rust/src/libstd/sync/mutex.rs
Alex Crichton 8b7d032014 rollup merge of #20273: alexcrichton/second-pass-comm
Conflicts:
	src/doc/guide.md
	src/libcollections/bit.rs
	src/libcollections/btree/node.rs
	src/libcollections/slice.rs
	src/libcore/ops.rs
	src/libcore/prelude.rs
	src/librand/rand_impls.rs
	src/librustc/middle/check_match.rs
	src/librustc/middle/infer/region_inference/mod.rs
	src/librustc_driver/lib.rs
	src/librustdoc/test.rs
	src/libstd/bitflags.rs
	src/libstd/io/comm_adapters.rs
	src/libstd/io/mem.rs
	src/libstd/io/mod.rs
	src/libstd/io/net/pipe.rs
	src/libstd/io/net/tcp.rs
	src/libstd/io/net/udp.rs
	src/libstd/io/pipe.rs
	src/libstd/io/process.rs
	src/libstd/io/stdio.rs
	src/libstd/io/timer.rs
	src/libstd/io/util.rs
	src/libstd/macros.rs
	src/libstd/os.rs
	src/libstd/path/posix.rs
	src/libstd/path/windows.rs
	src/libstd/prelude/v1.rs
	src/libstd/rand/mod.rs
	src/libstd/rand/os.rs
	src/libstd/sync/barrier.rs
	src/libstd/sync/condvar.rs
	src/libstd/sync/future.rs
	src/libstd/sync/mpsc/mod.rs
	src/libstd/sync/mpsc/mpsc_queue.rs
	src/libstd/sync/mpsc/select.rs
	src/libstd/sync/mpsc/spsc_queue.rs
	src/libstd/sync/mutex.rs
	src/libstd/sync/once.rs
	src/libstd/sync/rwlock.rs
	src/libstd/sync/semaphore.rs
	src/libstd/sync/task_pool.rs
	src/libstd/sys/common/helper_thread.rs
	src/libstd/sys/unix/process.rs
	src/libstd/sys/unix/timer.rs
	src/libstd/sys/windows/c.rs
	src/libstd/sys/windows/timer.rs
	src/libstd/sys/windows/tty.rs
	src/libstd/thread.rs
	src/libstd/thread_local/mod.rs
	src/libstd/thread_local/scoped.rs
	src/libtest/lib.rs
	src/test/auxiliary/cci_capture_clause.rs
	src/test/bench/shootout-reverse-complement.rs
	src/test/bench/shootout-spectralnorm.rs
	src/test/compile-fail/array-old-syntax-2.rs
	src/test/compile-fail/bind-by-move-no-guards.rs
	src/test/compile-fail/builtin-superkinds-self-type.rs
	src/test/compile-fail/comm-not-freeze-receiver.rs
	src/test/compile-fail/comm-not-freeze.rs
	src/test/compile-fail/issue-12041.rs
	src/test/compile-fail/unsendable-class.rs
	src/test/run-pass/builtin-superkinds-capabilities-transitive.rs
	src/test/run-pass/builtin-superkinds-capabilities-xc.rs
	src/test/run-pass/builtin-superkinds-capabilities.rs
	src/test/run-pass/builtin-superkinds-self-type.rs
	src/test/run-pass/capturing-logging.rs
	src/test/run-pass/closure-bounds-can-capture-chan.rs
	src/test/run-pass/comm.rs
	src/test/run-pass/core-run-destroy.rs
	src/test/run-pass/drop-trait-enum.rs
	src/test/run-pass/hashmap-memory.rs
	src/test/run-pass/issue-13494.rs
	src/test/run-pass/issue-3609.rs
	src/test/run-pass/issue-4446.rs
	src/test/run-pass/issue-4448.rs
	src/test/run-pass/issue-8827.rs
	src/test/run-pass/issue-9396.rs
	src/test/run-pass/ivec-tag.rs
	src/test/run-pass/rust-log-filter.rs
	src/test/run-pass/send-resource.rs
	src/test/run-pass/send-type-inference.rs
	src/test/run-pass/sendable-class.rs
	src/test/run-pass/spawn-types.rs
	src/test/run-pass/task-comm-0.rs
	src/test/run-pass/task-comm-10.rs
	src/test/run-pass/task-comm-11.rs
	src/test/run-pass/task-comm-13.rs
	src/test/run-pass/task-comm-14.rs
	src/test/run-pass/task-comm-15.rs
	src/test/run-pass/task-comm-16.rs
	src/test/run-pass/task-comm-3.rs
	src/test/run-pass/task-comm-4.rs
	src/test/run-pass/task-comm-5.rs
	src/test/run-pass/task-comm-6.rs
	src/test/run-pass/task-comm-7.rs
	src/test/run-pass/task-comm-9.rs
	src/test/run-pass/task-comm-chan-nil.rs
	src/test/run-pass/task-spawn-move-and-copy.rs
	src/test/run-pass/task-stderr.rs
	src/test/run-pass/tcp-accept-stress.rs
	src/test/run-pass/tcp-connect-timeouts.rs
	src/test/run-pass/tempfile.rs
	src/test/run-pass/trait-bounds-in-arc.rs
	src/test/run-pass/trivial-message.rs
	src/test/run-pass/unique-send-2.rs
	src/test/run-pass/unique-send.rs
	src/test/run-pass/unwind-resource.rs
2015-01-02 09:15:54 -08:00

493 lines
15 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use cell::UnsafeCell;
use kinds::marker;
use ops::{Deref, DerefMut};
use sync::poison::{mod, TryLockError, TryLockResult, LockResult};
use sys_common::mutex as sys;
/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can also be statically initialized or created via a `new`
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from `lock` and `try_lock`, which guarantees that the data is only
/// ever accessed when the mutex is locked.
