86c60b68f9
The failure functions are generic, meaning they're candidates for getting inlined across crates. This has been happening, leading to monstrosities like that found in #11549. I have verified that the codegen is *much* better now that we're not inlining the failure path (the slow path).
474 lines
17 KiB
Rust
474 lines
17 KiB
Rust
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// Implementation of Rust stack unwinding
|
|
//
|
|
// For background on exception handling and stack unwinding please see
|
|
// "Exception Handling in LLVM" (llvm.org/docs/ExceptionHandling.html) and
|
|
// documents linked from it.
|
|
// These are also good reads:
|
|
// http://theofilos.cs.columbia.edu/blog/2013/09/22/base_abi/
|
|
// http://monoinfinito.wordpress.com/series/exception-handling-in-c/
|
|
// http://www.airs.com/blog/index.php?s=exception+frames
|
|
//
|
|
// ~~~ A brief summary ~~~
|
|
// Exception handling happens in two phases: a search phase and a cleanup phase.
|
|
//
|
|
// In both phases the unwinder walks stack frames from top to bottom using
|
|
// information from the stack frame unwind sections of the current process's
|
|
// modules ("module" here refers to an OS module, i.e. an executable or a
|
|
// dynamic library).
|
|
//
|
|
// For each stack frame, it invokes the associated "personality routine", whose
|
|
// address is also stored in the unwind info section.
|
|
//
|
|
// In the search phase, the job of a personality routine is to examine exception
|
|
// object being thrown, and to decide whether it should be caught at that stack
|
|
// frame. Once the handler frame has been identified, cleanup phase begins.
|
|
//
|
|
// In the cleanup phase, personality routines invoke cleanup code associated
|
|
// with their stack frames (i.e. destructors). Once stack has been unwound down
|
|
// to the handler frame level, unwinding stops and the last personality routine
|
|
// transfers control to its' catch block.
|
|
//
|
|
// ~~~ Frame unwind info registration ~~~
|
|
// Each module has its' own frame unwind info section (usually ".eh_frame"), and
|
|
// unwinder needs to know about all of them in order for unwinding to be able to
|
|
// cross module boundaries.
|
|
//
|
|
// On some platforms, like Linux, this is achieved by dynamically enumerating
|
|
// currently loaded modules via the dl_iterate_phdr() API and finding all
|
|
// .eh_frame sections.
|
|
//
|
|
// Others, like Windows, require modules to actively register their unwind info
|
|
// sections by calling __register_frame_info() API at startup. In the latter
|
|
// case it is essential that there is only one copy of the unwinder runtime in
|
|
// the process. This is usually achieved by linking to the dynamic version of
|
|
// the unwind runtime.
|
|
//
|
|
// Currently Rust uses unwind runtime provided by libgcc.
|
|
|
|
use any::{Any, AnyRefExt};
|
|
use c_str::CString;
|
|
use cast;
|
|
use kinds::Send;
|
|
use libc::{c_void, c_char, size_t};
|
|
use option::{Some, None, Option};
|
|
use prelude::drop;
|
|
use ptr::RawPtr;
|
|
use result::{Err, Ok};
|
|
