rust/src/libstd/option.rs
2013-09-30 23:21:18 -07:00

833 lines
21 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Operations on the ubiquitous `Option` type.
Type `Option` represents an optional value.
Every `Option<T>` value can either be `Some(T)` or `None`. Where in other
languages you might use a nullable type, in Rust you would use an option
type.
Options are most commonly used with pattern matching to query the presence
of a value and take action, always accounting for the `None` case.
# Example
```
let msg = Some(~"howdy");
// Take a reference to the contained string
match msg {
Some(ref m) => io::println(*m),
None => ()
}
// Remove the contained string, destroying the Option
let unwrapped_msg = match msg {
Some(m) => m,
None => ~"default message"
};
```
*/
use clone::Clone;
use cmp::{Eq,Ord};
use default::Default;
use either;
use util;
use num::Zero;
use iter;
use iter::{Iterator, DoubleEndedIterator, ExactSize};
use result;
use str::{StrSlice, OwnedStr};
use to_str::ToStr;
use clone::DeepClone;
/// The option type
#[deriving(Clone, DeepClone, Eq)]
pub enum Option<T> {
None,
Some(T),
}
impl<T: Eq + Ord> Ord for Option<T> {
fn lt(&self, other: &Option<T>) -> bool {
iter::order::lt(self.iter(), other.iter())
}
fn le(&self, other: &Option<T>) -> bool {
iter::order::le(self.iter(), other.iter())
}
fn ge(&self, other: &Option<T>) -> bool {
iter::order::ge(self.iter(), other.iter())
}
fn gt(&self, other: &Option<T>) -> bool {
iter::order::gt(self.iter(), other.iter())
}
}
// FIXME: #8242 implementing manually because deriving doesn't work for some reason
impl<T: ToStr> ToStr for Option<T> {
fn to_str(&self) -> ~str {
match *self {
Some(ref x) => {
let mut s = ~"Some(";
s.push_str(x.to_str());
s.push_str(")");
s
}
None => ~"None"
}
}
}
impl<T> Option<T> {
/// Return an iterator over the possibly contained value
#[inline]
pub fn iter<'r>(&'r self) -> OptionIterator<&'r T> {
match *self {
Some(ref x) => OptionIterator{opt: Some(x)},
None => OptionIterator{opt: None}
}
}
/// Return a mutable iterator over the possibly contained value
#[inline]
pub fn mut_iter<'r>(&'r mut self) -> OptionIterator<&'r mut T> {
match *self {
Some(ref mut x) => OptionIterator{opt: Some(x)},
None => OptionIterator{opt: None}
}
}
/// Return a consuming iterator over the possibly contained value
#[inline]
pub fn move_iter(self) -> OptionIterator<T> {
OptionIterator{opt: self}
}
/// Returns true if the option equals `None`
#[inline]
pub fn is_none(&self) -> bool {
match *self { None => true, Some(_) => false }
}
/// Returns true if the option contains a `Some` value
#[inline]
pub fn is_some(&self) -> bool { !self.is_none() }
/// Returns `None` if the option is `None`, otherwise returns `optb`.
#[inline]
pub fn and(self, optb: Option<T>) -> Option<T> {
match self {
Some(_) => optb,
None => None,
}
}
/// Returns `None` if the option is `None`, otherwise calls `f` with the
/// wrapped value and returns the result.
#[inline]
pub fn and_then<U>(self, f: &fn(T) -> Option<U>) -> Option<U> {
match self {
Some(x) => f(x),
None => None,
}
}
/// Returns `None` if the option is `None`, otherwise calls `f` with a
/// reference to the wrapped value and returns the result.
#[inline]
pub fn and_then_ref<'a, U>(&'a self, f: &fn(&'a T) -> Option<U>) -> Option<U> {
match *self {
Some(ref x) => f(x),
None => None
}
}
/// Returns `None` if the option is `None`, otherwise calls `f` with a
/// mutable reference to the wrapped value and returns the result.
#[inline]
pub fn and_then_mut_ref<'a, U>(&'a mut self, f: &fn(&'a mut T) -> Option<U>) -> Option<U> {
match *self {
Some(ref mut x) => f(x),
None => None
}
}
/// Returns the option if it contains a value, otherwise returns `optb`.
