2016-08-18 16:54:20 -04:00

779 lines
28 KiB
Rust

// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc::ty::TyCtxt;
use rustc::mir::repr::*;
use rustc::util::nodemap::FnvHashMap;
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use std::cell::{Cell};
use std::collections::hash_map::Entry;
use std::fmt;
use std::iter;
use std::ops::Index;
use super::abs_domain::{AbstractElem, Lift};
// This submodule holds some newtype'd Index wrappers that are using
// NonZero to ensure that Option<Index> occupies only a single word.
// They are in a submodule to impose privacy restrictions; namely, to
// ensure that other code does not accidentally access `index.0`
// (which is likely to yield a subtle off-by-one error).
mod indexes {
use core::nonzero::NonZero;
use rustc_data_structures::indexed_vec::Idx;
macro_rules! new_index {
($Index:ident) => {
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub struct $Index(NonZero<usize>);
impl $Index {
}
impl Idx for $Index {
fn new(idx: usize) -> Self {
unsafe { $Index(NonZero::new(idx + 1)) }
}
fn index(self) -> usize {
*self.0 - 1
}
}
}
}
/// Index into MovePathData.move_paths
new_index!(MovePathIndex);
/// Index into MoveData.moves.
new_index!(MoveOutIndex);
}
pub use self::indexes::MovePathIndex;
pub use self::indexes::MoveOutIndex;
impl self::indexes::MoveOutIndex {
pub fn move_path_index(&self, move_data: &MoveData) -> MovePathIndex {
move_data.moves[self.index()].path
}
}
/// `MovePath` is a canonicalized representation of a path that is
/// moved or assigned to.
///
/// It follows a tree structure.
///
/// Given `struct X { m: M, n: N }` and `x: X`, moves like `drop x.m;`
/// move *out* of the l-value `x.m`.
///
/// The MovePaths representing `x.m` and `x.n` are siblings (that is,
/// one of them will link to the other via the `next_sibling` field,
/// and the other will have no entry in its `next_sibling` field), and
/// they both have the MovePath representing `x` as their parent.
#[derive(Clone)]
pub struct MovePath<'tcx> {
pub next_sibling: Option<MovePathIndex>,
pub first_child: Option<MovePathIndex>,
pub parent: Option<MovePathIndex>,
pub content: MovePathContent<'tcx>,
}
/// MovePaths usually represent a single l-value. The exceptions are
/// forms that arise due to erroneous input code: static data holds
/// l-values that we cannot actually move out of. Therefore we map
/// statics to a special marker value (`MovePathContent::Static`)
/// representing an invalid origin.
#[derive(Clone, Debug)]
pub enum MovePathContent<'tcx> {
Lvalue(Lvalue<'tcx>),
Static,
}
/// During construction of the MovePath's, we use PreMovePath to
/// represent accumulated state while we are gathering up all the
/// children of each path.
#[derive(Clone)]
struct PreMovePath<'tcx> {
pub next_sibling: Option<MovePathIndex>,
pub first_child: Cell<Option<MovePathIndex>>,
pub parent: Option<MovePathIndex>,
pub content: MovePathContent<'tcx>,
}
impl<'tcx> PreMovePath<'tcx> {
fn into_move_path(self) -> MovePath<'tcx> {
MovePath {
next_sibling: self.next_sibling,
parent: self.parent,
content: self.content,
first_child: self.first_child.get(),
}
}
}
impl<'tcx> fmt::Debug for MovePath<'tcx> {
fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result {
write!(w, "MovePath {{")?;
if let Some(parent) = self.parent {
write!(w, " parent: {:?},", parent)?;
}
if let Some(first_child) = self.first_child {
write!(w, " first_child: {:?},", first_child)?;
}
if let Some(next_sibling) = self.next_sibling {
write!(w, " next_sibling: {:?}", next_sibling)?;
}
write!(w, " content: {:?} }}", self.content)
}
}
#[derive(Debug)]
pub struct MoveData<'tcx> {
pub move_paths: MovePathData<'tcx>,
pub moves: Vec<MoveOut>,
pub loc_map: LocMap,
pub path_map: PathMap,
pub rev_lookup: MovePathLookup<'tcx>,
}
#[derive(Debug)]
pub struct LocMap {
/// Location-indexed (BasicBlock for outer index, index within BB
/// for inner index) map to list of MoveOutIndex's.
