rust/src/librustc/lint/builtin.rs
2014-10-02 16:59:31 +03:00

1620 lines
56 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Lints built in to rustc.
//!
//! This is a sibling of `lint::context` in order to ensure that
//! lints implemented here use the same public API as lint plugins.
//!
//! To add a new lint to rustc, declare it here using `declare_lint!()`.
//! Then add code to emit the new lint in the appropriate circumstances.
//! You can do that in an existing `LintPass` if it makes sense, or in
//! a new `LintPass`, or using `Session::add_lint` elsewhere in the
//! compiler. Only do the latter if the check can't be written cleanly
//! as a `LintPass`.
//!
//! If you define a new `LintPass`, you will also need to add it to the
//! `add_builtin!` or `add_builtin_with_new!` invocation in `context.rs`.
//! Use the former for unit-like structs and the latter for structs with
//! a `pub fn new()`.
use metadata::csearch;
use middle::def::*;
use middle::typeck::astconv::ast_ty_to_ty;
use middle::typeck::infer;
use middle::{typeck, ty, def, pat_util, stability};
use util::ppaux::{ty_to_string};
use util::nodemap::NodeSet;
use lint::{Context, LintPass, LintArray};
use std::cmp;
use std::collections::HashMap;
use std::collections::hashmap::{Occupied, Vacant};
use std::slice;
use std::{i8, i16, i32, i64, u8, u16, u32, u64, f32, f64};
use syntax::abi;
use syntax::ast_map;
use syntax::attr::AttrMetaMethods;
use syntax::attr;
use syntax::codemap::{Span, NO_EXPANSION};
use syntax::parse::token;
use syntax::{ast, ast_util, visit};
use syntax::ptr::P;
use syntax::visit::Visitor;
declare_lint!(WHILE_TRUE, Warn,
"suggest using `loop { }` instead of `while true { }`")
pub struct WhileTrue;
impl LintPass for WhileTrue {
fn get_lints(&self) -> LintArray {
lint_array!(WHILE_TRUE)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
ast::ExprWhile(ref cond, _, _) => {
match cond.node {
ast::ExprLit(ref lit) => {
match lit.node {
ast::LitBool(true) => {
cx.span_lint(WHILE_TRUE, e.span,
"denote infinite loops with loop \
{ ... }");
}
_ => {}
}
}
_ => ()
}
}
_ => ()
}
}
}
declare_lint!(UNNECESSARY_TYPECAST, Allow,
"detects unnecessary type casts, that can be removed")
pub struct UnusedCasts;
impl LintPass for UnusedCasts {
fn get_lints(&self) -> LintArray {
lint_array!(UNNECESSARY_TYPECAST)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
ast::ExprCast(ref expr, ref ty) => {
let t_t = ast_ty_to_ty(cx, &infer::new_infer_ctxt(cx.tcx), &**ty);
if ty::get(ty::expr_ty(cx.tcx, &**expr)).sty == ty::get(t_t).sty {
cx.span_lint(UNNECESSARY_TYPECAST, ty.span, "unnecessary type cast");
}
}
_ => ()
}
}
}
declare_lint!(UNSIGNED_NEGATE, Warn,
"using an unary minus operator on unsigned type")
declare_lint!(TYPE_LIMITS, Warn,
"comparisons made useless by limits of the types involved")
declare_lint!(TYPE_OVERFLOW, Warn,
"literal out of range for its type")
pub struct TypeLimits {
/// Id of the last visited negated expression
negated_expr_id: ast::NodeId,
}
impl TypeLimits {
pub fn new() -> TypeLimits {
TypeLimits {
negated_expr_id: -1,
}
}
}
impl LintPass for TypeLimits {
fn get_lints(&self) -> LintArray {
lint_array!(UNSIGNED_NEGATE, TYPE_LIMITS, TYPE_OVERFLOW)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
ast::ExprUnary(ast::UnNeg, ref expr) => {
match expr.node {
ast::ExprLit(ref lit) => {
match lit.node {
ast::LitInt(_, ast::UnsignedIntLit(_)) => {
cx.span_lint(UNSIGNED_NEGATE, e.span,
"negation of unsigned int literal may \
be unintentional");
},
_ => ()
}
},
_ => {
let t = ty::expr_ty(cx.tcx, &**expr);
match ty::get(t).sty {
ty::ty_uint(_) => {
cx.span_lint(UNSIGNED_NEGATE, e.span,
"negation of unsigned int variable may \
be unintentional");
},
_ => ()
}
}
};
// propagate negation, if the negation itself isn't negated
if self.negated_expr_id != e.id {
self.negated_expr_id = expr.id;
}
},
ast::ExprParen(ref expr) if self.negated_expr_id == e.id => {
self.negated_expr_id = expr.id;
},
ast::ExprBinary(binop, ref l, ref r) => {
if is_comparison(binop) && !check_limits(cx.tcx, binop, &**l, &**r) {
cx.span_lint(TYPE_LIMITS, e.span,
"comparison is useless due to type limits");
}
},
ast::ExprLit(ref lit) => {
match ty::get(ty::expr_ty(cx.tcx, e)).sty {
ty::ty_int(t) => {
match lit.node {
ast::LitInt(v, ast::SignedIntLit(_, ast::Plus)) |
ast::LitInt(v, ast::UnsuffixedIntLit(ast::Plus)) => {
let int_type = if t == ast::TyI {
cx.sess().targ_cfg.int_type
} else { t };
let (min, max) = int_ty_range(int_type);
