704 lines
22 KiB
Rust
704 lines
22 KiB
Rust
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Utilities for random number generation
|
|
//!
|
|
//! The key functions are `random()` and `Rng::gen()`. These are polymorphic
|
|
//! and so can be used to generate any type that implements `Rand`. Type inference
|
|
//! means that often a simple call to `rand::random()` or `rng.gen()` will
|
|
//! suffice, but sometimes an annotation is required, e.g. `rand::random::<f64>()`.
|
|
//!
|
|
//! See the `distributions` submodule for sampling random numbers from
|
|
//! distributions like normal and exponential.
|
|
//!
|
|
//! # Thread-local RNG
|
|
//!
|
|
//! There is built-in support for a RNG associated with each thread stored
|
|
//! in thread-local storage. This RNG can be accessed via `thread_rng`, or
|
|
//! used implicitly via `random`. This RNG is normally randomly seeded
|
|
//! from an operating-system source of randomness, e.g. `/dev/urandom` on
|
|
//! Unix systems, and will automatically reseed itself from this source
|
|
//! after generating 32 KiB of random data.
|
|
//!
|
|
//! # Cryptographic security
|
|
//!
|
|
//! An application that requires an entropy source for cryptographic purposes
|
|
//! must use `OsRng`, which reads randomness from the source that the operating
|
|
//! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on Windows).
|
|
//! The other random number generators provided by this module are not suitable
|
|
//! for such purposes.
|
|
//!
|
|
//! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
|
|
//! This module uses `/dev/urandom` for the following reasons:
|
|
//!
|
|
//! - On Linux, `/dev/random` may block if entropy pool is empty; `/dev/urandom` will not block.
|
|
//! This does not mean that `/dev/random` provides better output than
|
|
//! `/dev/urandom`; the kernel internally runs a cryptographically secure pseudorandom
|
|
//! number generator (CSPRNG) based on entropy pool for random number generation,
|
|
//! so the "quality" of `/dev/random` is not better than `/dev/urandom` in most cases.
|
|
//! However, this means that `/dev/urandom` can yield somewhat predictable randomness
|
|
//! if the entropy pool is very small, such as immediately after first booting.
|
|
//! Linux 3.17 added the `getrandom(2)` system call which solves the issue: it blocks if entropy
|
|
//! pool is not initialized yet, but it does not block once initialized.
|
|
//! `OsRng` tries to use `getrandom(2)` if available, and use `/dev/urandom` fallback if not.
|
|
//! If an application does not have `getrandom` and likely to be run soon after first booting,
|
|
//! or on a system with very few entropy sources, one should consider using `/dev/random` via
|
|
//! `ReaderRng`.
|
|
//! - On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no difference
|
|
//! between the two sources. (Also note that, on some systems e.g. FreeBSD, both `/dev/random`
|
|
//! and `/dev/urandom` may block once if the CSPRNG has not seeded yet.)
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! ```rust
|
|
//! use std::rand;
|
|
//! use std::rand::Rng;
|
|
//!
|
|
//! let mut rng = rand::thread_rng();
|
|
//! if rng.gen() { // random bool
|
|
//! println!("int: {}, uint: {}", rng.gen::<int>(), rng.gen::<uint>())
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! ```rust
|
|
//! use std::rand;
|
|
//!
|
|
//! let tuple = rand::random::<(f64, char)>();
|
|
//! println!("{:?}", tuple)
|
|
//! ```
|
|
//!
|
|
//! ## Monte Carlo estimation of π
|
|
//!
|
|
//! For this example, imagine we have a square with sides of length 2 and a unit
|
|
//! circle, both centered at the origin. Since the area of a unit circle is π,
|
|
//! we have:
|
|
//!
|
|
//! ```text
|
|
//! (area of unit circle) / (area of square) = π / 4
|
|
//! ```
|
|
//!
|
|
//! So if we sample many points randomly from the square, roughly π / 4 of them
|
|
//! should be inside the circle.
|
|
//!