///
/// Each Location `l` is mapped to the MoveOut's that are effects
/// of executing the code at `l`. (There can be multiple MoveOut's
/// for a given `l` because each MoveOut is associated with one
/// particular path being moved.)
map: Vec<Vec<Vec<MoveOutIndex>>>,
}
impl Index<Location> for LocMap {
type Output = [MoveOutIndex];
fn index(&self, index: Location) -> &Self::Output {
assert!(index.block.index() < self.map.len());
assert!(index.statement_index < self.map[index.block.index()].len());
&self.map[index.block.index()][index.statement_index]
}
}
#[derive(Debug)]
pub struct PathMap {
/// Path-indexed map to list of MoveOutIndex's.
///
/// Each Path `p` is mapped to the MoveOut's that move out of `p`.
map: Vec<Vec<MoveOutIndex>>,
}
impl Index<MovePathIndex> for PathMap {
type Output = [MoveOutIndex];
fn index(&self, index: MovePathIndex) -> &Self::Output {
&self.map[index.index()]
}
}
/// `MoveOut` represents a point in a program that moves out of some
/// L-value; i.e., "creates" uninitialized memory.
///
/// With respect to dataflow analysis:
/// - Generated by moves and declaration of uninitialized variables.
/// - Killed by assignments to the memory.
#[derive(Copy, Clone)]
pub struct MoveOut {
/// path being moved
pub path: MovePathIndex,
/// location of move
pub source: Location,
}
impl fmt::Debug for MoveOut {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "p{}@{:?}", self.path.index(), self.source)
}
}
#[derive(Debug)]
pub struct MovePathData<'tcx> {
move_paths: Vec<MovePath<'tcx>>,
}
impl<'tcx> MovePathData<'tcx> {
pub fn len(&self) -> usize { self.move_paths.len() }
}
impl<'tcx> Index<MovePathIndex> for MovePathData<'tcx> {
type Output = MovePath<'tcx>;
fn index(&self, i: MovePathIndex) -> &MovePath<'tcx> {
&self.move_paths[i.index()]
}
}
struct MovePathDataBuilder<'tcx> {
pre_move_paths: Vec<PreMovePath<'tcx>>,
rev_lookup: MovePathLookup<'tcx>,
}
/// Tables mapping from an l-value to its MovePathIndex.
#[derive(Debug)]
pub struct MovePathLookup<'tcx> {
vars: IndexVec<Var, Option<MovePathIndex>>,
temps: IndexVec<Temp, Option<MovePathIndex>>,
args: IndexVec<Arg, Option<MovePathIndex>>,
/// The move path representing the return value is constructed
/// lazily when we first encounter it in the input MIR.
return_ptr: Option<MovePathIndex>,
/// A single move path (representing any static data referenced)
/// is constructed lazily when we first encounter statics in the
/// input MIR.
statics: Option<MovePathIndex>,
/// projections are made from a base-lvalue and a projection
/// elem. The base-lvalue will have a unique MovePathIndex; we use
/// the latter as the index into the outer vector (narrowing
/// subsequent search so that it is solely relative to that
/// base-lvalue). For the remaining lookup, we map the projection
/// elem to the associated MovePathIndex.
projections: Vec<FnvHashMap<AbstractElem<'tcx>, MovePathIndex>>,
/// Tracks the next index to allocate during construction of the
/// MovePathData. Unused after MovePathData is fully constructed.