let negative = self.negated_expr_id == e.id;
if (negative && v > (min.abs() as u64)) ||
(!negative && v > (max.abs() as u64)) {
cx.span_lint(TYPE_OVERFLOW, e.span,
"literal out of range for its type");
return;
}
}
_ => fail!()
};
},
ty::ty_uint(t) => {
let uint_type = if t == ast::TyU {
cx.sess().targ_cfg.uint_type
} else { t };
let (min, max) = uint_ty_range(uint_type);
let lit_val: u64 = match lit.node {
ast::LitByte(_v) => return, // _v is u8, within range by definition
ast::LitInt(v, _) => v,
_ => fail!()
};
if lit_val < min || lit_val > max {
cx.span_lint(TYPE_OVERFLOW, e.span,
"literal out of range for its type");
}
},
ty::ty_float(t) => {
let (min, max) = float_ty_range(t);
let lit_val: f64 = match lit.node {
ast::LitFloat(ref v, _) |
ast::LitFloatUnsuffixed(ref v) => match from_str(v.get()) {
Some(f) => f,
None => return
},
_ => fail!()
};
if lit_val < min || lit_val > max {
cx.span_lint(TYPE_OVERFLOW, e.span,
"literal out of range for its type");
}
},
_ => ()
};
},
_ => ()
};
fn is_valid<T:cmp::PartialOrd>(binop: ast::BinOp, v: T,
min: T, max: T) -> bool {
match binop {
ast::BiLt => v > min && v <= max,
ast::BiLe => v >= min && v < max,
ast::BiGt => v >= min && v < max,
ast::BiGe => v > min && v <= max,
ast::BiEq | ast::BiNe => v >= min && v <= max,
_ => fail!()
}
}
fn rev_binop(binop: ast::BinOp) -> ast::BinOp {
match binop {
ast::BiLt => ast::BiGt,
ast::BiLe => ast::BiGe,
ast::BiGt => ast::BiLt,
ast::BiGe => ast::BiLe,
_ => binop
}
}
// for int & uint, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms
fn int_ty_range(int_ty: ast::IntTy) -> (i64, i64) {
match int_ty {
ast::TyI => (i64::MIN, i64::MAX),
ast::TyI8 => (i8::MIN as i64, i8::MAX as i64),
ast::TyI16 => (i16::MIN as i64, i16::MAX as i64),
ast::TyI32 => (i32::MIN as i64, i32::MAX as i64),
ast::TyI64 => (i64::MIN, i64::MAX)
}
}
fn uint_ty_range(uint_ty: ast::UintTy) -> (u64, u64) {
match uint_ty {
ast::TyU => (u64::MIN, u64::MAX),
ast::TyU8 => (u8::MIN as u64, u8::MAX as u64),
ast::TyU16 => (u16::MIN as u64, u16::MAX as u64),
ast::TyU32 => (u32::MIN as u64, u32::MAX as u64),
ast::TyU64 => (u64::MIN, u64::MAX)
}
}
fn float_ty_range(float_ty: ast::FloatTy) -> (f64, f64) {
match float_ty {
ast::TyF32 => (f32::MIN_VALUE as f64, f32::MAX_VALUE as f64),
ast::TyF64 => (f64::MIN_VALUE, f64::MAX_VALUE)
}
}
fn check_limits(tcx: &ty::ctxt, binop: ast::BinOp,
l: &ast::Expr, r: &ast::Expr) -> bool {
let (lit, expr, swap) = match (&l.node, &r.node) {
(&ast::ExprLit(_), _) => (l, r, true),
(_, &ast::ExprLit(_)) => (r, l, false),
_ => return true
};
// Normalize the binop so that the literal is always on the RHS in
// the comparison
let norm_binop = if swap { rev_binop(binop) } else { binop };
match ty::get(ty::expr_ty(tcx, expr)).sty {
ty::ty_int(int_ty) => {
let (min, max) = int_ty_range(int_ty);
let lit_val: i64 = match lit.node {
ast::ExprLit(ref li) => match li.node {
ast::LitInt(v, ast::SignedIntLit(_, ast::Plus)) |
ast::LitInt(v, ast::UnsuffixedIntLit(ast::Plus)) => v as i64,
ast::LitInt(v, ast::SignedIntLit(_, ast::Minus)) |
ast::LitInt(v, ast::UnsuffixedIntLit(ast::Minus)) => -(v as i64),
_ => return true
},
_ => fail!()
};
is_valid(norm_binop, lit_val, min, max)
}
ty::ty_uint(uint_ty) => {
let (min, max): (u64, u64) = uint_ty_range(uint_ty);
let lit_val: u64 = match lit.node {
ast::ExprLit(ref li) => match li.node {
ast::LitInt(v, _) => v,
_ => return true
},
_ => fail!()
};
is_valid(norm_binop, lit_val, min, max)
}
_ => true
}
}
fn is_comparison(binop: ast::BinOp) -> bool {
match binop {
ast::BiEq | ast::BiLt | ast::BiLe |
ast::BiNe | ast::BiGe | ast::BiGt => true,
_ => false
}
}
}
}
declare_lint!(CTYPES, Warn,
"proper use of libc types in foreign modules")
struct CTypesVisitor<'a, 'tcx: 'a> {
cx: &'a Context<'a, 'tcx>
}
impl<'a, 'tcx> CTypesVisitor<'a, 'tcx> {
fn check_def(&mut self, sp: Span, ty_id: ast::NodeId, path_id: ast::NodeId) {
match self.cx.tcx.def_map.borrow().get_copy(&path_id) {
def::DefPrimTy(ast::TyInt(ast::TyI)) => {
self.cx.span_lint(CTYPES, sp,
"found rust type `int` in foreign module, while \
libc::c_int or libc::c_long should be used");
}
def::DefPrimTy(ast::TyUint(ast::TyU)) => {
self.cx.span_lint(CTYPES, sp,
"found rust type `uint` in foreign module, while \
libc::c_uint or libc::c_ulong should be used");
}
def::DefTy(..) => {
let tty = match self.cx.tcx.ast_ty_to_ty_cache.borrow().find(&ty_id) {
Some(&ty::atttce_resolved(t)) => t,
_ => fail!("ast_ty_to_ty_cache was incomplete after typeck!")