|
|
//! We can use the above fact to estimate the value of π: pick many points in the
|
|
//! square at random, calculate the fraction that fall within the circle, and
|
|
//! multiply this fraction by 4.
|
|
//!
|
|
//! ```
|
|
//! use std::rand;
|
|
//! use std::rand::distributions::{IndependentSample, Range};
|
|
//!
|
|
//! fn main() {
|
|
//! let between = Range::new(-1f64, 1.);
|
|
//! let mut rng = rand::thread_rng();
|
|
//!
|
|
//! let total = 1_000_000u;
|
|
//! let mut in_circle = 0u;
|
|
//!
|
|
//! for _ in range(0u, total) {
|
|
//! let a = between.ind_sample(&mut rng);
|
|
//! let b = between.ind_sample(&mut rng);
|
|
//! if a*a + b*b <= 1. {
|
|
//! in_circle += 1;
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // prints something close to 3.14159...
|
|
//! println!("{}", 4. * (in_circle as f64) / (total as f64));
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! ## Monty Hall Problem
|
|
//!
|
|
//! This is a simulation of the [Monty Hall Problem][]:
|
|
//!
|
|
//! > Suppose you're on a game show, and you're given the choice of three doors:
|
|
//! > Behind one door is a car; behind the others, goats. You pick a door, say No. 1,
|
|
//! > and the host, who knows what's behind the doors, opens another door, say No. 3,
|
|
//! > which has a goat. He then says to you, "Do you want to pick door No. 2?"
|
|
//! > Is it to your advantage to switch your choice?
|
|
//!
|
|
//! The rather unintuitive answer is that you will have a 2/3 chance of winning if
|
|
//! you switch and a 1/3 chance of winning if you don't, so it's better to switch.
|
|
//!
|
|
//! This program will simulate the game show and with large enough simulation steps
|
|
//! it will indeed confirm that it is better to switch.
|
|
//!
|
|
//! [Monty Hall Problem]: http://en.wikipedia.org/wiki/Monty_Hall_problem
|
|
//!
|
|
//! ```
|
|
//! use std::rand;
|
|
//! use std::rand::Rng;
|
|
//! use std::rand::distributions::{IndependentSample, Range};
|
|
//!
|
|
//! struct SimulationResult {
|
|
//! win: bool,
|
|
//! switch: bool,
|
|
//! }
|
|
//!
|
|
//! // Run a single simulation of the Monty Hall problem.
|
|
//! fn simulate<R: Rng>(random_door: &Range<uint>, rng: &mut R) -> SimulationResult {
|
|
//! let car = random_door.ind_sample(rng);
|
|
//!
|
|
//! // This is our initial choice
|
|
//! let mut choice = random_door.ind_sample(rng);
|
|
//!
|
|
//! // The game host opens a door
|
|
//! let open = game_host_open(car, choice, rng);
|
|
//!
|
|
//! // Shall we switch?
|
|
//! let switch = rng.gen();
|
|
//! if switch {
|
|
//! choice = switch_door(choice, open);
|
|
//! }
|
|
//!
|
|
//! SimulationResult { win: choice == car, switch: switch }
|
|
//! }
|
|
//!
|
|
//! // Returns the door the game host opens given our choice and knowledge of
|
|
//! // where the car is. The game host will never open the door with the car.
|
|
//! fn game_host_open<R: Rng>(car: uint, choice: uint, rng: &mut R) -> uint {
|
|
//! let choices = free_doors(&[car, choice]);
|
|
//! rand::sample(rng, choices.into_iter(), 1)[0]
|
|
//! }
|
|
//!
|
|
//! // Returns the door we switch to, given our current choice and
|
|
//! // the open door. There will only be one valid door.
|
|
//! fn switch_door(choice: uint, open: uint) -> uint {
|
|
//! free_doors(&[choice, open])[0]
|
|
//! }
|
|
//!
