rust/src/librustc_resolve/macros.rs
Corey Farwell 880f03b28c Rollup merge of #40509 - jseyfried:duplicate_check_macro_exports, r=nrc
Forbid conflicts between macros 1.0 exports and macros 2.0 exports

This PR forbids for conflicts between `#[macro_export]`/`#[macro_reexport]` macro exports and `pub use` macro exports. For example,
```rust
// crate A:
pub use macros::foo;
//^ This is allowed today, will be forbidden by this PR.

// crate B:
extern crate A; // This triggers a confusing error today.
use A::foo; // This could refer to refer to either macro export in crate A.
```

r? @nrc
2017-03-22 19:30:23 -04:00

703 lines
30 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use {AmbiguityError, Resolver, ResolutionError, resolve_error};
use {Module, ModuleKind, NameBinding, NameBindingKind, PathResult};
use Namespace::{self, MacroNS};
use build_reduced_graph::BuildReducedGraphVisitor;
use resolve_imports::ImportResolver;
use rustc::hir::def_id::{DefId, BUILTIN_MACROS_CRATE, CRATE_DEF_INDEX, DefIndex};
use rustc::hir::def::{Def, Export};
use rustc::hir::map::{self, DefCollector};
use rustc::ty;
use syntax::ast::{self, Name, Ident};
use syntax::attr::{self, HasAttrs};
use syntax::errors::DiagnosticBuilder;
use syntax::ext::base::{self, Annotatable, Determinacy, MultiModifier, MultiDecorator};
use syntax::ext::base::{MacroKind, SyntaxExtension, Resolver as SyntaxResolver};
use syntax::ext::expand::{Expansion, ExpansionKind, Invocation, InvocationKind, find_attr_invoc};
use syntax::ext::hygiene::Mark;
use syntax::ext::placeholders::placeholder;
use syntax::ext::tt::macro_rules;
use syntax::feature_gate::{self, emit_feature_err, GateIssue};
use syntax::fold::{self, Folder};
use syntax::parse::parser::PathStyle;
use syntax::parse::token::{self, Token};
use syntax::ptr::P;
use syntax::symbol::{Symbol, keywords};
use syntax::tokenstream::{TokenStream, TokenTree, Delimited};
use syntax::util::lev_distance::find_best_match_for_name;
use syntax_pos::{Span, DUMMY_SP};
use std::cell::Cell;
use std::mem;
use std::rc::Rc;
#[derive(Clone)]
pub struct InvocationData<'a> {
pub module: Cell<Module<'a>>,
pub def_index: DefIndex,
// True if this expansion is in a `const_expr` position, for example `[u32; m!()]`.
// c.f. `DefCollector::visit_const_expr`.
pub const_expr: bool,
// The scope in which the invocation path is resolved.
pub legacy_scope: Cell<LegacyScope<'a>>,
// The smallest scope that includes this invocation's expansion,
// or `Empty` if this invocation has not been expanded yet.
pub expansion: Cell<LegacyScope<'a>>,
}
impl<'a> InvocationData<'a> {
pub fn root(graph_root: Module<'a>) -> Self {
InvocationData {
module: Cell::new(graph_root),
def_index: CRATE_DEF_INDEX,
const_expr: false,
legacy_scope: Cell::new(LegacyScope::Empty),
expansion: Cell::new(LegacyScope::Empty),
}
}
}
#[derive(Copy, Clone)]
pub enum LegacyScope<'a> {
Empty,
Invocation(&'a InvocationData<'a>), // The scope of the invocation, not including its expansion
Expansion(&'a InvocationData<'a>), // The scope of the invocation, including its expansion
Binding(&'a LegacyBinding<'a>),
}
pub struct LegacyBinding<'a> {
pub parent: Cell<LegacyScope<'a>>,
pub name: ast::Name,
def_id: DefId,
pub span: Span,
}
pub enum MacroBinding<'a> {
Legacy(&'a LegacyBinding<'a>),
Modern(&'a NameBinding<'a>),
}
impl<'a> base::Resolver for Resolver<'a> {