};
if !ty::is_ffi_safe(self.cx.tcx, tty) {
self.cx.span_lint(CTYPES, sp,
"found type without foreign-function-safe
representation annotation in foreign module, consider \
adding a #[repr(...)] attribute to the type");
}
}
_ => ()
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for CTypesVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: &ast::Ty) {
match ty.node {
ast::TyPath(_, _, id) => self.check_def(ty.span, ty.id, id),
_ => (),
}
visit::walk_ty(self, ty);
}
}
pub struct CTypes;
impl LintPass for CTypes {
fn get_lints(&self) -> LintArray {
lint_array!(CTYPES)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
fn check_ty(cx: &Context, ty: &ast::Ty) {
let mut vis = CTypesVisitor { cx: cx };
vis.visit_ty(ty);
}
fn check_foreign_fn(cx: &Context, decl: &ast::FnDecl) {
for input in decl.inputs.iter() {
check_ty(cx, &*input.ty);
}
check_ty(cx, &*decl.output)
}
match it.node {
ast::ItemForeignMod(ref nmod) if nmod.abi != abi::RustIntrinsic => {
for ni in nmod.items.iter() {
match ni.node {
ast::ForeignItemFn(ref decl, _) => check_foreign_fn(cx, &**decl),
ast::ForeignItemStatic(ref t, _) => check_ty(cx, &**t)
}
}
}
_ => (),
}
}
}
declare_lint!(OWNED_HEAP_MEMORY, Allow,
"use of owned (Box type) heap memory")
pub struct HeapMemory;
impl HeapMemory {
fn check_heap_type(&self, cx: &Context, span: Span, ty: ty::t) {
let mut n_uniq = 0i;
ty::fold_ty(cx.tcx, ty, |t| {
match ty::get(t).sty {
ty::ty_uniq(_) |
ty::ty_closure(box ty::ClosureTy {
store: ty::UniqTraitStore,
..
}) => {
n_uniq += 1;
}
_ => ()
};
t
});
if n_uniq > 0 {
let s = ty_to_string(cx.tcx, ty);
let m = format!("type uses owned (Box type) pointers: {}", s);
cx.span_lint(OWNED_HEAP_MEMORY, span, m.as_slice());
}
}
}
impl LintPass for HeapMemory {
fn get_lints(&self) -> LintArray {
lint_array!(OWNED_HEAP_MEMORY)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
match it.node {
ast::ItemFn(..) |
ast::ItemTy(..) |
ast::ItemEnum(..) |
ast::ItemStruct(..) =>
self.check_heap_type(cx, it.span,
ty::node_id_to_type(cx.tcx, it.id)),
_ => ()
}
// If it's a struct, we also have to check the fields' types
match it.node {
ast::ItemStruct(ref struct_def, _) => {
for struct_field in struct_def.fields.iter() {
self.check_heap_type(cx, struct_field.span,
ty::node_id_to_type(cx.tcx, struct_field.node.id));
}
}
_ => ()
}
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
let ty = ty::expr_ty(cx.tcx, e);
self.check_heap_type(cx, e.span, ty);
}
}
declare_lint!(RAW_POINTER_DERIVING, Warn,
"uses of #[deriving] with raw pointers are rarely correct")
struct RawPtrDerivingVisitor<'a, 'tcx: 'a> {
cx: &'a Context<'a, 'tcx>
}
impl<'a, 'tcx, 'v> Visitor<'v> for RawPtrDerivingVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: &ast::Ty) {
static MSG: &'static str = "use of `#[deriving]` with a raw pointer";
match ty.node {
ast::TyPtr(..) => self.cx.span_lint(RAW_POINTER_DERIVING, ty.span, MSG),
_ => {}
}
visit::walk_ty(self, ty);
}
// explicit override to a no-op to reduce code bloat
fn visit_expr(&mut self, _: &ast::Expr) {}
fn visit_block(&mut self, _: &ast::Block) {}
}
pub struct RawPointerDeriving {
checked_raw_pointers: NodeSet,
}
impl RawPointerDeriving {
pub fn new() -> RawPointerDeriving {
RawPointerDeriving {
checked_raw_pointers: NodeSet::new(),
}
}
}
impl LintPass for RawPointerDeriving {
fn get_lints(&self) -> LintArray {
lint_array!(RAW_POINTER_DERIVING)
}
fn check_item(&mut self, cx: &Context, item: &ast::Item) {
if !attr::contains_name(item.attrs.as_slice(), "automatically_derived") {
return
}
let did = match item.node {
ast::ItemImpl(..) => {
match ty::get(ty::node_id_to_type(cx.tcx, item.id)).sty {
ty::ty_enum(did, _) => did,
ty::ty_struct(did, _) => did,
_ => return,
}
}
_ => return,
};
if !ast_util::is_local(did) { return }
let item = match cx.tcx.map.find(did.node) {
Some(ast_map::NodeItem(item)) => item,
_ => return,
};
if !self.checked_raw_pointers.insert(item.id) { return }
match item.node {
ast::ItemStruct(..) | ast::ItemEnum(..) => {
let mut visitor = RawPtrDerivingVisitor { cx: cx };
visit::walk_item(&mut visitor, &*item);
}
_ => {}
}
}
}
declare_lint!(UNUSED_ATTRIBUTE, Warn,
"detects attributes that were not used by the compiler")
pub struct UnusedAttribute;
impl LintPass for UnusedAttribute {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_ATTRIBUTE)
}
fn check_attribute(&mut self, cx: &Context, attr: &ast::Attribute) {
static ATTRIBUTE_WHITELIST: &'static [&'static str] = &[
// FIXME: #14408 whitelist docs since rustdoc looks at them
"doc",
// FIXME: #14406 these are processed in trans, which happens after the
// lint pass
"cold",
"export_name",
"inline",
"link",
"link_name",
"link_section",
"no_builtins",
"no_mangle",
"no_split_stack",
"packed",
"static_assert",
"thread_local",
"no_debug",
"unsafe_no_drop_flag",
// used in resolve
"prelude_import",
// not used anywhere (!?) but apparently we want to keep them around
"comment",
"desc",
"license",
// FIXME: #14407 these are only looked at on-demand so we can't
// guarantee they'll have already been checked
"deprecated",
"experimental",
"frozen",
"locked",
"must_use",
"stable",
"unstable",
];
static CRATE_ATTRS: &'static [&'static str] = &[
"crate_name",
"crate_type",