|
|
//! fn free_doors(blocked: &[uint]) -> Vec<uint> {
|
|
//! range(0u, 3).filter(|x| !blocked.contains(x)).collect()
|
|
//! }
|
|
//!
|
|
//! fn main() {
|
|
//! // The estimation will be more accurate with more simulations
|
|
//! let num_simulations = 10000u;
|
|
//!
|
|
//! let mut rng = rand::thread_rng();
|
|
//! let random_door = Range::new(0u, 3);
|
|
//!
|
|
//! let (mut switch_wins, mut switch_losses) = (0u, 0u);
|
|
//! let (mut keep_wins, mut keep_losses) = (0u, 0u);
|
|
//!
|
|
//! println!("Running {} simulations...", num_simulations);
|
|
//! for _ in range(0, num_simulations) {
|
|
//! let result = simulate(&random_door, &mut rng);
|
|
//!
|
|
//! match (result.win, result.switch) {
|
|
//! (true, true) => switch_wins += 1,
|
|
//! (true, false) => keep_wins += 1,
|
|
//! (false, true) => switch_losses += 1,
|
|
//! (false, false) => keep_losses += 1,
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! let total_switches = switch_wins + switch_losses;
|
|
//! let total_keeps = keep_wins + keep_losses;
|
|
//!
|
|
//! println!("Switched door {} times with {} wins and {} losses",
|
|
//! total_switches, switch_wins, switch_losses);
|
|
//!
|
|
//! println!("Kept our choice {} times with {} wins and {} losses",
|
|
//! total_keeps, keep_wins, keep_losses);
|
|
//!
|
|
//! // With a large number of simulations, the values should converge to
|
|
//! // 0.667 and 0.333 respectively.
|
|
//! println!("Estimated chance to win if we switch: {}",
|
|
//! switch_wins as f32 / total_switches as f32);
|
|
//! println!("Estimated chance to win if we don't: {}",
|
|
//! keep_wins as f32 / total_keeps as f32);
|
|
//! }
|
|
//! ```
|
|
|
|
#![unstable]
|
|
|
|
use cell::RefCell;
|
|
use clone::Clone;
|
|
use io::IoResult;
|
|
use iter::{Iterator, IteratorExt};
|
|
use mem;
|
|
use rc::Rc;
|
|
use result::Result::{Ok, Err};
|
|
use vec::Vec;
|
|
|
|
#[cfg(target_pointer_width = "32")]
|
|
use core_rand::IsaacRng as IsaacWordRng;
|
|
#[cfg(target_pointer_width = "64")]
|
|
use core_rand::Isaac64Rng as IsaacWordRng;
|
|
|
|
pub use core_rand::{Rand, Rng, SeedableRng, Open01, Closed01};
|
|
pub use core_rand::{XorShiftRng, IsaacRng, Isaac64Rng, ChaChaRng};
|
|
pub use core_rand::{distributions, reseeding};
|
|
pub use rand::os::OsRng;
|
|
|
|
pub mod os;
|
|
pub mod reader;
|
|
|
|
/// The standard RNG. This is designed to be efficient on the current
|
|
/// platform.
|
|
#[derive(Copy, Clone)]
|
|
pub struct StdRng {
|
|
rng: IsaacWordRng,
|
|
}
|
|
|
|
impl StdRng {
|
|
/// Create a randomly seeded instance of `StdRng`.
|
|
///
|
|
/// This is a very expensive operation as it has to read
|
|
/// randomness from the operating system and use this in an
|
|
/// expensive seeding operation. If one is only generating a small
|
|
/// number of random numbers, or doesn't need the utmost speed for
|
|
/// generating each number, `thread_rng` and/or `random` may be more
|
|
/// appropriate.
|
|
///
|
|
/// Reading the randomness from the OS may fail, and any error is
|
|
/// propagated via the `IoResult` return value.