fn next_node_id(&mut self) -> ast::NodeId {
self.session.next_node_id()
}
fn get_module_scope(&mut self, id: ast::NodeId) -> Mark {
let mark = Mark::fresh();
let module = self.module_map[&self.definitions.local_def_id(id)];
self.invocations.insert(mark, self.arenas.alloc_invocation_data(InvocationData {
module: Cell::new(module),
def_index: module.def_id().unwrap().index,
const_expr: false,
legacy_scope: Cell::new(LegacyScope::Empty),
expansion: Cell::new(LegacyScope::Empty),
}));
mark
}
fn eliminate_crate_var(&mut self, item: P<ast::Item>) -> P<ast::Item> {
struct EliminateCrateVar<'b, 'a: 'b>(&'b mut Resolver<'a>);
impl<'a, 'b> Folder for EliminateCrateVar<'a, 'b> {
fn fold_path(&mut self, mut path: ast::Path) -> ast::Path {
let ident = path.segments[0].identifier;
if ident.name == "$crate" {
path.segments[0].identifier.name = keywords::CrateRoot.name();
let module = self.0.resolve_crate_var(ident.ctxt);
if !module.is_local() {
let span = path.segments[0].span;
path.segments.insert(1, match module.kind {
ModuleKind::Def(_, name) => ast::PathSegment::from_ident(
ast::Ident::with_empty_ctxt(name), span
),
_ => unreachable!(),
})
}
}
path
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac {
fold::noop_fold_mac(mac, self)
}
}
EliminateCrateVar(self).fold_item(item).expect_one("")
}
fn is_whitelisted_legacy_custom_derive(&self, name: Name) -> bool {
self.whitelisted_legacy_custom_derives.contains(&name)
}
fn visit_expansion(&mut self, mark: Mark, expansion: &Expansion, derives: &[Mark]) {
let invocation = self.invocations[&mark];
self.collect_def_ids(invocation, expansion);
self.current_module = invocation.module.get();
self.current_module.unresolved_invocations.borrow_mut().remove(&mark);
self.current_module.unresolved_invocations.borrow_mut().extend(derives);
for &derive in derives {
self.invocations.insert(derive, invocation);
}
let mut visitor = BuildReducedGraphVisitor {
resolver: self,
legacy_scope: LegacyScope::Invocation(invocation),
expansion: mark,
};
expansion.visit_with(&mut visitor);
self.current_module.unresolved_invocations.borrow_mut().remove(&mark);
invocation.expansion.set(visitor.legacy_scope);
}
fn add_builtin(&mut self, ident: ast::Ident, ext: Rc<SyntaxExtension>) {
let def_id = DefId {
krate: BUILTIN_MACROS_CRATE,
index: DefIndex::new(self.macro_map.len()),
};
let kind = ext.kind();
self.macro_map.insert(def_id, ext);
let binding = self.arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Def(Def::Macro(def_id, kind)),
span: DUMMY_SP,
vis: ty::Visibility::Invisible,
expansion: Mark::root(),
});
self.builtin_macros.insert(ident.name, binding);
}
fn resolve_imports(&mut self) {
ImportResolver { resolver: self }.resolve_imports()
}
// Resolves attribute and derive legacy macros from `#![plugin(..)]`.
fn find_legacy_attr_invoc(&mut self, attrs: &mut Vec<ast::Attribute>)
-> Option<ast::Attribute> {
for i in 0..attrs.len() {
let name = unwrap_or!(attrs[i].name(), continue);
if self.session.plugin_attributes.borrow().iter()
.any(|&(ref attr_nm, _)| name == &**attr_nm) {
attr::mark_known(&attrs[i]);
}
match self.builtin_macros.get(&name).cloned() {
Some(binding) => match *binding.get_macro(self) {
MultiModifier(..) | MultiDecorator(..) | SyntaxExtension::AttrProcMacro(..) => {
return Some(attrs.remove(i))
}
_ => {}
},
None => {}
}
}
// Check for legacy derives
for i in 0..attrs.len() {
