rust/compiler/rustc_const_eval/src/interpret/cast.rs
2023-08-29 09:03:46 +02:00

452 lines
19 KiB
Rust

use std::assert_matches::assert_matches;
use rustc_apfloat::ieee::{Double, Single};
use rustc_apfloat::{Float, FloatConvert};
use rustc_middle::mir::interpret::{InterpResult, PointerArithmetic, Scalar};
use rustc_middle::mir::CastKind;
use rustc_middle::ty::adjustment::PointerCoercion;
use rustc_middle::ty::layout::{IntegerExt, LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, FloatTy, Ty, TypeAndMut};
use rustc_target::abi::Integer;
use rustc_type_ir::sty::TyKind::*;
use super::{
util::ensure_monomorphic_enough, FnVal, ImmTy, Immediate, InterpCx, Machine, OpTy, PlaceTy,
};
use crate::fluent_generated as fluent;
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
pub fn cast(
&mut self,
src: &OpTy<'tcx, M::Provenance>,
cast_kind: CastKind,
cast_ty: Ty<'tcx>,
dest: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
// FIXME: In which cases should we trigger UB when the source is uninit?
match cast_kind {
CastKind::PointerCoercion(PointerCoercion::Unsize) => {
let cast_ty = self.layout_of(cast_ty)?;
self.unsize_into(src, cast_ty, dest)?;
}
CastKind::PointerExposeAddress => {
let src = self.read_immediate(src)?;
let res = self.pointer_expose_address_cast(&src, cast_ty)?;
self.write_immediate(res, dest)?;
}
CastKind::PointerFromExposedAddress => {
let src = self.read_immediate(src)?;
let res = self.pointer_from_exposed_address_cast(&src, cast_ty)?;
self.write_immediate(res, dest)?;
}
CastKind::IntToInt | CastKind::IntToFloat => {
let src = self.read_immediate(src)?;
let res = self.int_to_int_or_float(&src, cast_ty)?;
self.write_immediate(res, dest)?;
}
CastKind::FloatToFloat | CastKind::FloatToInt => {
let src = self.read_immediate(src)?;
let res = self.float_to_float_or_int(&src, cast_ty)?;
self.write_immediate(res, dest)?;
}
CastKind::FnPtrToPtr | CastKind::PtrToPtr => {
let src = self.read_immediate(src)?;
let res = self.ptr_to_ptr(&src, cast_ty)?;
self.write_immediate(res, dest)?;
}
CastKind::PointerCoercion(
PointerCoercion::MutToConstPointer | PointerCoercion::ArrayToPointer,
) => {
// These are NOPs, but can be wide pointers.
let v = self.read_immediate(src)?;
self.write_immediate(*v, dest)?;
}
CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer) => {
// All reifications must be monomorphic, bail out otherwise.
ensure_monomorphic_enough(*self.tcx, src.layout.ty)?;
// The src operand does not matter, just its type
match *src.layout.ty.kind() {
ty::FnDef(def_id, args) => {
let instance = ty::Instance::resolve_for_fn_ptr(
*self.tcx,
self.param_env,
def_id,
args,
)
.ok_or_else(|| err_inval!(TooGeneric))?;
let fn_ptr = self.create_fn_alloc_ptr(FnVal::Instance(instance));
self.write_pointer(fn_ptr, dest)?;
}
_ => span_bug!(self.cur_span(), "reify fn pointer on {:?}", src.layout.ty),
}
}
CastKind::PointerCoercion(PointerCoercion::UnsafeFnPointer) => {
let src = self.read_immediate(src)?;
match cast_ty.kind() {
ty::FnPtr(_) => {
// No change to value
self.write_immediate(*src, dest)?;
}
_ => span_bug!(self.cur_span(), "fn to unsafe fn cast on {:?}", cast_ty),
}
}
CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(_)) => {
// All reifications must be monomorphic, bail out otherwise.
