>(x: T) -> T;
/// Returns the number of leading bits unset in a `u8`.
#[cfg(stage0)]
pub fn ctlz8(x: u8) -> u8;
/// Returns the number of leading bits unset in a `u16`.
#[cfg(stage0)]
pub fn ctlz16(x: u16) -> u16;
/// Returns the number of leading bits unset in a `u32`.
#[cfg(stage0)]
pub fn ctlz32(x: u32) -> u32;
/// Returns the number of leading bits unset in a `u64`.
#[cfg(stage0)]
pub fn ctlz64(x: u64) -> u64;
/// Returns the number of leading bits unset in an integer type `T`
#[cfg(not(stage0))]
pub fn ctlz<T>(x: T) -> T;
/// Returns the number of trailing bits unset in a `u8`.
#[cfg(stage0)]
pub fn cttz8(x: u8) -> u8;
/// Returns the number of trailing bits unset in a `u16`.
#[cfg(stage0)]
pub fn cttz16(x: u16) -> u16;
/// Returns the number of trailing bits unset in a `u32`.
#[cfg(stage0)]
pub fn cttz32(x: u32) -> u32;
/// Returns the number of trailing bits unset in a `u64`.
#[cfg(stage0)]
pub fn cttz64(x: u64) -> u64;
/// Returns the number of trailing bits unset in an integer type `T`
#[cfg(not(stage0))]
pub fn cttz<T>(x: T) -> T;
/// Reverses the bytes in a `u16`.
#[cfg(stage0)]
pub fn bswap16(x: u16) -> u16;
/// Reverses the bytes in a `u32`.
#[cfg(stage0)]
pub fn bswap32(x: u32) -> u32;
/// Reverses the bytes in a `u64`.
#[cfg(stage0)]
pub fn bswap64(x: u64) -> u64;
/// Reverses the bytes in an integer type `T`.
#[cfg(not(stage0))]
pub fn bswap<T>(x: T) -> T;
/// Performs checked `i8` addition.
#[cfg(stage0)]
pub fn i8_add_with_overflow(x: i8, y: i8) -> (i8, bool);
/// Performs checked `i16` addition.
#[cfg(stage0)]
pub fn i16_add_with_overflow(x: i16, y: i16) -> (i16, bool);
/// Performs checked `i32` addition.
#[cfg(stage0)]
pub fn i32_add_with_overflow(x: i32, y: i32) -> (i32, bool);
/// Performs checked `i64` addition.
#[cfg(stage0)]
pub fn i64_add_with_overflow(x: i64, y: i64) -> (i64, bool);
/// Performs checked `u8` addition.
#[cfg(stage0)]
pub fn u8_add_with_overflow(x: u8, y: u8) -> (u8, bool);
/// Performs checked `u16` addition.
#[cfg(stage0)]
pub fn u16_add_with_overflow(x: u16, y: u16) -> (u16, bool);
/// Performs checked `u32` addition.
#[cfg(stage0)]
pub fn u32_add_with_overflow(x: u32, y: u32) -> (u32, bool);
/// Performs checked `u64` addition.
#[cfg(stage0)]
pub fn u64_add_with_overflow(x: u64, y: u64) -> (u64, bool);
/// Performs checked integer addition.
#[cfg(not(stage0))]
pub fn add_with_overflow<T>(x: T, y: T) -> (T, bool);
/// Performs checked `i8` subtraction.
#[cfg(stage0)]
pub fn i8_sub_with_overflow(x: i8, y: i8) -> (i8, bool);
/// Performs checked `i16` subtraction.
#[cfg(stage0)]
pub fn i16_sub_with_overflow(x: i16, y: i16) -> (i16, bool);
/// Performs checked `i32` subtraction.
#[cfg(stage0)]
pub fn i32_sub_with_overflow(x: i32, y: i32) -> (i32, bool);
/// Performs checked `i64` subtraction.
#[cfg(stage0)]
pub fn i64_sub_with_overflow(x: i64, y: i64) -> (i64, bool);
/// Performs checked `u8` subtraction.
#[cfg(stage0)]
pub fn u8_sub_with_overflow(x: u8, y: u8) -> (u8, bool);
/// Performs checked `u16` subtraction.
#[cfg(stage0)]
pub fn u16_sub_with_overflow(x: u16, y: u16) -> (u16, bool);
/// Performs checked `u32` subtraction.
#[cfg(stage0)]
pub fn u32_sub_with_overflow(x: u32, y: u32) -> (u32, bool);
/// Performs checked `u64` subtraction.
#[cfg(stage0)]
pub fn u64_sub_with_overflow(x: u64, y: u64) -> (u64, bool);
/// Performs checked integer subtraction
#[cfg(not(stage0))]
pub fn sub_with_overflow<T>(x: T, y: T) -> (T, bool);
/// Performs checked `i8` multiplication.
#[cfg(stage0)]
pub fn i8_mul_with_overflow(x: i8, y: i8) -> (i8, bool);
/// Performs checked `i16` multiplication.
#[cfg(stage0)]
pub fn i16_mul_with_overflow(x: i16, y: i16) -> (i16, bool);
/// Performs checked `i32` multiplication.
#[cfg(stage0)]
pub fn i32_mul_with_overflow(x: i32, y: i32) -> (i32, bool);
/// Performs checked `i64` multiplication.
#[cfg(stage0)]
pub fn i64_mul_with_overflow(x: i64, y: i64) -> (i64, bool);
/// Performs checked `u8` multiplication.
#[cfg(stage0)]
pub fn u8_mul_with_overflow(x: u8, y: u8) -> (u8, bool);
/// Performs checked `u16` multiplication.
#[cfg(stage0)]
pub fn u16_mul_with_overflow(x: u16, y: u16) -> (u16, bool);
/// Performs checked `u32` multiplication.
#[cfg(stage0)]
pub fn u32_mul_with_overflow(x: u32, y: u32) -> (u32, bool);
/// Performs checked `u64` multiplication.
#[cfg(stage0)]
pub fn u64_mul_with_overflow(x: u64, y: u64) -> (u64, bool);
/// Performs checked integer multiplication
#[cfg(not(stage0))]
pub fn mul_with_overflow<T>(x: T, y: T) -> (T, bool);
/// Performs an unchecked division, resulting in undefined behavior
/// where y = 0 or x = `T::min_value()` and y = -1
#[cfg(not(stage0))]
pub fn unchecked_div<T>(x: T, y: T) -> T;
/// Returns the remainder of an unchecked division, resulting in
/// undefined behavior where y = 0 or x = `T::min_value()` and y = -1
#[cfg(not(stage0))]
pub fn unchecked_rem<T>(x: T, y: T) -> T;
/// Returns (a + b) mod 2^N, where N is the width of T in bits.
pub fn overflowing_add<T>(a: T, b: T) -> T;
/// Returns (a - b) mod 2^N, where N is the width of T in bits.
pub fn overflowing_sub<T>(a: T, b: T) -> T;
/// Returns (a * b) mod 2^N, where N is the width of T in bits.
pub fn overflowing_mul<T>(a: T, b: T) -> T;
/// Returns the value of the discriminant for the variant in 'v',
/// cast to a `u64`; if `T` has no discriminant, returns 0.
pub fn discriminant_value<T>(v: &T) -> u64;
/// Rust's "try catch" construct which invokes the function pointer `f` with
/// the data pointer `data`, returning the exception payload if an exception
/// is thrown (aka the thread panics).
pub fn try(f: fn(*mut u8), data: *mut u8) -> *mut u8;
}