let name = unwrap_or!(attrs[i].name(), continue);
if name == "derive" {
let result = attrs[i].parse_list(&self.session.parse_sess,
|parser| parser.parse_path(PathStyle::Mod));
let mut traits = match result {
Ok(traits) => traits,
Err(mut e) => {
e.cancel();
continue
}
};
for j in 0..traits.len() {
if traits[j].segments.len() > 1 {
continue
}
let trait_name = traits[j].segments[0].identifier.name;
let legacy_name = Symbol::intern(&format!("derive_{}", trait_name));
if !self.builtin_macros.contains_key(&legacy_name) {
continue
}
let span = traits.remove(j).span;
self.gate_legacy_custom_derive(legacy_name, span);
if traits.is_empty() {
attrs.remove(i);
} else {
let mut tokens = Vec::new();
for (j, path) in traits.iter().enumerate() {
if j > 0 {
tokens.push(TokenTree::Token(attrs[i].span, Token::Comma).into());
}
for (k, segment) in path.segments.iter().enumerate() {
if k > 0 {
tokens.push(TokenTree::Token(path.span, Token::ModSep).into());
}
let tok = Token::Ident(segment.identifier);
tokens.push(TokenTree::Token(path.span, tok).into());
}
}
attrs[i].tokens = TokenTree::Delimited(attrs[i].span, Delimited {
delim: token::Paren,
tts: TokenStream::concat(tokens).into(),
}).into();
}
return Some(ast::Attribute {
path: ast::Path::from_ident(span, Ident::with_empty_ctxt(legacy_name)),
tokens: TokenStream::empty(),
id: attr::mk_attr_id(),
style: ast::AttrStyle::Outer,
is_sugared_doc: false,
span: span,
});
}
}
}
None
}
fn resolve_invoc(&mut self, invoc: &mut Invocation, scope: Mark, force: bool)
-> Result<Option<Rc<SyntaxExtension>>, Determinacy> {
let def = match invoc.kind {
InvocationKind::Attr { attr: None, .. } => return Ok(None),
_ => match self.resolve_invoc_to_def(invoc, scope, force) {
Ok(def) => def,
Err(determinacy) => return Err(determinacy),
},
};
self.macro_defs.insert(invoc.expansion_data.mark, def.def_id());
Ok(Some(self.get_macro(def)))
}
fn resolve_macro(&mut self, scope: Mark, path: &ast::Path, kind: MacroKind, force: bool)
-> Result<Rc<SyntaxExtension>, Determinacy> {
self.resolve_macro_to_def(scope, path, kind, force).map(|def| self.get_macro(def))
}
}
impl<'a> Resolver<'a> {
fn resolve_invoc_to_def(&mut self, invoc: &mut Invocation, scope: Mark, force: bool)
-> Result<Def, Determinacy> {
let (attr, traits, item) = match invoc.kind {
InvocationKind::Attr { ref mut attr, ref traits, ref mut item } => (attr, traits, item),
InvocationKind::Bang { ref mac, .. } => {
return self.resolve_macro_to_def(scope, &mac.node.path, MacroKind::Bang, force);
}
InvocationKind::Derive { ref path, .. } => {
return self.resolve_macro_to_def(scope, path, MacroKind::Derive, force);
}
};
let path = attr.as_ref().unwrap().path.clone();
let mut determinacy = Determinacy::Determined;
match self.resolve_macro_to_def(scope, &path, MacroKind::Attr, force) {
Ok(def) => return Ok(def),
Err(Determinacy::Undetermined) => determinacy = Determinacy::Undetermined,
Err(Determinacy::Determined) if force => return Err(Determinacy::Determined),
Err(Determinacy::Determined) => {}
}
let attr_name = match path.segments.len() {
1 => path.segments[0].identifier.name,
_ => return Err(determinacy),
};
for path in traits {
match self.resolve_macro(scope, path, MacroKind::Derive, force) {
Ok(ext) => if let SyntaxExtension::ProcMacroDerive(_, ref inert_attrs) = *ext {
if inert_attrs.contains(&attr_name) {
// FIXME(jseyfried) Avoid `mem::replace` here.