next_index: MovePathIndex,
}
trait FillTo {
type T;
fn fill_to_with(&mut self, idx: usize, x: Self::T);
fn fill_to(&mut self, idx: usize) where Self::T: Default {
self.fill_to_with(idx, Default::default())
}
}
impl<T:Clone> FillTo for Vec<T> {
type T = T;
fn fill_to_with(&mut self, idx: usize, x: T) {
if idx >= self.len() {
let delta = idx + 1 - self.len();
assert_eq!(idx + 1, self.len() + delta);
self.extend(iter::repeat(x).take(delta))
}
debug_assert!(idx < self.len());
}
}
#[derive(Clone, Debug)]
enum LookupKind { Generate, Reuse }
#[derive(Clone, Debug)]
struct Lookup<T>(LookupKind, T);
impl Lookup<MovePathIndex> {
fn index(&self) -> usize { (self.1).index() }
}
impl<'tcx> MovePathLookup<'tcx> {
fn new(mir: &Mir) -> Self {
MovePathLookup {
vars: IndexVec::from_elem(None, &mir.var_decls),
temps: IndexVec::from_elem(None, &mir.temp_decls),
args: IndexVec::from_elem(None, &mir.arg_decls),
statics: None,
return_ptr: None,
projections: vec![],
next_index: MovePathIndex::new(0),
}
}
fn next_index(next: &mut MovePathIndex) -> MovePathIndex {
let i = *next;
*next = MovePathIndex::new(i.index() + 1);
i
}
fn lookup_or_generate<I: Idx>(vec: &mut IndexVec<I, Option<MovePathIndex>>,
idx: I,
next_index: &mut MovePathIndex)
-> Lookup<MovePathIndex> {
let entry = &mut vec[idx];
match *entry {
None => {
let i = Self::next_index(next_index);
*entry = Some(i);
Lookup(LookupKind::Generate, i)
}
Some(entry_idx) => {
Lookup(LookupKind::Reuse, entry_idx)
}
}
}
fn lookup_var(&mut self, var_idx: Var) -> Lookup<MovePathIndex> {
Self::lookup_or_generate(&mut self.vars,
var_idx,
&mut self.next_index)
}
fn lookup_temp(&mut self, temp_idx: Temp) -> Lookup<MovePathIndex> {
Self::lookup_or_generate(&mut self.temps,
temp_idx,
&mut self.next_index)
}
fn lookup_arg(&mut self, arg_idx: Arg) -> Lookup<MovePathIndex> {
Self::lookup_or_generate(&mut self.args,
arg_idx,
&mut self.next_index)
}
fn lookup_static(&mut self) -> Lookup<MovePathIndex> {
match self.statics {
Some(mpi) => {
Lookup(LookupKind::Reuse, mpi)
}
ref mut ret @ None => {
let mpi = Self::next_index(&mut self.next_index);
*ret = Some(mpi);
Lookup(LookupKind::Generate, mpi)
}
}
}
fn lookup_return_pointer(&mut self) -> Lookup<MovePathIndex> {
match self.return_ptr {
Some(mpi) => {
Lookup(LookupKind::Reuse, mpi)
}
ref mut ret @ None => {
let mpi = Self::next_index(&mut self.next_index);
*ret = Some(mpi);
Lookup(LookupKind::Generate, mpi)
}
}
}
fn lookup_proj(&mut self,
proj: &LvalueProjection<'tcx>,
base: MovePathIndex) -> Lookup<MovePathIndex> {
let MovePathLookup { ref mut projections,
ref mut next_index, .. } = *self;
projections.fill_to(base.index());
match projections[base.index()].entry(proj.elem.lift()) {
Entry::Occupied(ent) => {
Lookup(LookupKind::Reuse, *ent.get())
}
Entry::Vacant(ent) => {
let mpi = Self::next_index(next_index);
ent.insert(mpi);
Lookup(LookupKind::Generate, mpi)
}
}
}
}
impl<'tcx> MovePathLookup<'tcx> {
// Unlike the builder `fn move_path_for` below, this lookup
// alternative will *not* create a MovePath on the fly for an
// unknown l-value; it will simply panic.
pub fn find(&self, lval: &Lvalue<'tcx>) -> MovePathIndex {
match *lval {
Lvalue::Var(var) => self.vars[var].unwrap(),
Lvalue::Temp(temp) => self.temps[temp].unwrap(),
Lvalue::Arg(arg) => self.args[arg].unwrap(),
Lvalue::Static(ref _def_id) => self.statics.unwrap(),
Lvalue::ReturnPointer => self.return_ptr.unwrap(),
Lvalue::Projection(ref proj) => {
let base_index = self.find(&proj.base);
self.projections[base_index.index()][&proj.elem.lift()]
}
}
}
}
impl<'tcx> MovePathDataBuilder<'tcx> {
fn lookup(&mut self, lval: &Lvalue<'tcx>) -> Lookup<MovePathIndex> {
let proj = match *lval {
Lvalue::Var(var_idx) =>
return self.rev_lookup.lookup_var(var_idx),
Lvalue::Temp(temp_idx) =>
return self.rev_lookup.lookup_temp(temp_idx),
Lvalue::Arg(arg_idx) =>
return self.rev_lookup.lookup_arg(arg_idx),
Lvalue::Static(_def_id) =>
return self.rev_lookup.lookup_static(),
Lvalue::ReturnPointer =>
return self.rev_lookup.lookup_return_pointer(),
Lvalue::Projection(ref proj) => {
proj
}
};
let base_index = self.move_path_for(&proj.base);
self.rev_lookup.lookup_proj(proj, base_index)
}
fn create_move_path(&mut self, lval: &Lvalue<'tcx>) {
// Create MovePath for `lval`, discarding returned index.