ensure_monomorphic_enough(*self.tcx, src.layout.ty)?;
// The src operand does not matter, just its type
match *src.layout.ty.kind() {
ty::Closure(def_id, args) => {
let instance = ty::Instance::resolve_closure(
*self.tcx,
def_id,
args,
ty::ClosureKind::FnOnce,
)
.ok_or_else(|| err_inval!(TooGeneric))?;
let fn_ptr = self.create_fn_alloc_ptr(FnVal::Instance(instance));
self.write_pointer(fn_ptr, dest)?;
}
_ => span_bug!(self.cur_span(), "closure fn pointer on {:?}", src.layout.ty),
}
}
CastKind::DynStar => {
if let ty::Dynamic(data, _, ty::DynStar) = cast_ty.kind() {
// Initial cast from sized to dyn trait
let vtable = self.get_vtable_ptr(src.layout.ty, data.principal())?;
let vtable = Scalar::from_maybe_pointer(vtable, self);
let data = self.read_immediate(src)?.to_scalar();
let _assert_pointer_like = data.to_pointer(self)?;
let val = Immediate::ScalarPair(data, vtable);
self.write_immediate(val, dest)?;
} else {
bug!()
}
}
CastKind::Transmute => {
assert!(src.layout.is_sized());
assert!(dest.layout.is_sized());
if src.layout.size != dest.layout.size {
let src_bytes = src.layout.size.bytes();
let dest_bytes = dest.layout.size.bytes();
let src_ty = format!("{}", src.layout.ty);
let dest_ty = format!("{}", dest.layout.ty);
throw_ub_custom!(
fluent::const_eval_invalid_transmute,
src_bytes = src_bytes,
dest_bytes = dest_bytes,
src = src_ty,
dest = dest_ty,
);
}
self.copy_op(src, dest, /*allow_transmute*/ true)?;
}
}
Ok(())
}
/// Handles 'IntToInt' and 'IntToFloat' casts.
pub fn int_to_int_or_float(
&self,
src: &ImmTy<'tcx, M::Provenance>,
cast_ty: Ty<'tcx>,
) -> InterpResult<'tcx, Immediate<M::Provenance>> {
assert!(src.layout.ty.is_integral() || src.layout.ty.is_char() || src.layout.ty.is_bool());
assert!(cast_ty.is_floating_point() || cast_ty.is_integral() || cast_ty.is_char());
Ok(self.cast_from_int_like(src.to_scalar(), src.layout, cast_ty)?.into())
}
/// Handles 'FloatToFloat' and 'FloatToInt' casts.
pub fn float_to_float_or_int(
&self,
src: &ImmTy<'tcx, M::Provenance>,
cast_ty: Ty<'tcx>,
) -> InterpResult<'tcx, Immediate<M::Provenance>> {
use rustc_type_ir::sty::TyKind::*;
match src.layout.ty.kind() {
// Floating point
Float(FloatTy::F32) => {
return Ok(self.cast_from_float(src.to_scalar().to_f32()?, cast_ty).into());
}
Float(FloatTy::F64) => {
return Ok(self.cast_from_float(src.to_scalar().to_f64()?, cast_ty).into());
}
_ => {
bug!("Can't cast 'Float' type into {:?}", cast_ty);
}
}
}
/// Handles 'FnPtrToPtr' and 'PtrToPtr' casts.
pub fn ptr_to_ptr(
&self,
src: &ImmTy<'tcx, M::Provenance>,
cast_ty: Ty<'tcx>,
) -> InterpResult<'tcx, Immediate<M::Provenance>> {
assert!(src.layout.ty.is_any_ptr());
assert!(cast_ty.is_unsafe_ptr());
// Handle casting any ptr to raw ptr (might be a fat ptr).
let dest_layout = self.layout_of(cast_ty)?;
if dest_layout.size == src.layout.size {
// Thin or fat pointer that just hast the ptr kind of target type changed.
return Ok(**src);
} else {
// Casting the metadata away from a fat ptr.
assert_eq!(src.layout.size, 2 * self.pointer_size());
assert_eq!(dest_layout.size, self.pointer_size());
assert!(src.layout.ty.is_unsafe_ptr());
return match **src {
Immediate::ScalarPair(data, _) => Ok(data.into()),
Immediate::Scalar(..) => span_bug!(
self.cur_span(),
"{:?} input to a fat-to-thin cast ({:?} -> {:?})",
*src,
src.layout.ty,
cast_ty
),
Immediate::Uninit => throw_ub!(InvalidUninitBytes(None)),
};
}
}
pub fn pointer_expose_address_cast(
&mut self,
src: &ImmTy<'tcx, M::Provenance>,
cast_ty: Ty<'tcx>,
) -> InterpResult<'tcx, Immediate<M::Provenance>> {
assert_matches!(src.layout.ty.kind(), ty::RawPtr(_) | ty::FnPtr(_));
assert!(cast_ty.is_integral());
let scalar = src.to_scalar();
let ptr = scalar.to_pointer(self)?;
match ptr.into_pointer_or_addr() {
Ok(ptr) => M::expose_ptr(self, ptr)?,
Err(_) => {} // Do nothing, exposing an invalid pointer (`None` provenance) is a NOP.