use rt::local::Local;
|
|
use rt::task::Task;
|
|
use str::Str;
|
|
use task::TaskResult;
|
|
use unstable::intrinsics;
|
|
use util;
|
|
|
|
use uw = self::libunwind;
|
|
|
|
mod libunwind {
|
|
//! Unwind library interface
|
|
|
|
#[allow(non_camel_case_types)];
|
|
#[allow(dead_code)] // these are just bindings
|
|
|
|
use libc::{uintptr_t, uint64_t};
|
|
|
|
#[cfg(not(target_arch = "arm"))]
|
|
#[repr(C)]
|
|
pub enum _Unwind_Action
|
|
{
|
|
_UA_SEARCH_PHASE = 1,
|
|
_UA_CLEANUP_PHASE = 2,
|
|
_UA_HANDLER_FRAME = 4,
|
|
_UA_FORCE_UNWIND = 8,
|
|
_UA_END_OF_STACK = 16,
|
|
}
|
|
|
|
#[cfg(target_arch = "arm")]
|
|
#[repr(C)]
|
|
pub enum _Unwind_State
|
|
{
|
|
_US_VIRTUAL_UNWIND_FRAME = 0,
|
|
_US_UNWIND_FRAME_STARTING = 1,
|
|
_US_UNWIND_FRAME_RESUME = 2,
|
|
_US_ACTION_MASK = 3,
|
|
_US_FORCE_UNWIND = 8,
|
|
_US_END_OF_STACK = 16
|
|
}
|
|
|
|
#[repr(C)]
|
|
pub enum _Unwind_Reason_Code {
|
|
_URC_NO_REASON = 0,
|
|
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
|
|
_URC_FATAL_PHASE2_ERROR = 2,
|
|
_URC_FATAL_PHASE1_ERROR = 3,
|
|
_URC_NORMAL_STOP = 4,
|
|
_URC_END_OF_STACK = 5,
|
|
_URC_HANDLER_FOUND = 6,
|
|
_URC_INSTALL_CONTEXT = 7,
|
|
_URC_CONTINUE_UNWIND = 8,
|
|
_URC_FAILURE = 9, // used only by ARM EABI
|
|
}
|
|
|
|
pub type _Unwind_Exception_Class = uint64_t;
|
|
|
|
pub type _Unwind_Word = uintptr_t;
|
|
|
|
#[cfg(not(target_arch = "arm"))]
|
|
pub static unwinder_private_data_size: int = 2;
|
|
|
|
#[cfg(target_arch = "arm")]
|
|
pub static unwinder_private_data_size: int = 20;
|
|
|
|
pub struct _Unwind_Exception {
|
|
exception_class: _Unwind_Exception_Class,
|
|
exception_cleanup: _Unwind_Exception_Cleanup_Fn,
|
|
private: [_Unwind_Word, ..unwinder_private_data_size],
|
|
}
|
|
|
|
pub enum _Unwind_Context {}
|
|
|
|
pub type _Unwind_Exception_Cleanup_Fn = extern "C" fn(unwind_code: _Unwind_Reason_Code,
|
|
exception: *_Unwind_Exception);
|
|
|
|
extern "C" {
|
|
pub fn _Unwind_RaiseException(exception: *_Unwind_Exception) -> _Unwind_Reason_Code;
|
|
pub fn _Unwind_DeleteException(exception: *_Unwind_Exception);
|
|
}
|
|
}
|
|
|
|
pub struct Unwinder {
|
|
priv unwinding: bool,
|
|
priv cause: Option<~Any>
|
|
}
|
|
|
|
impl Unwinder {
|
|
pub fn new() -> Unwinder {
|
|
Unwinder {
|
|
unwinding: false,
|
|
cause: None,
|
|
}
|
|
}
|
|
|
|
pub fn unwinding(&self) -> bool {
|
|
self.unwinding
|
|
}
|
|
|
|
pub fn try(&mut self, f: ||) {
|
|
use unstable::raw::Closure;
|
|
|
|
unsafe {
|
|
let closure: Closure = cast::transmute(f);
|
|
let ep = rust_try(try_fn, closure.code as *c_void,
|
|
closure.env as *c_void);
|
|
if !ep.is_null() {
|
|
rtdebug!("caught {}", (*ep).exception_class);
|
|
uw::_Unwind_DeleteException(ep);
|
|
}
|
|
}
|
|
|
|
extern fn try_fn(code: *c_void, env: *c_void) {
|
|
unsafe {
|
|
let closure: || = cast::transmute(Closure {
|
|
code: code as *(),
|
|
env: env as *(),
|
|
});
|
|
closure();
|
|
}
|
|
}
|
|
|
|
extern {
|
|
// Rust's try-catch
|
|
// When f(...) returns normally, the return value is null.
|
|
// When f(...) throws, the return value is a pointer to the caught
|
|
// exception object.