|
|
pub fn new() -> IoResult<StdRng> {
|
|
OsRng::new().map(|mut r| StdRng { rng: r.gen() })
|
|
}
|
|
}
|
|
|
|
impl Rng for StdRng {
|
|
#[inline]
|
|
fn next_u32(&mut self) -> u32 {
|
|
self.rng.next_u32()
|
|
}
|
|
|
|
#[inline]
|
|
fn next_u64(&mut self) -> u64 {
|
|
self.rng.next_u64()
|
|
}
|
|
}
|
|
|
|
impl<'a> SeedableRng<&'a [uint]> for StdRng {
|
|
fn reseed(&mut self, seed: &'a [uint]) {
|
|
// the internal RNG can just be seeded from the above
|
|
// randomness.
|
|
self.rng.reseed(unsafe {mem::transmute(seed)})
|
|
}
|
|
|
|
fn from_seed(seed: &'a [uint]) -> StdRng {
|
|
StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) }
|
|
}
|
|
}
|
|
|
|
/// Create a weak random number generator with a default algorithm and seed.
|
|
///
|
|
/// It returns the fastest `Rng` algorithm currently available in Rust without
|
|
/// consideration for cryptography or security. If you require a specifically
|
|
/// seeded `Rng` for consistency over time you should pick one algorithm and
|
|
/// create the `Rng` yourself.
|
|
///
|
|
/// This will read randomness from the operating system to seed the
|
|
/// generator.
|
|
pub fn weak_rng() -> XorShiftRng {
|
|
match OsRng::new() {
|
|
Ok(mut r) => r.gen(),
|
|
Err(e) => panic!("weak_rng: failed to create seeded RNG: {:?}", e)
|
|
}
|
|
}
|
|
|
|
/// Controls how the thread-local RNG is reseeded.
|
|
struct ThreadRngReseeder;
|
|
|
|
impl reseeding::Reseeder<StdRng> for ThreadRngReseeder {
|
|
fn reseed(&mut self, rng: &mut StdRng) {
|
|
*rng = match StdRng::new() {
|
|
Ok(r) => r,
|
|
Err(e) => panic!("could not reseed thread_rng: {}", e)
|
|
}
|
|
}
|
|
}
|
|
static THREAD_RNG_RESEED_THRESHOLD: uint = 32_768;
|
|
type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>;
|
|
|
|
/// The thread-local RNG.
|
|
#[derive(Clone)]
|
|
pub struct ThreadRng {
|
|
rng: Rc<RefCell<ThreadRngInner>>,
|
|
}
|
|
|
|
/// Retrieve the lazily-initialized thread-local random number
|
|
/// generator, seeded by the system. Intended to be used in method
|
|
/// chaining style, e.g. `thread_rng().gen::<int>()`.
|
|
///
|
|
/// The RNG provided will reseed itself from the operating system
|
|
/// after generating a certain amount of randomness.
|
|
///
|
|
/// The internal RNG used is platform and architecture dependent, even
|
|
/// if the operating system random number generator is rigged to give
|
|
/// the same sequence always. If absolute consistency is required,
|
|
/// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`.
|
|
pub fn thread_rng() -> ThreadRng {
|
|
// used to make space in TLS for a random number generator
|
|
thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = {
|
|
let r = match StdRng::new() {
|
|
Ok(r) => r,
|
|
Err(e) => panic!("could not initialize thread_rng: {}", e)
|
|
};
|
|
let rng = reseeding::ReseedingRng::new(r,
|
|
THREAD_RNG_RESEED_THRESHOLD,
|
|
ThreadRngReseeder);
|
|
Rc::new(RefCell::new(rng))
|
|
});
|
|
|
|
ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) }
|
|
}
|
|
|
|
impl Rng for ThreadRng {
|
|
fn next_u32(&mut self) -> u32 {
|
|
self.rng.borrow_mut().next_u32()
|
|
}
|
|
|
|
fn next_u64(&mut self) -> u64 {
|
|
self.rng.borrow_mut().next_u64()
|
|
}
|
|
|
|
#[inline]
|
|
fn fill_bytes(&mut self, bytes: &mut [u8]) {
|
|
self.rng.borrow_mut().fill_bytes(bytes)
|
|
}
|
|
}
|
|
|
|
/// Generates a random value using the thread-local random number generator.