};
Ok(self.cast_from_int_like(scalar, src.layout, cast_ty)?.into())
}
pub fn pointer_from_exposed_address_cast(
&self,
src: &ImmTy<'tcx, M::Provenance>,
cast_ty: Ty<'tcx>,
) -> InterpResult<'tcx, Immediate<M::Provenance>> {
assert!(src.layout.ty.is_integral());
assert_matches!(cast_ty.kind(), ty::RawPtr(_));
// First cast to usize.
let scalar = src.to_scalar();
let addr = self.cast_from_int_like(scalar, src.layout, self.tcx.types.usize)?;
let addr = addr.to_target_usize(self)?;
// Then turn address into pointer.
let ptr = M::ptr_from_addr_cast(&self, addr)?;
Ok(Scalar::from_maybe_pointer(ptr, self).into())
}
/// Low-level cast helper function. This works directly on scalars and can take 'int-like' input
/// type (basically everything with a scalar layout) to int/float/char types.
pub fn cast_from_int_like(
&self,
scalar: Scalar<M::Provenance>, // input value (there is no ScalarTy so we separate data+layout)
src_layout: TyAndLayout<'tcx>,
cast_ty: Ty<'tcx>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
// Let's make sure v is sign-extended *if* it has a signed type.
let signed = src_layout.abi.is_signed(); // Also asserts that abi is `Scalar`.
let v = scalar.to_bits(src_layout.size)?;
let v = if signed { self.sign_extend(v, src_layout) } else { v };
trace!("cast_from_scalar: {}, {} -> {}", v, src_layout.ty, cast_ty);
Ok(match *cast_ty.kind() {
Int(_) | Uint(_) => {
let size = match *cast_ty.kind() {
Int(t) => Integer::from_int_ty(self, t).size(),
Uint(t) => Integer::from_uint_ty(self, t).size(),
_ => bug!(),
};
let v = size.truncate(v);
Scalar::from_uint(v, size)
}
Float(FloatTy::F32) if signed => Scalar::from_f32(Single::from_i128(v as i128).value),
Float(FloatTy::F64) if signed => Scalar::from_f64(Double::from_i128(v as i128).value),
Float(FloatTy::F32) => Scalar::from_f32(Single::from_u128(v).value),
Float(FloatTy::F64) => Scalar::from_f64(Double::from_u128(v).value),
Char => {
// `u8` to `char` cast
Scalar::from_u32(u8::try_from(v).unwrap().into())
}
// Casts to bool are not permitted by rustc, no need to handle them here.
_ => span_bug!(self.cur_span(), "invalid int to {:?} cast", cast_ty),
})
}
/// Low-level cast helper function. Converts an apfloat `f` into int or float types.
fn cast_from_float<F>(&self, f: F, dest_ty: Ty<'tcx>) -> Scalar<M::Provenance>
where
F: Float + Into<Scalar<M::Provenance>> + FloatConvert<Single> + FloatConvert<Double>,
{
use rustc_type_ir::sty::TyKind::*;
match *dest_ty.kind() {
// float -> uint
Uint(t) => {
let size = Integer::from_uint_ty(self, t).size();
// `to_u128` is a saturating cast, which is what we need
// (https://doc.rust-lang.org/nightly/nightly-rustc/rustc_apfloat/trait.Float.html#method.to_i128_r).
let v = f.to_u128(size.bits_usize()).value;
// This should already fit the bit width
Scalar::from_uint(v, size)
}
// float -> int
Int(t) => {
let size = Integer::from_int_ty(self, t).size();
// `to_i128` is a saturating cast, which is what we need
// (https://doc.rust-lang.org/nightly/nightly-rustc/rustc_apfloat/trait.Float.html#method.to_i128_r).
let v = f.to_i128(size.bits_usize()).value;
Scalar::from_int(v, size)
}
// float -> f32
Float(FloatTy::F32) => Scalar::from_f32(f.convert(&mut false).value),
// float -> f64
Float(FloatTy::F64) => Scalar::from_f64(f.convert(&mut false).value),
// That's it.