"feature",
"no_start",
"no_main",
"no_std",
"desc",
"comment",
"license",
"copyright",
"no_builtins",
];
for &name in ATTRIBUTE_WHITELIST.iter() {
if attr.check_name(name) {
break;
}
}
if !attr::is_used(attr) {
cx.span_lint(UNUSED_ATTRIBUTE, attr.span, "unused attribute");
if CRATE_ATTRS.contains(&attr.name().get()) {
let msg = match attr.node.style {
ast::AttrOuter => "crate-level attribute should be an inner \
attribute: add an exclamation mark: #![foo]",
ast::AttrInner => "crate-level attribute should be in the \
root module",
};
cx.span_lint(UNUSED_ATTRIBUTE, attr.span, msg);
}
}
}
}
declare_lint!(PATH_STATEMENT, Warn,
"path statements with no effect")
pub struct PathStatement;
impl LintPass for PathStatement {
fn get_lints(&self) -> LintArray {
lint_array!(PATH_STATEMENT)
}
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
match s.node {
ast::StmtSemi(ref expr, _) => {
match expr.node {
ast::ExprPath(_) => cx.span_lint(PATH_STATEMENT, s.span,
"path statement with no effect"),
_ => ()
}
}
_ => ()
}
}
}
declare_lint!(UNUSED_MUST_USE, Warn,
"unused result of a type flagged as #[must_use]")
declare_lint!(UNUSED_RESULT, Allow,
"unused result of an expression in a statement")
pub struct UnusedResult;
impl LintPass for UnusedResult {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_MUST_USE, UNUSED_RESULT)
}
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
let expr = match s.node {
ast::StmtSemi(ref expr, _) => &**expr,
_ => return
};
match expr.node {
ast::ExprRet(..) => return,
_ => {}
}
let t = ty::expr_ty(cx.tcx, expr);
let mut warned = false;
match ty::get(t).sty {
ty::ty_nil | ty::ty_bot | ty::ty_bool => return,
ty::ty_struct(did, _) |
ty::ty_enum(did, _) => {
if ast_util::is_local(did) {
match cx.tcx.map.get(did.node) {
ast_map::NodeItem(it) => {
warned |= check_must_use(cx, it.attrs.as_slice(), s.span);
}
_ => {}
}
} else {
csearch::get_item_attrs(&cx.sess().cstore, did, |attrs| {
warned |= check_must_use(cx, attrs.as_slice(), s.span);
});
}
}
_ => {}
}
if !warned {
cx.span_lint(UNUSED_RESULT, s.span, "unused result");
}
fn check_must_use(cx: &Context, attrs: &[ast::Attribute], sp: Span) -> bool {
for attr in attrs.iter() {
if attr.check_name("must_use") {
let mut msg = "unused result which must be used".to_string();
// check for #[must_use="..."]
match attr.value_str() {
None => {}
Some(s) => {
msg.push_str(": ");
msg.push_str(s.get());
}
}
cx.span_lint(UNUSED_MUST_USE, sp, msg.as_slice());
return true;
}
}
false
}
}
}
declare_lint!(pub NON_CAMEL_CASE_TYPES, Warn,
"types, variants, traits and type parameters should have camel case names")
pub struct NonCamelCaseTypes;
impl NonCamelCaseTypes {
fn check_case(&self, cx: &Context, sort: &str, ident: ast::Ident, span: Span) {
fn is_camel_case(ident: ast::Ident) -> bool {
let ident = token::get_ident(ident);
if ident.get().is_empty() { return true; }
let ident = ident.get().trim_chars('_');
// start with a non-lowercase letter rather than non-uppercase
// ones (some scripts don't have a concept of upper/lowercase)
ident.len() > 0 && !ident.char_at(0).is_lowercase() && !ident.contains_char('_')
}
fn to_camel_case(s: &str) -> String {
s.split('_').flat_map(|word| word.chars().enumerate().map(|(i, c)|
if i == 0 { c.to_uppercase() }
else { c }
)).collect()
}
let s = token::get_ident(ident);
if !is_camel_case(ident) {
let c = to_camel_case(s.get());
let m = if c.is_empty() {
format!("{} `{}` should have a camel case name such as `CamelCase`", sort, s)
} else {
format!("{} `{}` should have a camel case name such as `{}`", sort, s, c)
};
cx.span_lint(NON_CAMEL_CASE_TYPES, span, m.as_slice());
}
}
}
impl LintPass for NonCamelCaseTypes {
fn get_lints(&self) -> LintArray {
lint_array!(NON_CAMEL_CASE_TYPES)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
let has_extern_repr = it.attrs.iter().map(|attr| {
attr::find_repr_attrs(cx.tcx.sess.diagnostic(), attr).iter()
.any(|r| r == &attr::ReprExtern)
}).any(|x| x);
if has_extern_repr { return }
match it.node {
ast::ItemTy(..) | ast::ItemStruct(..) => {
self.check_case(cx, "type", it.ident, it.span)
}
ast::ItemTrait(..) => {
self.check_case(cx, "trait", it.ident, it.span)
}
ast::ItemEnum(ref enum_definition, _) => {
if has_extern_repr { return }
self.check_case(cx, "type", it.ident, it.span);
for variant in enum_definition.variants.iter() {
self.check_case(cx, "variant", variant.node.name, variant.span);
}
}
_ => ()
}
}
fn check_generics(&mut self, cx: &Context, it: &ast::Generics) {
for gen in it.ty_params.iter() {
self.check_case(cx, "type parameter", gen.ident, gen.span);
}
}
}
#[deriving(PartialEq)]
enum MethodContext {
TraitDefaultImpl,
TraitImpl,
PlainImpl
}
fn method_context(cx: &Context, m: &ast::Method) -> MethodContext {
let did = ast::DefId {
krate: ast::LOCAL_CRATE,
node: m.id
};
match cx.tcx.impl_or_trait_items.borrow().find_copy(&did) {
None => cx.sess().span_bug(m.span, "missing method descriptor?!"),
Some(md) => {
match md {
ty::MethodTraitItem(md) => {
match md.container {
ty::TraitContainer(..) => TraitDefaultImpl,
ty::ImplContainer(cid) => {
match ty::impl_trait_ref(cx.tcx, cid) {
Some(..) => TraitImpl,
None => PlainImpl
}
}
}
}
ty::TypeTraitItem(typedef) => {
match typedef.container {