self.move_path_for(lval);
}
fn move_path_for(&mut self, lval: &Lvalue<'tcx>) -> MovePathIndex {
debug!("move_path_for({:?})", lval);
let lookup: Lookup<MovePathIndex> = self.lookup(lval);
// `lookup` is either the previously assigned index or a
// newly-allocated one.
debug_assert!(lookup.index() <= self.pre_move_paths.len());
if let Lookup(LookupKind::Generate, mpi) = lookup {
let parent;
let sibling;
// tracks whether content is Some non-static; statics map to None.
let content: Option<&Lvalue<'tcx>>;
match *lval {
Lvalue::Static(_) => {
content = None;
sibling = None;
parent = None;
}
Lvalue::Var(_) | Lvalue::Temp(_) | Lvalue::Arg(_) |
Lvalue::ReturnPointer => {
content = Some(lval);
sibling = None;
parent = None;
}
Lvalue::Projection(ref proj) => {
content = Some(lval);
// Here, install new MovePath as new first_child.
// Note: `parent` previously allocated (Projection
// case of match above established this).
let idx = self.move_path_for(&proj.base);
parent = Some(idx);
let parent_move_path = &mut self.pre_move_paths[idx.index()];
// At last: Swap in the new first_child.
sibling = parent_move_path.first_child.get();
parent_move_path.first_child.set(Some(mpi));
}
};
let content = match content {
Some(lval) => MovePathContent::Lvalue(lval.clone()),
None => MovePathContent::Static,
};
let move_path = PreMovePath {
next_sibling: sibling,
parent: parent,
content: content,
first_child: Cell::new(None),
};
self.pre_move_paths.push(move_path);
}
return lookup.1;
}
}
impl<'a, 'tcx> MoveData<'tcx> {
pub fn gather_moves(mir: &Mir<'tcx>, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Self {
gather_moves(mir, tcx)
}
}
#[derive(Debug)]
enum StmtKind {
Use, Repeat, Cast, BinaryOp, UnaryOp, Box,
Aggregate, Drop, CallFn, CallArg, Return, If,
}
fn gather_moves<'a, 'tcx>(mir: &Mir<'tcx>, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> MoveData<'tcx> {
use self::StmtKind as SK;
let bb_count = mir.basic_blocks().len();
let mut moves = vec![];
let mut loc_map: Vec<_> = iter::repeat(Vec::new()).take(bb_count).collect();
let mut path_map = Vec::new();
// this is mutable only because we will move it to and fro' the
// BlockContexts constructed on each iteration. (Moving is more
// straight-forward than mutable borrows in this instance.)
let mut builder = MovePathDataBuilder {
pre_move_paths: Vec::new(),
rev_lookup: MovePathLookup::new(mir),
};
// Before we analyze the program text, we create the MovePath's
// for all of the vars, args, and temps. (This enforces a basic
// property that even if the MIR body doesn't contain any
// references to a var/arg/temp, it will still be a valid
// operation to lookup the MovePath associated with it.)
assert!(mir.var_decls.len() <= ::std::u32::MAX as usize);
assert!(mir.arg_decls.len() <= ::std::u32::MAX as usize);
assert!(mir.temp_decls.len() <= ::std::u32::MAX as usize);
for var in mir.var_decls.indices() {
let path_idx = builder.move_path_for(&Lvalue::Var(var));
path_map.fill_to(path_idx.index());
}
for arg in mir.arg_decls.indices() {
let path_idx = builder.move_path_for(&Lvalue::Arg(arg));
path_map.fill_to(path_idx.index());
}
for temp in mir.temp_decls.indices() {
let path_idx = builder.move_path_for(&Lvalue::Temp(temp));
path_map.fill_to(path_idx.index());
}
for (bb, bb_data) in mir.basic_blocks().iter_enumerated() {
let loc_map_bb = &mut loc_map[bb.index()];
debug_assert!(loc_map_bb.len() == 0);
let len = bb_data.statements.len();
loc_map_bb.fill_to(len);
debug_assert!(loc_map_bb.len() == len + 1);
let mut bb_ctxt = BlockContext {
_tcx: tcx,
moves: &mut moves,
builder: builder,
path_map: &mut path_map,
loc_map_bb: loc_map_bb,
};
for (i, stmt) in bb_data.statements.iter().enumerate() {
let source = Location { block: bb, statement_index: i };
match stmt.kind {
StatementKind::Assign(ref lval, ref rval) => {
bb_ctxt.builder.create_move_path(lval);
// Ensure that the path_map contains entries even
// if the lvalue is assigned and never read.