#[inline]
pub fn or(self, optb: Option<T>) -> Option<T> {
match self {
Some(_) => self,
None => optb
}
}
/// Returns the option if it contains a value, otherwise calls `f` and
/// returns the result.
#[inline]
pub fn or_else(self, f: &fn() -> Option<T>) -> Option<T> {
match self {
Some(_) => self,
None => f(),
}
}
/// Filters an optional value using given function.
#[inline(always)]
pub fn filtered(self, f: &fn(t: &T) -> bool) -> Option<T> {
match self {
Some(x) => if(f(&x)) {Some(x)} else {None},
None => None
}
}
/// Maps a `Some` value from one type to another by reference
#[inline]
pub fn map<'a, U>(&'a self, f: &fn(&'a T) -> U) -> Option<U> {
match *self { Some(ref x) => Some(f(x)), None => None }
}
/// Maps a `Some` value from one type to another by a mutable reference
#[inline]
pub fn map_mut<'a, U>(&'a mut self, f: &fn(&'a mut T) -> U) -> Option<U> {
match *self { Some(ref mut x) => Some(f(x)), None => None }
}
/// Applies a function to the contained value or returns a default
#[inline]
pub fn map_default<'a, U>(&'a self, def: U, f: &fn(&'a T) -> U) -> U {
match *self { None => def, Some(ref t) => f(t) }
}
/// Maps a `Some` value from one type to another by a mutable reference,
/// or returns a default value.
#[inline]
pub fn map_mut_default<'a, U>(&'a mut self, def: U, f: &fn(&'a mut T) -> U) -> U {
match *self { Some(ref mut x) => f(x), None => def }
}
/// As `map`, but consumes the option and gives `f` ownership to avoid
/// copying.
#[inline]
pub fn map_move<U>(self, f: &fn(T) -> U) -> Option<U> {
match self { Some(x) => Some(f(x)), None => None }
}
/// As `map_default`, but consumes the option and gives `f`
/// ownership to avoid copying.
#[inline]
pub fn map_move_default<U>(self, def: U, f: &fn(T) -> U) -> U {
match self { None => def, Some(t) => f(t) }
}
/// Take the value out of the option, leaving a `None` in its place.
#[inline]
pub fn take(&mut self) -> Option<T> {
util::replace(self, None)
}
/// Apply a function to the contained value or do nothing.
/// Returns true if the contained value was mutated.
pub fn mutate(&mut self, f: &fn(T) -> T) -> bool {
if self.is_some() {
*self = Some(f(self.take_unwrap()));
true
} else { false }
}
/// Apply a function to the contained value or set it to a default.
/// Returns true if the contained value was mutated, or false if set to the default.
pub fn mutate_default(&mut self, def: T, f: &fn(T) -> T) -> bool {
if self.is_some() {
*self = Some(f(self.take_unwrap()));
true
} else {
*self = Some(def);
false
}
}
/// Gets an immutable reference to the value inside an option.
///
/// # Failure
///
/// Fails if the value equals `None`
///
/// # Safety note
///
/// In general, because this function may fail, its use is discouraged
/// (calling `get` on `None` is akin to dereferencing a null pointer).
/// Instead, prefer to use pattern matching and handle the `None`
/// case explicitly.
#[inline]
pub fn get_ref<'a>(&'a self) -> &'a T {
match *self {
Some(ref x) => x,
None => fail2!("called `Option::get_ref()` on a `None` value"),
}
}
/// Gets a mutable reference to the value inside an option.
///
/// # Failure
///
/// Fails if the value equals `None`
///
/// # Safety note
///
/// In general, because this function may fail, its use is discouraged
/// (calling `get` on `None` is akin to dereferencing a null pointer).
/// Instead, prefer to use pattern matching and handle the `None`
/// case explicitly.
#[inline]
pub fn get_mut_ref<'a>(&'a mut self) -> &'a mut T {
match *self {
Some(ref mut x) => x,
None => fail2!("called `Option::get_mut_ref()` on a `None` value"),
}
}
/// Moves a value out of an option type and returns it.