let dummy_item = placeholder(ExpansionKind::Items, ast::DUMMY_NODE_ID)
.make_items().pop().unwrap();
let dummy_item = Annotatable::Item(dummy_item);
*item = mem::replace(item, dummy_item).map_attrs(|mut attrs| {
let inert_attr = attr.take().unwrap();
attr::mark_known(&inert_attr);
if self.proc_macro_enabled {
*attr = find_attr_invoc(&mut attrs);
}
attrs.push(inert_attr);
attrs
});
}
return Err(Determinacy::Undetermined);
},
Err(Determinacy::Undetermined) => determinacy = Determinacy::Undetermined,
Err(Determinacy::Determined) => {}
}
}
Err(determinacy)
}
fn resolve_macro_to_def(&mut self, scope: Mark, path: &ast::Path, kind: MacroKind, force: bool)
-> Result<Def, Determinacy> {
let ast::Path { ref segments, span } = *path;
if segments.iter().any(|segment| segment.parameters.is_some()) {
let kind =
if segments.last().unwrap().parameters.is_some() { "macro" } else { "module" };
let msg = format!("type parameters are not allowed on {}s", kind);
self.session.span_err(path.span, &msg);
return Err(Determinacy::Determined);
}
let path: Vec<_> = segments.iter().map(|seg| seg.identifier).collect();
let invocation = self.invocations[&scope];
self.current_module = invocation.module.get();
if path.len() > 1 {
if !self.use_extern_macros && self.gated_errors.insert(span) {
let msg = "non-ident macro paths are experimental";
let feature = "use_extern_macros";
emit_feature_err(&self.session.parse_sess, feature, span, GateIssue::Language, msg);
self.found_unresolved_macro = true;
return Err(Determinacy::Determined);
}
let def = match self.resolve_path(&path, Some(MacroNS), None) {
PathResult::NonModule(path_res) => match path_res.base_def() {
Def::Err => Err(Determinacy::Determined),
def @ _ => Ok(def),
},
PathResult::Module(..) => unreachable!(),
PathResult::Indeterminate if !force => return Err(Determinacy::Undetermined),
_ => {
self.found_unresolved_macro = true;
Err(Determinacy::Determined)
},
};
self.current_module.macro_resolutions.borrow_mut()
.push((path.into_boxed_slice(), span));
return def;
}
let name = path[0].name;
let result = match self.resolve_legacy_scope(&invocation.legacy_scope, name, false) {
Some(MacroBinding::Legacy(binding)) => Ok(Def::Macro(binding.def_id, MacroKind::Bang)),
Some(MacroBinding::Modern(binding)) => Ok(binding.def_ignoring_ambiguity()),
None => match self.resolve_lexical_macro_path_segment(path[0], MacroNS, None) {
Ok(binding) => Ok(binding.def_ignoring_ambiguity()),
Err(Determinacy::Undetermined) if !force =>
return Err(Determinacy::Undetermined),
Err(_) => {
self.found_unresolved_macro = true;
Err(Determinacy::Determined)
}
},
};
self.current_module.legacy_macro_resolutions.borrow_mut()
.push((scope, path[0], span, kind));
result
}
// Resolve the initial segment of a non-global macro path (e.g. `foo` in `foo::bar!();`)
pub fn resolve_lexical_macro_path_segment(&mut self,
ident: Ident,
ns: Namespace,
record_used: Option<Span>)
-> Result<&'a NameBinding<'a>, Determinacy> {
let mut module = self.current_module;
let mut potential_expanded_shadower: Option<&NameBinding> = None;
loop {
// Since expanded macros may not shadow the lexical scope (enforced below),
// we can ignore unresolved invocations (indicated by the penultimate argument).
match self.resolve_ident_in_module(module, ident, ns, true, record_used) {
Ok(binding) => {
let span = match record_used {
Some(span) => span,
None => return Ok(binding),
};
match potential_expanded_shadower {
Some(shadower) if shadower.def() != binding.def() => {
let name = ident.name;
self.ambiguity_errors.push(AmbiguityError {
span: span, name: name, b1: shadower, b2: binding, lexical: true,
legacy: false,
});
return Ok(shadower);
}
_ if binding.expansion == Mark::root() => return Ok(binding),
_ => potential_expanded_shadower = Some(binding),
}
},
Err(Determinacy::Undetermined) => return Err(Determinacy::Undetermined),
Err(Determinacy::Determined) => {}
}
match module.kind {
ModuleKind::Block(..) => module = module.parent.unwrap(),
ModuleKind::Def(..) => return match potential_expanded_shadower {
Some(binding) => Ok(binding),
None if record_used.is_some() => Err(Determinacy::Determined),
None => Err(Determinacy::Undetermined),