let assigned_path = bb_ctxt.builder.move_path_for(lval);
bb_ctxt.path_map.fill_to(assigned_path.index());
match *rval {
Rvalue::Use(ref operand) => {
bb_ctxt.on_operand(SK::Use, operand, source)
}
Rvalue::Repeat(ref operand, ref _const) =>
bb_ctxt.on_operand(SK::Repeat, operand, source),
Rvalue::Cast(ref _kind, ref operand, ref _ty) =>
bb_ctxt.on_operand(SK::Cast, operand, source),
Rvalue::BinaryOp(ref _binop, ref operand1, ref operand2) |
Rvalue::CheckedBinaryOp(ref _binop, ref operand1, ref operand2) => {
bb_ctxt.on_operand(SK::BinaryOp, operand1, source);
bb_ctxt.on_operand(SK::BinaryOp, operand2, source);
}
Rvalue::UnaryOp(ref _unop, ref operand) => {
bb_ctxt.on_operand(SK::UnaryOp, operand, source);
}
Rvalue::Box(ref _ty) => {
// this is creating uninitialized
// memory that needs to be initialized.
let deref_lval = Lvalue::Projection(Box::new(Projection {
base: lval.clone(),
elem: ProjectionElem::Deref,
}));
bb_ctxt.on_move_out_lval(SK::Box, &deref_lval, source);
}
Rvalue::Aggregate(ref _kind, ref operands) => {
for operand in operands {
bb_ctxt.on_operand(SK::Aggregate, operand, source);
}
}
Rvalue::Ref(..) |
Rvalue::Len(..) |
Rvalue::InlineAsm { .. } => {}
}
}
StatementKind::StorageLive(_) |
StatementKind::StorageDead(_) => {}
StatementKind::SetDiscriminant{ .. } => {
span_bug!(stmt.source_info.span,
"SetDiscriminant should not exist during borrowck");
}
}
}
debug!("gather_moves({:?})", bb_data.terminator());
match bb_data.terminator().kind {
TerminatorKind::Goto { target: _ } |
TerminatorKind::Resume |
TerminatorKind::Unreachable => { }
TerminatorKind::Return => {
let source = Location { block: bb,
statement_index: bb_data.statements.len() };
debug!("gather_moves Return on_move_out_lval return {:?}", source);
bb_ctxt.on_move_out_lval(SK::Return, &Lvalue::ReturnPointer, source);
}
TerminatorKind::If { ref cond, targets: _ } => {
let source = Location { block: bb,
statement_index: bb_data.statements.len() };
bb_ctxt.on_operand(SK::If, cond, source);
}
TerminatorKind::Assert {
ref cond, expected: _,
ref msg, target: _, cleanup: _
} => {
// The `cond` is always of (copyable) type `bool`,
// so there will never be anything to move.
let _ = cond;
match *msg {
AssertMessage:: BoundsCheck { ref len, ref index } => {
// Same for the usize length and index in bounds-checking.
let _ = (len, index);
}
AssertMessage::Math(_) => {}
}
}
TerminatorKind::SwitchInt { switch_ty: _, values: _, targets: _, ref discr } |
TerminatorKind::Switch { adt_def: _, targets: _, ref discr } => {
// The `discr` is not consumed; that is instead
// encoded on specific match arms (and for
// SwitchInt`, it is always a copyable integer
// type anyway).