|
|
///
|
|
/// `random()` can generate various types of random things, and so may require
|
|
/// type hinting to generate the specific type you want.
|
|
///
|
|
/// This function uses the thread local random number generator. This means
|
|
/// that if you're calling `random()` in a loop, caching the generator can
|
|
/// increase performance. An example is shown below.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::rand;
|
|
///
|
|
/// let x = rand::random();
|
|
/// println!("{}", 2u * x);
|
|
///
|
|
/// let y = rand::random::<f64>();
|
|
/// println!("{}", y);
|
|
///
|
|
/// if rand::random() { // generates a boolean
|
|
/// println!("Better lucky than good!");
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Caching the thread local random number generator:
|
|
///
|
|
/// ```
|
|
/// use std::rand;
|
|
/// use std::rand::Rng;
|
|
///
|
|
/// let mut v = vec![1, 2, 3];
|
|
///
|
|
/// for x in v.iter_mut() {
|
|
/// *x = rand::random()
|
|
/// }
|
|
///
|
|
/// // would be faster as
|
|
///
|
|
/// let mut rng = rand::thread_rng();
|
|
///
|
|
/// for x in v.iter_mut() {
|
|
/// *x = rng.gen();
|
|
/// }
|
|
/// ```
|
|
#[inline]
|
|
pub fn random<T: Rand>() -> T {
|
|
thread_rng().gen()
|
|
}
|
|
|
|
/// Randomly sample up to `amount` elements from an iterator.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```rust
|
|
/// use std::rand::{thread_rng, sample};
|
|
///
|
|
/// let mut rng = thread_rng();
|
|
/// let sample = sample(&mut rng, range(1i, 100), 5);
|
|
/// println!("{:?}", sample);
|
|
/// ```
|
|
pub fn sample<T, I: Iterator<Item=T>, R: Rng>(rng: &mut R,
|
|
mut iter: I,
|
|
amount: uint) -> Vec<T> {
|
|
let mut reservoir: Vec<T> = iter.by_ref().take(amount).collect();
|
|
for (i, elem) in iter.enumerate() {
|
|
let k = rng.gen_range(0, i + 1 + amount);
|
|
if k < amount {
|
|
reservoir[k] = elem;
|
|
}
|
|
}
|
|
return reservoir;
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use prelude::v1::*;
|
|
use super::{Rng, thread_rng, random, SeedableRng, StdRng, sample};
|
|
use iter::{order, repeat};
|
|
|
|
struct ConstRng { i: u64 }
|
|
impl Rng for ConstRng {
|
|
fn next_u32(&mut self) -> u32 { self.i as u32 }
|
|
fn next_u64(&mut self) -> u64 { self.i }
|
|
|
|
// no fill_bytes on purpose
|
|
}
|
|
|
|
#[test]
|
|
fn test_fill_bytes_default() {
|
|
let mut r = ConstRng { i: 0x11_22_33_44_55_66_77_88 };
|
|
|
|
// check every remainder mod 8, both in small and big vectors.
|
|
let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
|
|
80, 81, 82, 83, 84, 85, 86, 87];
|
|
for &n in lengths.iter() {
|
|
let mut v = repeat(0u8).take(n).collect::<Vec<_>>();
|
|
r.fill_bytes(v.as_mut_slice());
|
|
|
|
// use this to get nicer error messages.