_ => span_bug!(self.cur_span(), "invalid float to {:?} cast", dest_ty),
}
}
/// `src` is a *pointer to* a `source_ty`, and in `dest` we should store a pointer to th same
/// data at type `cast_ty`.
fn unsize_into_ptr(
&mut self,
src: &OpTy<'tcx, M::Provenance>,
dest: &PlaceTy<'tcx, M::Provenance>,
// The pointee types
source_ty: Ty<'tcx>,
cast_ty: Ty<'tcx>,
) -> InterpResult<'tcx> {
// A<Struct> -> A<Trait> conversion
let (src_pointee_ty, dest_pointee_ty) =
self.tcx.struct_lockstep_tails_erasing_lifetimes(source_ty, cast_ty, self.param_env);
match (&src_pointee_ty.kind(), &dest_pointee_ty.kind()) {
(&ty::Array(_, length), &ty::Slice(_)) => {
let ptr = self.read_scalar(src)?;
// u64 cast is from usize to u64, which is always good
let val = Immediate::new_slice(
ptr,
length.eval_target_usize(*self.tcx, self.param_env),
self,
);
self.write_immediate(val, dest)
}
(ty::Dynamic(data_a, _, ty::Dyn), ty::Dynamic(data_b, _, ty::Dyn)) => {
let val = self.read_immediate(src)?;
if data_a.principal() == data_b.principal() {
// A NOP cast that doesn't actually change anything, should be allowed even with mismatching vtables.
return self.write_immediate(*val, dest);
}
let (old_data, old_vptr) = val.to_scalar_pair();
let old_vptr = old_vptr.to_pointer(self)?;
let (ty, old_trait) = self.get_ptr_vtable(old_vptr)?;
if old_trait != data_a.principal() {
throw_ub_custom!(fluent::const_eval_upcast_mismatch);
}
let new_vptr = self.get_vtable_ptr(ty, data_b.principal())?;
self.write_immediate(Immediate::new_dyn_trait(old_data, new_vptr, self), dest)
}
(_, &ty::Dynamic(data, _, ty::Dyn)) => {
// Initial cast from sized to dyn trait
let vtable = self.get_vtable_ptr(src_pointee_ty, data.principal())?;
let ptr = self.read_scalar(src)?;
let val = Immediate::new_dyn_trait(ptr, vtable, &*self.tcx);
self.write_immediate(val, dest)
}
_ => {
// Do not ICE if we are not monomorphic enough.
ensure_monomorphic_enough(*self.tcx, src.layout.ty)?;
ensure_monomorphic_enough(*self.tcx, cast_ty)?;
span_bug!(
self.cur_span(),
"invalid pointer unsizing {:?} -> {:?}",
src.layout.ty,
cast_ty
)
}
}
}
fn unsize_into(
&mut self,
src: &OpTy<'tcx, M::Provenance>,
cast_ty: TyAndLayout<'tcx>,
dest: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
trace!("Unsizing {:?} of type {} into {:?}", *src, src.layout.ty, cast_ty.ty);
match (&src.layout.ty.kind(), &cast_ty.ty.kind()) {
(&ty::Ref(_, s, _), &ty::Ref(_, c, _) | &ty::RawPtr(TypeAndMut { ty: c, .. }))
| (&ty::RawPtr(TypeAndMut { ty: s, .. }), &ty::RawPtr(TypeAndMut { ty: c, .. })) => {
self.unsize_into_ptr(src, dest, *s, *c)
}
(&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
assert_eq!(def_a, def_b); // implies same number of fields
// Unsizing of generic struct with pointer fields, like `Arc<T>` -> `Arc<Trait>`.
// There can be extra fields as long as they don't change their type or are 1-ZST.
// There might also be no field that actually needs unsizing.
let mut found_cast_field = false;
for i in 0..src.layout.fields.count() {
let cast_ty_field = cast_ty.field(self, i);
let src_field = self.project_field(src, i)?;
let dst_field = self.project_field(dest, i)?;
if src_field.layout.is_1zst() && cast_ty_field.is_1zst() {
// Skip 1-ZST fields.
} else if src_field.layout.ty == cast_ty_field.ty {
self.copy_op(&src_field, &dst_field, /*allow_transmute*/ false)?;
} else {
if found_cast_field {
span_bug!(self.cur_span(), "unsize_into: more than one field to cast");
}
found_cast_field = true;
self.unsize_into(&src_field, cast_ty_field, &dst_field)?;
}
}
Ok(())
}
_ => {
// Do not ICE if we are not monomorphic enough.
ensure_monomorphic_enough(*self.tcx, src.layout.ty)?;
ensure_monomorphic_enough(*self.tcx, cast_ty.ty)?;
span_bug!(
self.cur_span(),
"unsize_into: invalid conversion: {:?} -> {:?}",
src.layout,
dest.layout
)
}
}
}
}