let _ = discr;
}
TerminatorKind::Drop { ref location, target: _, unwind: _ } => {
let source = Location { block: bb,
statement_index: bb_data.statements.len() };
bb_ctxt.on_move_out_lval(SK::Drop, location, source);
}
TerminatorKind::DropAndReplace { ref location, ref value, .. } => {
let assigned_path = bb_ctxt.builder.move_path_for(location);
bb_ctxt.path_map.fill_to(assigned_path.index());
let source = Location { block: bb,
statement_index: bb_data.statements.len() };
bb_ctxt.on_operand(SK::Use, value, source);
}
TerminatorKind::Call { ref func, ref args, ref destination, cleanup: _ } => {
let source = Location { block: bb,
statement_index: bb_data.statements.len() };
bb_ctxt.on_operand(SK::CallFn, func, source);
for arg in args {
debug!("gather_moves Call on_operand {:?} {:?}", arg, source);
bb_ctxt.on_operand(SK::CallArg, arg, source);
}
if let Some((ref destination, _bb)) = *destination {
debug!("gather_moves Call create_move_path {:?} {:?}", destination, source);
// Ensure that the path_map contains entries even
// if the lvalue is assigned and never read.
let assigned_path = bb_ctxt.builder.move_path_for(destination);
bb_ctxt.path_map.fill_to(assigned_path.index());
bb_ctxt.builder.create_move_path(destination);
}
}
}
builder = bb_ctxt.builder;
}
// At this point, we may have created some MovePaths that do not
// have corresponding entries in the path map.
//
// (For example, creating the path `a.b.c` may, as a side-effect,
// create a path for the parent path `a.b`.)
//
// All such paths were not referenced ...
//
// well you know, lets actually try just asserting that the path map *is* complete.
assert_eq!(path_map.len(), builder.pre_move_paths.len());
let pre_move_paths = builder.pre_move_paths;
let move_paths: Vec<_> = pre_move_paths.into_iter()
.map(|p| p.into_move_path())
.collect();
debug!("{}", {
let mut seen: Vec<_> = move_paths.iter().map(|_| false).collect();
for (j, &MoveOut { ref path, ref source }) in moves.iter().enumerate() {
debug!("MovePathData moves[{}]: MoveOut {{ path: {:?} = {:?}, source: {:?} }}",
j, path, move_paths[path.index()], source);
seen[path.index()] = true;
}
for (j, path) in move_paths.iter().enumerate() {
if !seen[j] {
debug!("MovePathData move_paths[{}]: {:?}", j, path);
}
}
"done dumping MovePathData"
});
MoveData {
move_paths: MovePathData { move_paths: move_paths, },
moves: moves,
loc_map: LocMap { map: loc_map },
path_map: PathMap { map: path_map },
rev_lookup: builder.rev_lookup,
}
}
struct BlockContext<'b, 'tcx: 'b> {
_tcx: TyCtxt<'b, 'tcx, 'tcx>,
moves: &'b mut Vec<MoveOut>,
builder: MovePathDataBuilder<'tcx>,
path_map: &'b mut Vec<Vec<MoveOutIndex>>,
loc_map_bb: &'b mut Vec<Vec<MoveOutIndex>>,
}
impl<'b, 'tcx: 'b> BlockContext<'b, 'tcx> {
fn on_move_out_lval(&mut self,
stmt_kind: StmtKind,
lval: &Lvalue<'tcx>,
source: Location) {
let i = source.statement_index;
let index = MoveOutIndex::new(self.moves.len());
let path = self.builder.move_path_for(lval);
self.moves.push(MoveOut { path: path, source: source.clone() });
self.path_map.fill_to(path.index());
debug!("ctxt: {:?} add consume of lval: {:?} \
at index: {:?} \
to path_map for path: {:?} and \
to loc_map for loc: {:?}",
stmt_kind, lval, index, path, source);
debug_assert!(path.index() < self.path_map.len());
// this is actually a questionable assert; at the very
// least, incorrect input code can probably cause it to
// fire.
assert!(self.path_map[path.index()].iter().find(|idx| **idx == index).is_none());
self.path_map[path.index()].push(index);
debug_assert!(i < self.loc_map_bb.len());
debug_assert!(self.loc_map_bb[i].iter().find(|idx| **idx == index).is_none());
self.loc_map_bb[i].push(index);
}
fn on_operand(&mut self, stmt_kind: StmtKind, operand: &Operand<'tcx>, source: Location) {
match *operand {
Operand::Constant(..) => {} // not-a-move
Operand::Consume(ref lval) => { // a move
self.on_move_out_lval(stmt_kind, lval, source);
}
}
}
}