|
|
for (i, &byte) in v.iter().enumerate() {
|
|
if byte == 0 {
|
|
panic!("byte {} of {} is zero", i, n)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_gen_range() {
|
|
let mut r = thread_rng();
|
|
for _ in range(0u, 1000) {
|
|
let a = r.gen_range(-3i, 42);
|
|
assert!(a >= -3 && a < 42);
|
|
assert_eq!(r.gen_range(0i, 1), 0);
|
|
assert_eq!(r.gen_range(-12i, -11), -12);
|
|
}
|
|
|
|
for _ in range(0u, 1000) {
|
|
let a = r.gen_range(10i, 42);
|
|
assert!(a >= 10 && a < 42);
|
|
assert_eq!(r.gen_range(0i, 1), 0);
|
|
assert_eq!(r.gen_range(3_000_000u, 3_000_001), 3_000_000);
|
|
}
|
|
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_gen_range_panic_int() {
|
|
let mut r = thread_rng();
|
|
r.gen_range(5i, -2);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_gen_range_panic_uint() {
|
|
let mut r = thread_rng();
|
|
r.gen_range(5u, 2u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_gen_f64() {
|
|
let mut r = thread_rng();
|
|
let a = r.gen::<f64>();
|
|
let b = r.gen::<f64>();
|
|
debug!("{:?}", (a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn test_gen_weighted_bool() {
|
|
let mut r = thread_rng();
|
|
assert_eq!(r.gen_weighted_bool(0u), true);
|
|
assert_eq!(r.gen_weighted_bool(1u), true);
|
|
}
|
|
|
|
#[test]
|
|
fn test_gen_ascii_str() {
|
|
let mut r = thread_rng();
|
|
assert_eq!(r.gen_ascii_chars().take(0).count(), 0u);
|
|
assert_eq!(r.gen_ascii_chars().take(10).count(), 10u);
|
|
assert_eq!(r.gen_ascii_chars().take(16).count(), 16u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_gen_vec() {
|
|
let mut r = thread_rng();
|
|
assert_eq!(r.gen_iter::<u8>().take(0).count(), 0u);
|
|
assert_eq!(r.gen_iter::<u8>().take(10).count(), 10u);
|
|
assert_eq!(r.gen_iter::<f64>().take(16).count(), 16u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_choose() {
|
|
let mut r = thread_rng();
|
|
assert_eq!(r.choose(&[1i, 1, 1]).map(|&x|x), Some(1));
|
|
|
|
let v: &[int] = &[];
|
|
assert_eq!(r.choose(v), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_shuffle() {
|
|
let mut r = thread_rng();
|
|
let empty: &mut [int] = &mut [];
|
|
r.shuffle(empty);
|
|
let mut one = [1i];
|
|
r.shuffle(&mut one);
|
|
let b: &[_] = &[1];
|
|
assert_eq!(one, b);
|
|
|
|
let mut two = [1i, 2];
|
|
r.shuffle(&mut two);
|
|
assert!(two == [1, 2] || two == [2, 1]);
|
|
|
|
let mut x = [1i, 1, 1];
|
|
r.shuffle(&mut x);
|
|
let b: &[_] = &[1, 1, 1];
|
|
assert_eq!(x, b);
|
|
}
|
|
|
|
#[test]
|
|
fn test_thread_rng() {
|
|
let mut r = thread_rng();
|
|
r.gen::<int>();
|
|
let mut v = [1i, 1, 1];
|
|
r.shuffle(&mut v);
|
|
let b: &[_] = &[1, 1, 1];
|
|
assert_eq!(v, b);
|
|
assert_eq!(r.gen_range(0u, 1u), 0u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_random() {
|
|
// not sure how to test this aside from just getting some values
|
|
let _n : uint = random();
|
|
let _f : f32 = random();
|
|
let _o : Option<Option<i8>> = random();
|
|
let _many : ((),
|
|
(uint,
|
|