///
/// Useful primarily for getting strings, vectors and unique pointers out
/// of option types without copying them.
///
/// # Failure
///
/// Fails if the value equals `None`.
///
/// # Safety note
///
/// In general, because this function may fail, its use is discouraged.
/// Instead, prefer to use pattern matching and handle the `None`
/// case explicitly.
#[inline]
pub fn unwrap(self) -> T {
match self {
Some(x) => x,
None => fail2!("called `Option::unwrap()` on a `None` value"),
}
}
/// The option dance. Moves a value out of an option type and returns it,
/// replacing the original with `None`.
///
/// # Failure
///
/// Fails if the value equals `None`.
#[inline]
pub fn take_unwrap(&mut self) -> T {
if self.is_none() {
fail2!("called `Option::take_unwrap()` on a `None` value")
}
self.take().unwrap()
}
/// Gets the value out of an option, printing a specified message on
/// failure
///
/// # Failure
///
/// Fails if the value equals `None`
#[inline]
pub fn expect(self, reason: &str) -> T {
match self {
Some(val) => val,
None => fail2!("{}", reason.to_owned()),
}
}
/// Returns the contained value or a default
#[inline]
pub fn unwrap_or(self, def: T) -> T {
match self {
Some(x) => x,
None => def
}
}
/// Returns the contained value or computes it from a closure
#[inline]
pub fn unwrap_or_else(self, f: &fn() -> T) -> T {
match self {
Some(x) => x,
None => f()
}
}
/// Applies a function zero or more times until the result is `None`.
#[inline]
pub fn while_some(self, blk: &fn(v: T) -> Option<T>) {
let mut opt = self;
while opt.is_some() {
opt = blk(opt.unwrap());
}
}
}
/// A generic trait for converting a value to a `Option`
pub trait ToOption<T> {
/// Convert to the `option` type
fn to_option(&self) -> Option<T>;
}
/// A generic trait for converting a value to a `Option`
pub trait IntoOption<T> {
/// Convert to the `option` type
fn into_option(self) -> Option<T>;
}
/// A generic trait for converting a value to a `Option`
pub trait AsOption<T> {
/// Convert to the `option` type
fn as_option<'a>(&'a self) -> Option<&'a T>;
}
impl<T: Clone> ToOption<T> for Option<T> {
#[inline]
fn to_option(&self) -> Option<T> { self.clone() }
}
impl<T> IntoOption<T> for Option<T> {
#[inline]
fn into_option(self) -> Option<T> { self }
}
impl<T> AsOption<T> for Option<T> {
#[inline]
fn as_option<'a>(&'a self) -> Option<&'a T> {
match *self {
Some(ref x) => Some(x),
None => None,
}
}
}
impl<T: Clone> result::ToResult<T, ()> for Option<T> {
#[inline]
fn to_result(&self) -> result::Result<T, ()> {
match *self {
Some(ref x) => result::Ok(x.clone()),
None => result::Err(()),
}
}
}
impl<T> result::IntoResult<T, ()> for Option<T> {
#[inline]
fn into_result(self) -> result::Result<T, ()> {
match self {
Some(x) => result::Ok(x),
None => result::Err(()),
}
}
}
impl<T: Clone> either::ToEither<(), T> for Option<T> {
#[inline]
fn to_either(&self) -> either::Either<(), T> {
match *self {
Some(ref x) => either::Right(x.clone()),
None => either::Left(()),
}
}
}
impl<T> either::IntoEither<(), T> for Option<T> {
#[inline]
fn into_either(self) -> either::Either<(), T> {
match self {
Some(x) => either::Right(x),
None => either::Left(()),
}
}
}
impl<T: Default> Option<T> {
/// Returns the contained value or default (for this type)
#[inline]
pub fn unwrap_or_default(self) -> T {