},
}
}
}
pub fn resolve_legacy_scope(&mut self,
mut scope: &'a Cell<LegacyScope<'a>>,
name: Name,
record_used: bool)
-> Option<MacroBinding<'a>> {
let mut possible_time_travel = None;
let mut relative_depth: u32 = 0;
let mut binding = None;
loop {
match scope.get() {
LegacyScope::Empty => break,
LegacyScope::Expansion(invocation) => {
match invocation.expansion.get() {
LegacyScope::Invocation(_) => scope.set(invocation.legacy_scope.get()),
LegacyScope::Empty => {
if possible_time_travel.is_none() {
possible_time_travel = Some(scope);
}
scope = &invocation.legacy_scope;
}
_ => {
relative_depth += 1;
scope = &invocation.expansion;
}
}
}
LegacyScope::Invocation(invocation) => {
relative_depth = relative_depth.saturating_sub(1);
scope = &invocation.legacy_scope;
}
LegacyScope::Binding(potential_binding) => {
if potential_binding.name == name {
if (!self.use_extern_macros || record_used) && relative_depth > 0 {
self.disallowed_shadowing.push(potential_binding);
}
binding = Some(potential_binding);
break
}
scope = &potential_binding.parent;
}
};
}
let binding = if let Some(binding) = binding {
MacroBinding::Legacy(binding)
} else if let Some(binding) = self.builtin_macros.get(&name).cloned() {
if !self.use_extern_macros {
self.record_use(Ident::with_empty_ctxt(name), MacroNS, binding, DUMMY_SP);
}
MacroBinding::Modern(binding)
} else {
return None;
};
if !self.use_extern_macros {
if let Some(scope) = possible_time_travel {
// Check for disallowed shadowing later
self.lexical_macro_resolutions.push((name, scope));
}
}
Some(binding)
}
pub fn finalize_current_module_macro_resolutions(&mut self) {
let module = self.current_module;
for &(ref path, span) in module.macro_resolutions.borrow().iter() {
match self.resolve_path(path, Some(MacroNS), Some(span)) {
PathResult::NonModule(_) => {},
PathResult::Failed(msg, _) => {
resolve_error(self, span, ResolutionError::FailedToResolve(&msg));
}
_ => unreachable!(),
}
}
for &(mark, ident, span, kind) in module.legacy_macro_resolutions.borrow().iter() {
let legacy_scope = &self.invocations[&mark].legacy_scope;
let legacy_resolution = self.resolve_legacy_scope(legacy_scope, ident.name, true);
let resolution = self.resolve_lexical_macro_path_segment(ident, MacroNS, Some(span));
match (legacy_resolution, resolution) {
(Some(legacy_resolution), Ok(resolution)) => {
let (legacy_span, participle) = match legacy_resolution {
MacroBinding::Modern(binding)
if binding.def() == resolution.def() => continue,
MacroBinding::Modern(binding) => (binding.span, "imported"),
MacroBinding::Legacy(binding) => (binding.span, "defined"),
};
let msg1 = format!("`{}` could refer to the macro {} here", ident, participle);
let msg2 = format!("`{}` could also refer to the macro imported here", ident);
self.session.struct_span_err(span, &format!("`{}` is ambiguous", ident))
.span_note(legacy_span, &msg1)
.span_note(resolution.span, &msg2)
.emit();
},
(Some(MacroBinding::Modern(binding)), Err(_)) => {
self.record_use(ident, MacroNS, binding, span);
self.err_if_macro_use_proc_macro(ident.name, span, binding);
},
(None, Err(_)) => {
let msg = match kind {
MacroKind::Bang =>
format!("cannot find macro `{}!` in this scope", ident),
MacroKind::Attr =>
format!("cannot find attribute macro `{}` in this scope", ident),
MacroKind::Derive =>
format!("cannot find derive macro `{}` in this scope", ident),
};
let mut err = self.session.struct_span_err(span, &msg);
self.suggest_macro_name(&ident.name.as_str(), kind, &mut err);
err.emit();
},
_ => {},
};
}
}
fn suggest_macro_name(&mut self, name: &str, kind: MacroKind,
err: &mut DiagnosticBuilder<'a>) {
// First check if this is a locally-defined bang macro.
let suggestion = if let MacroKind::Bang = kind {
find_best_match_for_name(self.macro_names.iter(), name, None)
} else {
None
// Then check builtin macros.
}.or_else(|| {
// FIXME: get_macro needs an &mut Resolver, can we do it without cloning?
let builtin_macros = self.builtin_macros.clone();
let names = builtin_macros.iter().filter_map(|(name, binding)| {
if binding.get_macro(self).kind() == kind {
Some(name)
} else {
None
}
});
find_best_match_for_name(names, name, None)
// Then check modules.