///
/// # Poisoning
///
/// The mutexes in this module implement a strategy called "poisoning" where a
/// mutex is considered poisoned whenever a thread panics while holding the
/// lock. Once a mutex is poisoned, all other tasks are unable to access the
/// data by default as it is likely tainted (some invariant is not being
/// upheld).
///
/// For a mutex, this means that the `lock` and `try_lock` methods return a
/// `Result` which indicates whether a mutex has been poisoned or not. Most
/// usage of a mutex will simply `unwrap()` these results, propagating panics
/// among threads to ensure that a possibly invalid invariant is not witnessed.
///
/// A poisoned mutex, however, does not prevent all access to the underlying
/// data. The `PoisonError` type has an `into_guard` method which will return
/// the guard that would have otherwise been returned on a successful lock. This
/// allows access to the data, despite the lock being poisoned.
///
/// # Examples
///
/// ```rust
/// use std::sync::{Arc, Mutex};
/// use std::thread::Thread;
/// use std::sync::mpsc::channel;
///
/// const N: uint = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among tasks, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in range(0u, 10) {
/// let (data, tx) = (data.clone(), tx.clone());
/// Thread::spawn(move || {
/// // The shared static can only be accessed once the lock is held.
/// // Our non-atomic increment is safe because we're the only thread
/// // which can access the shared state when the lock is held.
/// //
/// // We unwrap() the return value to assert that we are not expecting
/// // tasks to ever fail while holding the lock.
/// let mut data = data.lock().unwrap();
/// *data += 1;
/// if *data == N {
/// tx.send(()).unwrap();
/// }
/// // the lock is unlocked here when `data` goes out of scope.
/// }).detach();
/// }
///
/// rx.recv().unwrap();
/// ```
///
/// To recover from a poisoned mutex:
///
/// ```rust
/// use std::sync::{Arc, Mutex};
/// use std::thread::Thread;
///
/// let lock = Arc::new(Mutex::new(0u));
/// let lock2 = lock.clone();
///
/// let _ = Thread::spawn(move || -> () {
/// // This thread will acquire the mutex first, unwrapping the result of
/// // `lock` because the lock has not been poisoned.
/// let _lock = lock2.lock().unwrap();
///
/// // This panic while holding the lock (`_guard` is in scope) will poison
/// // the mutex.
/// panic!();
/// }).join();
///
/// // The lock is poisoned by this point, but the returned result can be
/// // pattern matched on to return the underlying guard on both branches.
/// let mut guard = match lock.lock() {
/// Ok(guard) => guard,
/// Err(poisoned) => poisoned.into_guard(),
/// };
///
/// *guard += 1;
/// ```
#[stable]
pub struct Mutex<T> {
// Note that this static mutex is in a *box*, not inlined into the struct
// itself. Once a native mutex has been used once, its address can never
// change (it can't be moved). This mutex type can be safely moved at any
// time, so to ensure that the native mutex is used correctly we box the
// inner lock to give it a constant address.
inner: Box<StaticMutex>,
data: UnsafeCell<T>,
}
unsafe impl<T:Send> Send for Mutex<T> { }
unsafe impl<T:Send> Sync for Mutex<T> { }
/// The static mutex type is provided to allow for static allocation of mutexes.
///
/// Note that this is a separate type because using a Mutex correctly means that
/// it needs to have a destructor run. In Rust, statics are not allowed to have
/// destructors. As a result, a `StaticMutex` has one extra method when compared
/// to a `Mutex`, a `destroy` method. This method is unsafe to call, and
/// documentation can be found directly on the method.