match self {
Some(x) => x,
None => Default::default()
}
}
}
impl<T> Default for Option<T> {
#[inline]
fn default() -> Option<T> { None }
}
impl<T: Zero> Option<T> {
/// Returns the contained value or zero (for this type)
#[inline]
pub fn unwrap_or_zero(self) -> T {
match self {
Some(x) => x,
None => Zero::zero()
}
}
}
/// An iterator that yields either one or zero elements
#[deriving(Clone, DeepClone)]
pub struct OptionIterator<A> {
priv opt: Option<A>
}
impl<A> Iterator<A> for OptionIterator<A> {
#[inline]
fn next(&mut self) -> Option<A> {
self.opt.take()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
match self.opt {
Some(_) => (1, Some(1)),
None => (0, Some(0)),
}
}
}
impl<A> DoubleEndedIterator<A> for OptionIterator<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.opt.take()
}
}
impl<A> ExactSize<A> for OptionIterator<A> {}
#[cfg(test)]
mod tests {
use super::*;
use either::{IntoEither, ToEither};
use either;
use result::{IntoResult, ToResult};
use result;
use util;
#[test]
fn test_get_ptr() {
unsafe {
let x = ~0;
let addr_x: *int = ::cast::transmute(&*x);
let opt = Some(x);
let y = opt.unwrap();
let addr_y: *int = ::cast::transmute(&*y);
assert_eq!(addr_x, addr_y);
}
}
#[test]
fn test_get_str() {
let x = ~"test";
let addr_x = x.as_imm_buf(|buf, _len| buf);
let opt = Some(x);
let y = opt.unwrap();
let addr_y = y.as_imm_buf(|buf, _len| buf);
assert_eq!(addr_x, addr_y);
}
#[test]
fn test_get_resource() {
struct R {
i: @mut int,
}
#[unsafe_destructor]
impl ::ops::Drop for R {
fn drop(&mut self) { *(self.i) += 1; }
}
fn R(i: @mut int) -> R {
R {
i: i
}
}
let i = @mut 0;
{
let x = R(i);
let opt = Some(x);
let _y = opt.unwrap();
}
assert_eq!(*i, 1);
}
#[test]
fn test_option_dance() {
let x = Some(());
let mut y = Some(5);
let mut y2 = 0;
for _x in x.iter() {
y2 = y.take_unwrap();
}
assert_eq!(y2, 5);
assert!(y.is_none());
}
#[test] #[should_fail]
fn test_option_too_much_dance() {
let mut y = Some(util::NonCopyable);
let _y2 = y.take_unwrap();
let _y3 = y.take_unwrap();
}
#[test]
fn test_and() {
let x: Option<int> = Some(1);
assert_eq!(x.and(Some(2)), Some(2));
assert_eq!(x.and(None), None);
let x: Option<int> = None;
assert_eq!(x.and(Some(2)), None);
assert_eq!(x.and(None), None);
}
#[test]
fn test_and_then() {
let x: Option<int> = Some(1);
assert_eq!(x.and_then(|x| Some(x + 1)), Some(2));
assert_eq!(x.and_then(|_| None::<int>), None);
let x: Option<int> = None;
assert_eq!(x.and_then(|x| Some(x + 1)), None);
assert_eq!(x.and_then(|_| None::<int>), None);
}
#[test]
fn test_or() {
let x: Option<int> = Some(1);
assert_eq!(x.or(Some(2)), Some(1));
assert_eq!(x.or(None), Some(1));
let x: Option<int> = None;
assert_eq!(x.or(Some(2)), Some(2));
assert_eq!(x.or(None), None);
}
#[test]
fn test_or_else() {
let x: Option<int> = Some(1);
assert_eq!(x.or_else(|| Some(2)), Some(1));
assert_eq!(x.or_else(|| None), Some(1));
let x: Option<int> = None;
assert_eq!(x.or_else(|| Some(2)), Some(2));
assert_eq!(x.or_else(|| None), None);
}
#[test]
fn test_option_while_some() {
let mut i = 0;
do Some(10).while_some |j| {
i += 1;
if (j > 0) {
Some(j-1)
} else {
None
}
}
assert_eq!(i, 11);
}
#[test]
fn test_unwrap() {
assert_eq!(Some(1).unwrap(), 1);
assert_eq!(Some(~"hello").unwrap(), ~"hello");
}
#[test]
#[should_fail]