int,
|
|
Option<(u32, (bool,))>),
|
|
(u8, i8, u16, i16, u32, i32, u64, i64),
|
|
(f32, (f64, (f64,)))) = random();
|
|
}
|
|
|
|
#[test]
|
|
fn test_sample() {
|
|
let min_val = 1i;
|
|
let max_val = 100i;
|
|
|
|
let mut r = thread_rng();
|
|
let vals = range(min_val, max_val).collect::<Vec<int>>();
|
|
let small_sample = sample(&mut r, vals.iter(), 5);
|
|
let large_sample = sample(&mut r, vals.iter(), vals.len() + 5);
|
|
|
|
assert_eq!(small_sample.len(), 5);
|
|
assert_eq!(large_sample.len(), vals.len());
|
|
|
|
assert!(small_sample.iter().all(|e| {
|
|
**e >= min_val && **e <= max_val
|
|
}));
|
|
}
|
|
|
|
#[test]
|
|
fn test_std_rng_seeded() {
|
|
let s = thread_rng().gen_iter::<uint>().take(256).collect::<Vec<uint>>();
|
|
let mut ra: StdRng = SeedableRng::from_seed(s.as_slice());
|
|
let mut rb: StdRng = SeedableRng::from_seed(s.as_slice());
|
|
assert!(order::equals(ra.gen_ascii_chars().take(100),
|
|
rb.gen_ascii_chars().take(100)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_std_rng_reseed() {
|
|
let s = thread_rng().gen_iter::<uint>().take(256).collect::<Vec<uint>>();
|
|
let mut r: StdRng = SeedableRng::from_seed(s.as_slice());
|
|
let string1 = r.gen_ascii_chars().take(100).collect::<String>();
|
|
|
|
r.reseed(s.as_slice());
|
|
|
|
let string2 = r.gen_ascii_chars().take(100).collect::<String>();
|
|
assert_eq!(string1, string2);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
static RAND_BENCH_N: u64 = 100;
|
|
|
|
#[cfg(test)]
|
|
mod bench {
|
|
extern crate test;
|
|
use prelude::v1::*;
|
|
|
|
use self::test::Bencher;
|
|
use super::{XorShiftRng, StdRng, IsaacRng, Isaac64Rng, Rng, RAND_BENCH_N};
|
|
use super::{OsRng, weak_rng};
|
|
use mem::size_of;
|
|
|
|
#[bench]
|
|
fn rand_xorshift(b: &mut Bencher) {
|
|
let mut rng: XorShiftRng = OsRng::new().unwrap().gen();
|
|
b.iter(|| {
|
|
for _ in range(0, RAND_BENCH_N) {
|
|
rng.gen::<uint>();
|
|
}
|
|
});
|
|
b.bytes = size_of::<uint>() as u64 * RAND_BENCH_N;
|
|
}
|
|
|
|
#[bench]
|
|
fn rand_isaac(b: &mut Bencher) {
|
|
let mut rng: IsaacRng = OsRng::new().unwrap().gen();
|
|
b.iter(|| {
|
|
for _ in range(0, RAND_BENCH_N) {
|
|
rng.gen::<uint>();
|
|
}
|
|
});
|
|
b.bytes = size_of::<uint>() as u64 * RAND_BENCH_N;
|
|
}
|
|
|
|
#[bench]
|
|
fn rand_isaac64(b: &mut Bencher) {
|
|
let mut rng: Isaac64Rng = OsRng::new().unwrap().gen();
|
|
b.iter(|| {
|
|
for _ in range(0, RAND_BENCH_N) {
|
|
rng.gen::<uint>();
|
|
}
|
|
});
|
|
b.bytes = size_of::<uint>() as u64 * RAND_BENCH_N;
|
|
}
|
|
|
|
#[bench]
|
|
fn rand_std(b: &mut Bencher) {
|
|
let mut rng = StdRng::new().unwrap();
|
|
b.iter(|| {
|
|
for _ in range(0, RAND_BENCH_N) {
|
|
rng.gen::<uint>();
|
|
}
|
|
});
|
|
b.bytes = size_of::<uint>() as u64 * RAND_BENCH_N;
|
|
}
|
|
|
|
#[bench]
|
|
fn rand_shuffle_100(b: &mut Bencher) {
|
|
let mut rng = weak_rng();
|
|
let x : &mut[uint] = &mut [1; 100];
|
|
b.iter(|| {
|
|
rng.shuffle(x);
|
|
})
|
|
}
|
|
}
|