///
/// # Example
///
/// ```rust
/// use std::sync::{StaticMutex, MUTEX_INIT};
///
/// static LOCK: StaticMutex = MUTEX_INIT;
///
/// {
/// let _g = LOCK.lock().unwrap();
/// // do some productive work
/// }
/// // lock is unlocked here.
/// ```
#[unstable = "may be merged with Mutex in the future"]
pub struct StaticMutex {
lock: sys::Mutex,
poison: poison::Flag,
}
unsafe impl Sync for StaticMutex {}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be access through this guard via its
/// Deref and DerefMut implementations
#[must_use]
#[stable]
pub struct MutexGuard<'a, T: 'a> {
// funny underscores due to how Deref/DerefMut currently work (they
// disregard field privacy).
__lock: &'a StaticMutex,
__data: &'a UnsafeCell<T>,
__poison: poison::Guard,
__marker: marker::NoSend,
}
/// Static initialization of a mutex. This constant can be used to initialize
/// other mutex constants.
#[unstable = "may be merged with Mutex in the future"]
pub const MUTEX_INIT: StaticMutex = StaticMutex {
lock: sys::MUTEX_INIT,
poison: poison::FLAG_INIT,
};
impl<T: Send> Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
#[stable]
pub fn new(t: T) -> Mutex<T> {
Mutex {
inner: box MUTEX_INIT,
data: UnsafeCell::new(t),
}
}
/// Acquires a mutex, blocking the current task until it is able to do so.
///
/// This function will block the local task until it is available to acquire
/// the mutex. Upon returning, the task is the only task with the mutex
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
///
/// # Failure
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error once the mutex is acquired.
#[stable]
pub fn lock(&self) -> LockResult<MutexGuard<T>> {
unsafe { self.inner.lock.lock() }
MutexGuard::new(&*self.inner, &self.data)
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then `None` is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
///
/// # Failure
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return failure if the mutex would otherwise be
/// acquired.
#[stable]
pub fn try_lock(&self) -> TryLockResult<MutexGuard<T>> {
if unsafe { self.inner.lock.try_lock() } {
Ok(try!(MutexGuard::new(&*self.inner, &self.data)))
} else {
Err(TryLockError::WouldBlock)
}
}
}
#[unsafe_destructor]
impl<T: Send> Drop for Mutex<T> {
fn drop(&mut self) {
// This is actually safe b/c we know that there is no further usage of
// this mutex (it's up to the user to arrange for a mutex to get
// dropped, that's not our job)
unsafe { self.inner.lock.destroy() }
}
}
struct Dummy(UnsafeCell<()>);
unsafe impl Sync for Dummy {}
static DUMMY: Dummy = Dummy(UnsafeCell { value: () });
impl StaticMutex {
/// Acquires this lock, see `Mutex::lock`
#[inline]
#[unstable = "may be merged with Mutex in the future"]
pub fn lock(&'static self) -> LockResult<MutexGuard<()>> {
unsafe { self.lock.lock() }
MutexGuard::new(self, &DUMMY.0)
}
/// Attempts to grab this lock, see `Mutex::try_lock`
#[inline]
#[unstable = "may be merged with Mutex in the future"]
pub fn try_lock(&'static self) -> TryLockResult<MutexGuard<()>> {
if unsafe { self.lock.try_lock() } {
Ok(try!(MutexGuard::new(self, &DUMMY.0)))
} else {
Err(TryLockError::WouldBlock)
}
}
/// Deallocates resources associated with this static mutex.
///
/// This method is unsafe because it provides no guarantees that there are
/// no active users of this mutex, and safety is not guaranteed if there are
/// active users of this mutex.
///
/// This method is required to ensure that there are no memory leaks on
/// *all* platforms. It may be the case that some platforms do not leak
/// memory if this method is not called, but this is not guaranteed to be
/// true on all platforms.