}).or_else(|| {
if !self.use_extern_macros {
return None;
}
let is_macro = |def| {
if let Def::Macro(_, def_kind) = def {
def_kind == kind
} else {
false
}
};
let ident = Ident::from_str(name);
self.lookup_typo_candidate(&vec![ident], MacroNS, is_macro)
});
if let Some(suggestion) = suggestion {
if suggestion != name {
if let MacroKind::Bang = kind {
err.help(&format!("did you mean `{}!`?", suggestion));
} else {
err.help(&format!("did you mean `{}`?", suggestion));
}
} else {
err.help(&format!("have you added the `#[macro_use]` on the module/import?"));
}
}
}
fn collect_def_ids(&mut self, invocation: &'a InvocationData<'a>, expansion: &Expansion) {
let Resolver { ref mut invocations, arenas, graph_root, .. } = *self;
let InvocationData { def_index, const_expr, .. } = *invocation;
let visit_macro_invoc = &mut |invoc: map::MacroInvocationData| {
invocations.entry(invoc.mark).or_insert_with(|| {
arenas.alloc_invocation_data(InvocationData {
def_index: invoc.def_index,
const_expr: invoc.const_expr,
module: Cell::new(graph_root),
expansion: Cell::new(LegacyScope::Empty),
legacy_scope: Cell::new(LegacyScope::Empty),
})
});
};
let mut def_collector = DefCollector::new(&mut self.definitions);
def_collector.visit_macro_invoc = Some(visit_macro_invoc);
def_collector.with_parent(def_index, |def_collector| {
if const_expr {
if let Expansion::Expr(ref expr) = *expansion {
def_collector.visit_const_expr(expr);
}
}
expansion.visit_with(def_collector)
});
}
pub fn define_macro(&mut self, item: &ast::Item, legacy_scope: &mut LegacyScope<'a>) {
self.local_macro_def_scopes.insert(item.id, self.current_module);
let ident = item.ident;
if ident.name == "macro_rules" {
self.session.span_err(item.span, "user-defined macros may not be named `macro_rules`");
}
let def_id = self.definitions.local_def_id(item.id);
let ext = Rc::new(macro_rules::compile(&self.session.parse_sess, item));
self.macro_map.insert(def_id, ext);
*legacy_scope = LegacyScope::Binding(self.arenas.alloc_legacy_binding(LegacyBinding {
parent: Cell::new(*legacy_scope), name: ident.name, def_id: def_id, span: item.span,
}));
self.macro_names.insert(ident.name);
if attr::contains_name(&item.attrs, "macro_export") {
let def = Def::Macro(def_id, MacroKind::Bang);
self.macro_exports.push(Export { name: ident.name, def: def, span: item.span });
}
}
/// Error if `ext` is a Macros 1.1 procedural macro being imported by `#[macro_use]`
fn err_if_macro_use_proc_macro(&mut self, name: Name, use_span: Span,
binding: &NameBinding<'a>) {
use self::SyntaxExtension::*;
let krate = binding.def().def_id().krate;
// Plugin-based syntax extensions are exempt from this check
if krate == BUILTIN_MACROS_CRATE { return; }
let ext = binding.get_macro(self);
match *ext {
// If `ext` is a procedural macro, check if we've already warned about it
AttrProcMacro(_) | ProcMacro(_) => if !self.warned_proc_macros.insert(name) { return; },
_ => return,
}
let warn_msg = match *ext {
AttrProcMacro(_) => "attribute procedural macros cannot be \
imported with `#[macro_use]`",
ProcMacro(_) => "procedural macros cannot be imported with `#[macro_use]`",
_ => return,
};
let crate_name = self.session.cstore.crate_name(krate);
self.session.struct_span_err(use_span, warn_msg)
.help(&format!("instead, import the procedural macro like any other item: \
`use {}::{};`", crate_name, name))
.emit();
}
fn gate_legacy_custom_derive(&mut self, name: Symbol, span: Span) {
if !self.session.features.borrow().custom_derive {
let sess = &self.session.parse_sess;
let explain = feature_gate::EXPLAIN_CUSTOM_DERIVE;
emit_feature_err(sess, "custom_derive", span, GateIssue::Language, explain);
} else if !self.is_whitelisted_legacy_custom_derive(name) {
self.session.span_warn(span, feature_gate::EXPLAIN_DEPR_CUSTOM_DERIVE);
}
}
}