|
|
fn rust_try(f: extern "C" fn(*c_void, *c_void),
|
|
code: *c_void,
|
|
data: *c_void) -> *uw::_Unwind_Exception;
|
|
}
|
|
}
|
|
|
|
pub fn begin_unwind(&mut self, cause: ~Any) -> ! {
|
|
rtdebug!("begin_unwind()");
|
|
|
|
self.unwinding = true;
|
|
self.cause = Some(cause);
|
|
|
|
rust_fail();
|
|
|
|
// An uninlined, unmangled function upon which to slap yer breakpoints
|
|
#[inline(never)]
|
|
#[no_mangle]
|
|
fn rust_fail() -> ! {
|
|
unsafe {
|
|
let exception = ~uw::_Unwind_Exception {
|
|
exception_class: rust_exception_class(),
|
|
exception_cleanup: exception_cleanup,
|
|
private: [0, ..uw::unwinder_private_data_size],
|
|
};
|
|
let error = uw::_Unwind_RaiseException(cast::transmute(exception));
|
|
rtabort!("Could not unwind stack, error = {}", error as int)
|
|
}
|
|
|
|
extern "C" fn exception_cleanup(_unwind_code: uw::_Unwind_Reason_Code,
|
|
exception: *uw::_Unwind_Exception) {
|
|
rtdebug!("exception_cleanup()");
|
|
unsafe {
|
|
let _: ~uw::_Unwind_Exception = cast::transmute(exception);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn result(&mut self) -> TaskResult {
|
|
if self.unwinding {
|
|
Err(self.cause.take().unwrap())
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
|
|
// Rust's exception class identifier. This is used by personality routines to
|
|
// determine whether the exception was thrown by their own runtime.
|
|
fn rust_exception_class() -> uw::_Unwind_Exception_Class {
|
|
// M O Z \0 R U S T -- vendor, language
|
|
0x4d4f5a_00_52555354
|
|
}
|
|
|
|
// We could implement our personality routine in pure Rust, however exception
|
|
// info decoding is tedious. More importantly, personality routines have to
|
|
// handle various platform quirks, which are not fun to maintain. For this
|
|
// reason, we attempt to reuse personality routine of the C language:
|
|
// __gcc_personality_v0.
|
|
//
|
|
// Since C does not support exception catching, __gcc_personality_v0 simply
|
|
// always returns _URC_CONTINUE_UNWIND in search phase, and always returns
|
|
// _URC_INSTALL_CONTEXT (i.e. "invoke cleanup code") in cleanup phase.
|
|
//
|
|
// This is pretty close to Rust's exception handling approach, except that Rust
|
|
// does have a single "catch-all" handler at the bottom of each task's stack.
|
|
// So we have two versions:
|
|
// - rust_eh_personality, used by all cleanup landing pads, which never catches,
|
|
// so the behavior of __gcc_personality_v0 is perfectly adequate there, and
|
|
// - rust_eh_personality_catch, used only by rust_try(), which always catches.
|
|
// This is achieved by overriding the return value in search phase to always
|
|
// say "catch!".
|
|
|
|
#[cfg(not(target_arch = "arm"), not(test))]
|
|
#[doc(hidden)]
|
|
pub mod eabi {
|
|
use uw = super::libunwind;
|
|
use libc::c_int;
|
|
|
|
extern "C" {
|
|
fn __gcc_personality_v0(version: c_int,
|
|
actions: uw::_Unwind_Action,
|
|
exception_class: uw::_Unwind_Exception_Class,
|
|
ue_header: *uw::_Unwind_Exception,
|
|
context: *uw::_Unwind_Context)
|
|
-> uw::_Unwind_Reason_Code;
|
|
}
|
|
|
|
#[lang="eh_personality"]
|
|
#[no_mangle] // so we can reference it by name from middle/trans/base.rs
|
|
pub extern "C" fn rust_eh_personality(
|
|
version: c_int,
|
|
actions: uw::_Unwind_Action,
|
|
exception_class: uw::_Unwind_Exception_Class,
|
|
ue_header: *uw::_Unwind_Exception,
|
|
context: *uw::_Unwind_Context
|
|
) -> uw::_Unwind_Reason_Code
|
|
{
|
|
unsafe {
|
|
__gcc_personality_v0(version, actions, exception_class, ue_header,
|
|
context)
|
|
}
|
|
}
|
|
|
|
#[no_mangle] // referenced from rust_try.ll
|
|
pub extern "C" fn rust_eh_personality_catch(
|
|
version: c_int,
|
|
actions: uw::_Unwind_Action,
|
|
exception_class: uw::_Unwind_Exception_Class,
|
|
ue_header: *uw::_Unwind_Exception,
|
|
context: *uw::_Unwind_Context
|
|
) -> uw::_Unwind_Reason_Code
|
|
{
|
|
if (actions as c_int & uw::_UA_SEARCH_PHASE as c_int) != 0 { // search phase
|
|
uw::_URC_HANDLER_FOUND // catch!