#[unstable = "may be merged with Mutex in the future"]
pub unsafe fn destroy(&'static self) {
self.lock.destroy()
}
}
impl<'mutex, T> MutexGuard<'mutex, T> {
fn new(lock: &'mutex StaticMutex, data: &'mutex UnsafeCell<T>)
-> LockResult<MutexGuard<'mutex, T>> {
poison::map_result(lock.poison.borrow(), |guard| {
MutexGuard {
__lock: lock,
__data: data,
__poison: guard,
__marker: marker::NoSend,
}
})
}
}
impl<'mutex, T> Deref<T> for MutexGuard<'mutex, T> {
fn deref<'a>(&'a self) -> &'a T {
unsafe { &*self.__data.get() }
}
}
impl<'mutex, T> DerefMut<T> for MutexGuard<'mutex, T> {
fn deref_mut<'a>(&'a mut self) -> &'a mut T {
unsafe { &mut *self.__data.get() }
}
}
#[unsafe_destructor]
impl<'a, T> Drop for MutexGuard<'a, T> {
#[inline]
fn drop(&mut self) {
unsafe {
self.__lock.poison.done(&self.__poison);
self.__lock.lock.unlock();
}
}
}
pub fn guard_lock<'a, T>(guard: &MutexGuard<'a, T>) -> &'a sys::Mutex {
&guard.__lock.lock
}
pub fn guard_poison<'a, T>(guard: &MutexGuard<'a, T>) -> &'a poison::Flag {
&guard.__lock.poison
}
#[cfg(test)]
mod test {
use prelude::v1::*;
use sync::mpsc::channel;
use sync::{Arc, Mutex, StaticMutex, MUTEX_INIT, Condvar};
use thread::Thread;
struct Packet<T>(Arc<(Mutex<T>, Condvar)>);
unsafe impl<T:'static+Send> Send for Packet<T> {}
unsafe impl<T> Sync for Packet<T> {}
#[test]
fn smoke() {
let m = Mutex::new(());
drop(m.lock().unwrap());
drop(m.lock().unwrap());
}
#[test]
fn smoke_static() {
static M: StaticMutex = MUTEX_INIT;
unsafe {
drop(M.lock().unwrap());
drop(M.lock().unwrap());
M.destroy();
}
}
#[test]
fn lots_and_lots() {
static M: StaticMutex = MUTEX_INIT;
static mut CNT: uint = 0;
static J: uint = 1000;
static K: uint = 3;
fn inc() {
for _ in range(0, J) {
unsafe {
let _g = M.lock().unwrap();
CNT += 1;
}
}
}
let (tx, rx) = channel();
for _ in range(0, K) {
let tx2 = tx.clone();
Thread::spawn(move|| { inc(); tx2.send(()).unwrap(); }).detach();
let tx2 = tx.clone();
Thread::spawn(move|| { inc(); tx2.send(()).unwrap(); }).detach();
}
drop(tx);
for _ in range(0, 2 * K) {
rx.recv().unwrap();
}
assert_eq!(unsafe {CNT}, J * K * 2);
unsafe {
M.destroy();
}
}
#[test]
fn try_lock() {
let m = Mutex::new(());
*m.try_lock().unwrap() = ();
}
#[test]
fn test_mutex_arc_condvar() {
let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
let packet2 = Packet(packet.0.clone());
let (tx, rx) = channel();
let _t = Thread::spawn(move|| {
// wait until parent gets in
rx.recv().unwrap();
let &(ref lock, ref cvar) = &*packet2.0;
let mut lock = lock.lock().unwrap();
*lock = true;
cvar.notify_one();
});
let &(ref lock, ref cvar) = &*packet.0;
let mut lock = lock.lock().unwrap();
tx.send(()).unwrap();
assert!(!*lock);
while !*lock {
lock = cvar.wait(lock).unwrap();
}
}
#[test]
fn test_arc_condvar_poison() {
let packet = Packet(Arc::new((Mutex::new(1i), Condvar::new())));
let packet2 = Packet(packet.0.clone());
let (tx, rx) = channel();
let _t = Thread::spawn(move || -> () {
rx.recv().unwrap();
let &(ref lock, ref cvar) = &*packet2.0;
let _g = lock.lock().unwrap();
cvar.notify_one();
// Parent should fail when it wakes up.
panic!();
});
let &(ref lock, ref cvar) = &*packet.0;
let mut lock = lock.lock().unwrap();
tx.send(()).unwrap();
while *lock == 1 {
match cvar.wait(lock) {
Ok(l) => {
lock = l;
assert_eq!(*lock, 1);
}
Err(..) => break,
}
}
}
#[test]
fn test_mutex_arc_poison() {
let arc = Arc::new(Mutex::new(1i));
let arc2 = arc.clone();
Thread::spawn(move|| {
let lock = arc2.lock().unwrap();
assert_eq!(*lock, 2);
}).join();
assert!(arc.lock().is_err());
}
#[test]
fn test_mutex_arc_nested() {
// Tests nested mutexes and access
// to underlying data.
let arc = Arc::new(Mutex::new(1i));
let arc2 = Arc::new(Mutex::new(arc));
let (tx, rx) = channel();
let _t = Thread::spawn(move|| {
let lock = arc2.lock().unwrap();
let lock2 = lock.lock().unwrap();
assert_eq!(*lock2, 1);
tx.send(()).unwrap();
});
rx.recv().unwrap();
}
#[test]
fn test_mutex_arc_access_in_unwind() {
let arc = Arc::new(Mutex::new(1i));
let arc2 = arc.clone();
let _ = Thread::spawn(move|| -> () {
struct Unwinder {
i: Arc<Mutex<int>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
*self.i.lock().unwrap() += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
}).join();
let lock = arc.lock().unwrap();
assert_eq!(*lock, 2);
}
}