ty::TraitContainer(..) => TraitDefaultImpl,
ty::ImplContainer(cid) => {
match ty::impl_trait_ref(cx.tcx, cid) {
Some(..) => TraitImpl,
None => PlainImpl
}
}
}
}
}
}
}
}
declare_lint!(pub NON_SNAKE_CASE, Warn,
"methods, functions, lifetime parameters and modules should have snake case names")
pub struct NonSnakeCase;
impl NonSnakeCase {
fn check_snake_case(&self, cx: &Context, sort: &str, ident: ast::Ident, span: Span) {
fn is_snake_case(ident: ast::Ident) -> bool {
let ident = token::get_ident(ident);
if ident.get().is_empty() { return true; }
let ident = ident.get().trim_left_chars('\'');
let ident = ident.trim_chars('_');
let mut allow_underscore = true;
ident.chars().all(|c| {
allow_underscore = match c {
c if c.is_lowercase() || c.is_digit() => true,
'_' if allow_underscore => false,
_ => return false,
};
true
})
}
fn to_snake_case(str: &str) -> String {
let mut words = vec![];
for s in str.split('_') {
let mut buf = String::new();
if s.is_empty() { continue; }
for ch in s.chars() {
if !buf.is_empty() && buf.as_slice() != "'" && ch.is_uppercase() {
words.push(buf);
buf = String::new();
}
buf.push_char(ch.to_lowercase());
}
words.push(buf);
}
words.connect("_")
}
let s = token::get_ident(ident);
if !is_snake_case(ident) {
cx.span_lint(NON_SNAKE_CASE, span,
format!("{} `{}` should have a snake case name such as `{}`",
sort, s, to_snake_case(s.get())).as_slice());
}
}
}
impl LintPass for NonSnakeCase {
fn get_lints(&self) -> LintArray {
lint_array!(NON_SNAKE_CASE)
}
fn check_fn(&mut self, cx: &Context,
fk: visit::FnKind, _: &ast::FnDecl,
_: &ast::Block, span: Span, _: ast::NodeId) {
match fk {
visit::FkMethod(ident, _, m) => match method_context(cx, m) {
PlainImpl
=> self.check_snake_case(cx, "method", ident, span),
TraitDefaultImpl
=> self.check_snake_case(cx, "trait method", ident, span),
_ => (),
},
visit::FkItemFn(ident, _, _, _)
=> self.check_snake_case(cx, "function", ident, span),
_ => (),
}
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
match it.node {
ast::ItemMod(_) => {
self.check_snake_case(cx, "module", it.ident, it.span);
}
_ => {}
}
}
fn check_ty_method(&mut self, cx: &Context, t: &ast::TypeMethod) {
self.check_snake_case(cx, "trait method", t.ident, t.span);
}
fn check_lifetime_decl(&mut self, cx: &Context, t: &ast::LifetimeDef) {
self.check_snake_case(cx, "lifetime", t.lifetime.name.ident(), t.lifetime.span);
}
fn check_pat(&mut self, cx: &Context, p: &ast::Pat) {
match &p.node {
&ast::PatIdent(_, ref path1, _) => {
match cx.tcx.def_map.borrow().find(&p.id) {
Some(&def::DefLocal(_)) => {
self.check_snake_case(cx, "variable", path1.node, p.span);
}
_ => {}
}
}
_ => {}
}
}
fn check_struct_def(&mut self, cx: &Context, s: &ast::StructDef,
_: ast::Ident, _: &ast::Generics, _: ast::NodeId) {
for sf in s.fields.iter() {
match sf.node {
ast::StructField_ { kind: ast::NamedField(ident, _), .. } => {
self.check_snake_case(cx, "structure field", ident, sf.span);
}
_ => {}
}
}
}
}
declare_lint!(pub NON_UPPERCASE_STATICS, Allow,
"static constants should have uppercase identifiers")
pub struct NonUppercaseStatics;
impl LintPass for NonUppercaseStatics {
fn get_lints(&self) -> LintArray {
lint_array!(NON_UPPERCASE_STATICS)
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
match it.node {
// only check static constants
ast::ItemStatic(_, ast::MutImmutable, _) => {
let s = token::get_ident(it.ident);
// check for lowercase letters rather than non-uppercase
// ones (some scripts don't have a concept of
// upper/lowercase)
if s.get().chars().any(|c| c.is_lowercase()) {
cx.span_lint(NON_UPPERCASE_STATICS, it.span,
format!("static constant `{}` should have an uppercase name \
such as `{}`",
s.get(), s.get().chars().map(|c| c.to_uppercase())
.collect::<String>().as_slice()).as_slice());
}
}
_ => {}
}
}
fn check_pat(&mut self, cx: &Context, p: &ast::Pat) {
// Lint for constants that look like binding identifiers (#7526)
match (&p.node, cx.tcx.def_map.borrow().find(&p.id)) {
(&ast::PatIdent(_, ref path1, _), Some(&def::DefStatic(_, false))) => {
let s = token::get_ident(path1.node);
if s.get().chars().any(|c| c.is_lowercase()) {
cx.span_lint(NON_UPPERCASE_STATICS, path1.span,
format!("static constant in pattern `{}` should have an uppercase \
name such as `{}`",
s.get(), s.get().chars().map(|c| c.to_uppercase())
.collect::<String>().as_slice()).as_slice());
}
}
_ => {}
}
}
}
declare_lint!(UNNECESSARY_PARENS, Warn,
"`if`, `match`, `while` and `return` do not need parentheses")
pub struct UnnecessaryParens;
impl UnnecessaryParens {
fn check_unnecessary_parens_core(&self, cx: &Context, value: &ast::Expr, msg: &str,
struct_lit_needs_parens: bool) {
match value.node {
ast::ExprParen(ref inner) => {
let necessary = struct_lit_needs_parens && contains_exterior_struct_lit(&**inner);
if !necessary {
cx.span_lint(UNNECESSARY_PARENS, value.span,
format!("unnecessary parentheses around {}",
msg).as_slice())
}
}
_ => {}
}
/// Expressions that syntactically contain an "exterior" struct
/// literal i.e. not surrounded by any parens or other
/// delimiters, e.g. `X { y: 1 }`, `X { y: 1 }.method()`, `foo
/// == X { y: 1 }` and `X { y: 1 } == foo` all do, but `(X {
/// y: 1 }) == foo` does not.