fn test_unwrap_fail1() {
let x: Option<int> = None;
x.unwrap();
}
#[test]
#[should_fail]
fn test_unwrap_fail2() {
let x: Option<~str> = None;
x.unwrap();
}
#[test]
fn test_unwrap_or() {
let x: Option<int> = Some(1);
assert_eq!(x.unwrap_or(2), 1);
let x: Option<int> = None;
assert_eq!(x.unwrap_or(2), 2);
}
#[test]
fn test_unwrap_or_else() {
let x: Option<int> = Some(1);
assert_eq!(x.unwrap_or_else(|| 2), 1);
let x: Option<int> = None;
assert_eq!(x.unwrap_or_else(|| 2), 2);
}
#[test]
fn test_unwrap_or_zero() {
let some_stuff = Some(42);
assert_eq!(some_stuff.unwrap_or_zero(), 42);
let no_stuff: Option<int> = None;
assert_eq!(no_stuff.unwrap_or_zero(), 0);
}
#[test]
fn test_filtered() {
let some_stuff = Some(42);
let modified_stuff = some_stuff.filtered(|&x| {x < 10});
assert_eq!(some_stuff.unwrap(), 42);
assert!(modified_stuff.is_none());
}
#[test]
fn test_iter() {
let val = 5;
let x = Some(val);
let mut it = x.iter();
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next(), Some(&val));
assert_eq!(it.size_hint(), (0, Some(0)));
assert!(it.next().is_none());
}
#[test]
fn test_mut_iter() {
let val = 5;
let new_val = 11;
let mut x = Some(val);
{
let mut it = x.mut_iter();
assert_eq!(it.size_hint(), (1, Some(1)));
match it.next() {
Some(interior) => {
assert_eq!(*interior, val);
*interior = new_val;
}
None => assert!(false),
}
assert_eq!(it.size_hint(), (0, Some(0)));
assert!(it.next().is_none());
}
assert_eq!(x, Some(new_val));
}
#[test]
fn test_ord() {
let small = Some(1.0);
let big = Some(5.0);
let nan = Some(0.0/0.0);
assert!(!(nan < big));
assert!(!(nan > big));
assert!(small < big);
assert!(None < big);
assert!(big > None);
}
#[test]
fn test_mutate() {
let mut x = Some(3i);
assert!(x.mutate(|i| i+1));
assert_eq!(x, Some(4i));
assert!(x.mutate_default(0, |i| i+1));
assert_eq!(x, Some(5i));
x = None;
assert!(!x.mutate(|i| i+1));
assert_eq!(x, None);
assert!(!x.mutate_default(0i, |i| i+1));
assert_eq!(x, Some(0i));
}
#[test]
pub fn test_to_option() {
let some: Option<int> = Some(100);
let none: Option<int> = None;
assert_eq!(some.to_option(), Some(100));
assert_eq!(none.to_option(), None);
}
#[test]
pub fn test_into_option() {
let some: Option<int> = Some(100);
let none: Option<int> = None;
assert_eq!(some.into_option(), Some(100));
assert_eq!(none.into_option(), None);
}
#[test]
pub fn test_as_option() {
let some: Option<int> = Some(100);
let none: Option<int> = None;
assert_eq!(some.as_option().unwrap(), &100);
assert_eq!(none.as_option(), None);
}
#[test]
pub fn test_to_result() {
let some: Option<int> = Some(100);
let none: Option<int> = None;
assert_eq!(some.to_result(), result::Ok(100));
assert_eq!(none.to_result(), result::Err(()));
}
#[test]
pub fn test_into_result() {
let some: Option<int> = Some(100);
let none: Option<int> = None;
assert_eq!(some.into_result(), result::Ok(100));
assert_eq!(none.into_result(), result::Err(()));
}
#[test]
pub fn test_to_either() {
let some: Option<int> = Some(100);
let none: Option<int> = None;
assert_eq!(some.to_either(), either::Right(100));
assert_eq!(none.to_either(), either::Left(()));
}
#[test]
pub fn test_into_either() {
let some: Option<int> = Some(100);
let none: Option<int> = None;
assert_eq!(some.into_either(), either::Right(100));
assert_eq!(none.into_either(), either::Left(()));
}
}