fn contains_exterior_struct_lit(value: &ast::Expr) -> bool {
match value.node {
ast::ExprStruct(..) => true,
ast::ExprAssign(ref lhs, ref rhs) |
ast::ExprAssignOp(_, ref lhs, ref rhs) |
ast::ExprBinary(_, ref lhs, ref rhs) => {
// X { y: 1 } + X { y: 2 }
contains_exterior_struct_lit(&**lhs) ||
contains_exterior_struct_lit(&**rhs)
}
ast::ExprUnary(_, ref x) |
ast::ExprCast(ref x, _) |
ast::ExprField(ref x, _, _) |
ast::ExprTupField(ref x, _, _) |
ast::ExprIndex(ref x, _) => {
// &X { y: 1 }, X { y: 1 }.y
contains_exterior_struct_lit(&**x)
}
ast::ExprMethodCall(_, _, ref exprs) => {
// X { y: 1 }.bar(...)
contains_exterior_struct_lit(&**exprs.get(0))
}
_ => false
}
}
}
}
impl LintPass for UnnecessaryParens {
fn get_lints(&self) -> LintArray {
lint_array!(UNNECESSARY_PARENS)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
let (value, msg, struct_lit_needs_parens) = match e.node {
ast::ExprIf(ref cond, _, _) => (cond, "`if` condition", true),
ast::ExprWhile(ref cond, _, _) => (cond, "`while` condition", true),
ast::ExprMatch(ref head, _, source) => match source {
ast::MatchNormal => (head, "`match` head expression", true),
ast::MatchIfLetDesugar => (head, "`if let` head expression", true)
},
ast::ExprRet(Some(ref value)) => (value, "`return` value", false),
ast::ExprAssign(_, ref value) => (value, "assigned value", false),
ast::ExprAssignOp(_, _, ref value) => (value, "assigned value", false),
_ => return
};
self.check_unnecessary_parens_core(cx, &**value, msg, struct_lit_needs_parens);
}
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
let (value, msg) = match s.node {
ast::StmtDecl(ref decl, _) => match decl.node {
ast::DeclLocal(ref local) => match local.init {
Some(ref value) => (value, "assigned value"),
None => return
},
_ => return
},
_ => return
};
self.check_unnecessary_parens_core(cx, &**value, msg, false);
}
}
declare_lint!(UNNECESSARY_IMPORT_BRACES, Allow,
"unnecessary braces around an imported item")
pub struct UnnecessaryImportBraces;
impl LintPass for UnnecessaryImportBraces {
fn get_lints(&self) -> LintArray {
lint_array!(UNNECESSARY_IMPORT_BRACES)
}
fn check_view_item(&mut self, cx: &Context, view_item: &ast::ViewItem) {
match view_item.node {
ast::ViewItemUse(ref view_path) => {
match view_path.node {
ast::ViewPathList(_, ref items, _) => {
if items.len() == 1 {
match items[0].node {
ast::PathListIdent {ref name, ..} => {
let m = format!("braces around {} is unnecessary",
token::get_ident(*name).get());
cx.span_lint(UNNECESSARY_IMPORT_BRACES, view_item.span,
m.as_slice());
},
_ => ()
}
}
}
_ => ()
}
},
_ => ()
}
}
}
declare_lint!(UNUSED_UNSAFE, Warn,
"unnecessary use of an `unsafe` block")
pub struct UnusedUnsafe;
impl LintPass for UnusedUnsafe {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_UNSAFE)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
// Don't warn about generated blocks, that'll just pollute the output.
ast::ExprBlock(ref blk) => {
if blk.rules == ast::UnsafeBlock(ast::UserProvided) &&
!cx.tcx.used_unsafe.borrow().contains(&blk.id) {
cx.span_lint(UNUSED_UNSAFE, blk.span, "unnecessary `unsafe` block");
}
}
_ => ()
}
}
}
declare_lint!(UNSAFE_BLOCK, Allow,
"usage of an `unsafe` block")
pub struct UnsafeBlock;
impl LintPass for UnsafeBlock {
fn get_lints(&self) -> LintArray {
lint_array!(UNSAFE_BLOCK)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
// Don't warn about generated blocks, that'll just pollute the output.
ast::ExprBlock(ref blk) if blk.rules == ast::UnsafeBlock(ast::UserProvided) => {
cx.span_lint(UNSAFE_BLOCK, blk.span, "usage of an `unsafe` block");
}
_ => ()
}
}
}
declare_lint!(pub UNUSED_MUT, Warn,
"detect mut variables which don't need to be mutable")
pub struct UnusedMut;
impl UnusedMut {
fn check_unused_mut_pat(&self, cx: &Context, pats: &[P<ast::Pat>]) {
// collect all mutable pattern and group their NodeIDs by their Identifier to
// avoid false warnings in match arms with multiple patterns
let mut mutables = HashMap::new();
for p in pats.iter() {
pat_util::pat_bindings(&cx.tcx.def_map, &**p, |mode, id, _, path1| {
let ident = path1.node;
match mode {
ast::BindByValue(ast::MutMutable) => {
if !token::get_ident(ident).get().starts_with("_") {
match mutables.entry(ident.name.uint()) {
Vacant(entry) => { entry.set(vec![id]); },
Occupied(mut entry) => { entry.get_mut().push(id); },
}
}
}
_ => {
}
}
});
}
let used_mutables = cx.tcx.used_mut_nodes.borrow();
for (_, v) in mutables.iter() {
if !v.iter().any(|e| used_mutables.contains(e)) {
cx.span_lint(UNUSED_MUT, cx.tcx.map.span(*v.get(0)),
"variable does not need to be mutable");
}
}
}
}
impl LintPass for UnusedMut {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_MUT)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
ast::ExprMatch(_, ref arms, _) => {
for a in arms.iter() {
self.check_unused_mut_pat(cx, a.pats.as_slice())
}
}
_ => {}
}
}
fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) {
match s.node {
ast::StmtDecl(ref d, _) => {
match d.node {
ast::DeclLocal(ref l) => {
self.check_unused_mut_pat(cx, slice::ref_slice(&l.pat));
},
_ => {}
}
},
_ => {}
}
}
fn check_fn(&mut self, cx: &Context,
_: visit::FnKind, decl: &ast::FnDecl,
_: &ast::Block, _: Span, _: ast::NodeId) {
for a in decl.inputs.iter() {
self.check_unused_mut_pat(cx, slice::ref_slice(&a.pat));
}
}
}
declare_lint!(UNNECESSARY_ALLOCATION, Warn,
"detects unnecessary allocations that can be eliminated")
pub struct UnnecessaryAllocation;
impl LintPass for UnnecessaryAllocation {
fn get_lints(&self) -> LintArray {
lint_array!(UNNECESSARY_ALLOCATION)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
match e.node {
ast::ExprUnary(ast::UnUniq, _) => (),
_ => return
}
match cx.tcx.adjustments.borrow().find(&e.id) {
Some(adjustment) => {
match *adjustment {
ty::AdjustDerefRef(ty::AutoDerefRef { ref autoref, .. }) => {
match autoref {
&Some(ty::AutoPtr(_, ast::MutImmutable, None)) => {
cx.span_lint(UNNECESSARY_ALLOCATION, e.span,
"unnecessary allocation, use & instead");
}
&Some(ty::AutoPtr(_, ast::MutMutable, None)) => {
cx.span_lint(UNNECESSARY_ALLOCATION, e.span,
"unnecessary allocation, use &mut instead");
}
_ => ()
}
}
_ => {}
}
}
_ => ()
}
}
}
declare_lint!(MISSING_DOC, Allow,
"detects missing documentation for public members")
pub struct MissingDoc {
/// Stack of IDs of struct definitions.
struct_def_stack: Vec<ast::NodeId>,
/// Stack of whether #[doc(hidden)] is set
/// at each level which has lint attributes.
doc_hidden_stack: Vec<bool>,
}
impl MissingDoc {
pub fn new() -> MissingDoc {
MissingDoc {
struct_def_stack: vec!(),
doc_hidden_stack: vec!(false),
}
}
fn doc_hidden(&self) -> bool {
*self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
}
fn check_missing_doc_attrs(&self,
cx: &Context,
id: Option<ast::NodeId>,
attrs: &[ast::Attribute],
sp: Span,
desc: &'static str) {
// If we're building a test harness, then warning about
// documentation is probably not really relevant right now.
if cx.sess().opts.test { return }
// `#[doc(hidden)]` disables missing_doc check.
if self.doc_hidden() { return }
// Only check publicly-visible items, using the result from the privacy pass.
// It's an option so the crate root can also use this function (it doesn't
// have a NodeId).
match id {
Some(ref id) if !cx.exported_items.contains(id) => return,
_ => ()
}
let has_doc = attrs.iter().any(|a| {
match a.node.value.node {
ast::MetaNameValue(ref name, _) if name.equiv(&("doc")) => true,
_ => false
}
});
if !has_doc {
cx.span_lint(MISSING_DOC, sp,
format!("missing documentation for {}", desc).as_slice());
}
}
}
impl LintPass for MissingDoc {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_DOC)
}
fn enter_lint_attrs(&mut self, _: &Context, attrs: &[ast::Attribute]) {
let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| {
attr.check_name("doc") && match attr.meta_item_list() {
None => false,
Some(l) => attr::contains_name(l.as_slice(), "hidden"),
}
});
self.doc_hidden_stack.push(doc_hidden);
}
fn exit_lint_attrs(&mut self, _: &Context, _: &[ast::Attribute]) {
self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
}
fn check_struct_def(&mut self, _: &Context,
_: &ast::StructDef, _: ast::Ident, _: &ast::Generics, id: ast::NodeId) {
self.struct_def_stack.push(id);
}
fn check_struct_def_post(&mut self, _: &Context,
_: &ast::StructDef, _: ast::Ident, _: &ast::Generics, id: ast::NodeId) {
let popped = self.struct_def_stack.pop().expect("empty struct_def_stack");
assert!(popped == id);
}
fn check_crate(&mut self, cx: &Context, krate: &ast::Crate) {
self.check_missing_doc_attrs(cx, None, krate.attrs.as_slice(),
krate.span, "crate");
}
fn check_item(&mut self, cx: &Context, it: &ast::Item) {
let desc = match it.node {
ast::ItemFn(..) => "a function",
ast::ItemMod(..) => "a module",
ast::ItemEnum(..) => "an enum",
ast::ItemStruct(..) => "a struct",
ast::ItemTrait(..) => "a trait",
_ => return
};
self.check_missing_doc_attrs(cx, Some(it.id), it.attrs.as_slice(),
it.span, desc);
}
fn check_fn(&mut self, cx: &Context,
fk: visit::FnKind, _: &ast::FnDecl,
_: &ast::Block, _: Span, _: ast::NodeId) {
match fk {
visit::FkMethod(_, _, m) => {
// If the method is an impl for a trait, don't doc.
if method_context(cx, m) == TraitImpl { return; }
// Otherwise, doc according to privacy. This will also check
// doc for default methods defined on traits.
self.check_missing_doc_attrs(cx, Some(m.id), m.attrs.as_slice(),
m.span, "a method");
}
_ => {}
}
}
fn check_ty_method(&mut self, cx: &Context, tm: &ast::TypeMethod) {
self.check_missing_doc_attrs(cx, Some(tm.id), tm.attrs.as_slice(),
tm.span, "a type method");
}
fn check_struct_field(&mut self, cx: &Context, sf: &ast::StructField) {
match sf.node.kind {
ast::NamedField(_, vis) if vis == ast::Public => {
let cur_struct_def = *self.struct_def_stack.last()
.expect("empty struct_def_stack");
self.check_missing_doc_attrs(cx, Some(cur_struct_def),
sf.node.attrs.as_slice(), sf.span,
"a struct field")
}
_ => {}
}
}
fn check_variant(&mut self, cx: &Context, v: &ast::Variant, _: &ast::Generics) {
self.check_missing_doc_attrs(cx, Some(v.node.id), v.node.attrs.as_slice(),
v.span, "a variant");
}
}
declare_lint!(DEPRECATED, Warn,
"detects use of #[deprecated] items")
// FIXME #6875: Change to Warn after std library stabilization is complete
declare_lint!(EXPERIMENTAL, Allow,
"detects use of #[experimental] items")
declare_lint!(UNSTABLE, Allow,
"detects use of #[unstable] items (incl. items with no stability attribute)")
/// Checks for use of items with `#[deprecated]`, `#[experimental]` and
/// `#[unstable]` attributes, or no stability attribute.
pub struct Stability;
impl LintPass for Stability {
fn get_lints(&self) -> LintArray {
lint_array!(DEPRECATED, EXPERIMENTAL, UNSTABLE)
}
fn check_expr(&mut self, cx: &Context, e: &ast::Expr) {
// skip if `e` is not from macro arguments
let skip = cx.tcx.sess.codemap().with_expn_info(e.span.expn_id, |expninfo| {
match expninfo {
Some(ref info) => {
if info.call_site.expn_id != NO_EXPANSION ||
!( e.span.lo > info.call_site.lo && e.span.hi < info.call_site.hi ) {
// This code is not from the arguments,
// or this macro call was generated by an other macro
// We can't handle it.
true
} else if info.callee.span.is_none() {
// We don't want to mess with compiler builtins.
true
} else {
false
}
},
_ => { false }
}
});
if skip { return; }
let id = match e.node {
ast::ExprPath(..) | ast::ExprStruct(..) => {
match cx.tcx.def_map.borrow().find(&e.id) {
Some(&def) => def.def_id(),
None => return
}
}
ast::ExprMethodCall(..) => {
let method_call = typeck::MethodCall::expr(e.id);
match cx.tcx.method_map.borrow().find(&method_call) {
Some(method) => {
match method.origin {
typeck::MethodStatic(def_id) => {
def_id
}
typeck::MethodStaticUnboxedClosure(def_id) => {
def_id
}
typeck::MethodTypeParam(typeck::MethodParam {
trait_ref: ref trait_ref,
method_num: index,
..
}) |
typeck::MethodTraitObject(typeck::MethodObject {
trait_ref: ref trait_ref,
method_num: index,
..
}) => {
ty::trait_item(cx.tcx,
trait_ref.def_id,
index).def_id()
}
}
}
None => return
}
}
_ => return
};
let stability = stability::lookup(cx.tcx, id);
let cross_crate = !ast_util::is_local(id);
// stability attributes are promises made across crates; only
// check DEPRECATED for crate-local usage.
let (lint, label) = match stability {
// no stability attributes == Unstable
None if cross_crate => (UNSTABLE, "unmarked"),
Some(attr::Stability { level: attr::Unstable, .. }) if cross_crate =>
(UNSTABLE, "unstable"),
Some(attr::Stability { level: attr::Experimental, .. }) if cross_crate =>
(EXPERIMENTAL, "experimental"),
Some(attr::Stability { level: attr::Deprecated, .. }) =>
(DEPRECATED, "deprecated"),
_ => return
};
let msg = match stability {
Some(attr::Stability { text: Some(ref s), .. }) => {
format!("use of {} item: {}", label, *s)
}
_ => format!("use of {} item", label)
};
cx.span_lint(lint, e.span, msg.as_slice());
}
}
declare_lint!(pub UNUSED_IMPORTS, Warn,
"imports that are never used")
declare_lint!(pub UNUSED_EXTERN_CRATE, Allow,
"extern crates that are never used")
declare_lint!(pub UNNECESSARY_QUALIFICATION, Allow,
"detects unnecessarily qualified names")
declare_lint!(pub UNRECOGNIZED_LINT, Warn,
"unrecognized lint attribute")
declare_lint!(pub UNUSED_VARIABLE, Warn,
"detect variables which are not used in any way")
declare_lint!(pub DEAD_ASSIGNMENT, Warn,
"detect assignments that will never be read")
declare_lint!(pub DEAD_CODE, Warn,
"detect piece of code that will never be used")
declare_lint!(pub UNREACHABLE_CODE, Warn,
"detects unreachable code")
declare_lint!(pub WARNINGS, Warn,
"mass-change the level for lints which produce warnings")
declare_lint!(pub UNKNOWN_FEATURES, Deny,
"unknown features found in crate-level #[feature] directives")
declare_lint!(pub UNKNOWN_CRATE_TYPE, Deny,
"unknown crate type found in #[crate_type] directive")
declare_lint!(pub VARIANT_SIZE_DIFFERENCE, Allow,
"detects enums with widely varying variant sizes")
declare_lint!(pub TRANSMUTE_FAT_PTR, Allow,
"detects transmutes of fat pointers")
/// Does nothing as a lint pass, but registers some `Lint`s
/// which are used by other parts of the compiler.
pub struct HardwiredLints;
impl LintPass for HardwiredLints {
fn get_lints(&self) -> LintArray {
lint_array!(
UNUSED_IMPORTS,
UNUSED_EXTERN_CRATE,
UNNECESSARY_QUALIFICATION,
UNRECOGNIZED_LINT,
UNUSED_VARIABLE,
DEAD_ASSIGNMENT,
DEAD_CODE,
UNREACHABLE_CODE,
WARNINGS,
UNKNOWN_FEATURES,
UNKNOWN_CRATE_TYPE,
VARIANT_SIZE_DIFFERENCE
)
}
}