|
|
}
|
|
else { // cleanup phase
|
|
unsafe {
|
|
__gcc_personality_v0(version, actions, exception_class, ue_header,
|
|
context)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ARM EHABI uses a slightly different personality routine signature,
|
|
// but otherwise works the same.
|
|
#[cfg(target_arch = "arm", not(test))]
|
|
pub mod eabi {
|
|
use uw = super::libunwind;
|
|
use libc::c_int;
|
|
|
|
extern "C" {
|
|
fn __gcc_personality_v0(state: uw::_Unwind_State,
|
|
ue_header: *uw::_Unwind_Exception,
|
|
context: *uw::_Unwind_Context)
|
|
-> uw::_Unwind_Reason_Code;
|
|
}
|
|
|
|
#[lang="eh_personality"]
|
|
#[no_mangle] // so we can reference it by name from middle/trans/base.rs
|
|
pub extern "C" fn rust_eh_personality(
|
|
state: uw::_Unwind_State,
|
|
ue_header: *uw::_Unwind_Exception,
|
|
context: *uw::_Unwind_Context
|
|
) -> uw::_Unwind_Reason_Code
|
|
{
|
|
unsafe {
|
|
__gcc_personality_v0(state, ue_header, context)
|
|
}
|
|
}
|
|
|
|
#[no_mangle] // referenced from rust_try.ll
|
|
pub extern "C" fn rust_eh_personality_catch(
|
|
state: uw::_Unwind_State,
|
|
ue_header: *uw::_Unwind_Exception,
|
|
context: *uw::_Unwind_Context
|
|
) -> uw::_Unwind_Reason_Code
|
|
{
|
|
if (state as c_int & uw::_US_ACTION_MASK as c_int)
|
|
== uw::_US_VIRTUAL_UNWIND_FRAME as c_int { // search phase
|
|
uw::_URC_HANDLER_FOUND // catch!
|
|
}
|
|
else { // cleanup phase
|
|
unsafe {
|
|
__gcc_personality_v0(state, ue_header, context)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This is the entry point of unwinding for things like lang items and such.
|
|
/// The arguments are normally generated by the compiler, and need to
|
|
/// have static lifetimes.
|
|
#[inline(never)] #[cold] // this is the slow path, please never inline this
|
|
pub fn begin_unwind_raw(msg: *c_char, file: *c_char, line: size_t) -> ! {
|
|
#[inline]
|
|
fn static_char_ptr(p: *c_char) -> &'static str {
|
|
let s = unsafe { CString::new(p, false) };
|
|
match s.as_str() {
|
|
Some(s) => unsafe { cast::transmute::<&str, &'static str>(s) },
|
|
None => rtabort!("message wasn't utf8?")
|
|
}
|
|
}
|
|
|
|
let msg = static_char_ptr(msg);
|
|
let file = static_char_ptr(file);
|
|
|
|
begin_unwind(msg, file, line as uint)
|
|
}
|
|
|
|
/// This is the entry point of unwinding for fail!() and assert!().
|
|
#[inline(never)] #[cold] // this is the slow path, please never inline this
|
|
pub fn begin_unwind<M: Any + Send>(msg: M, file: &'static str, line: uint) -> ! {
|
|
// Note that this should be the only allocation performed in this block.
|
|
// Currently this means that fail!() on OOM will invoke this code path,
|
|
// but then again we're not really ready for failing on OOM anyway. If
|
|
// we do start doing this, then we should propagate this allocation to
|
|
// be performed in the parent of this task instead of the task that's
|
|
// failing.
|
|
let msg = ~msg as ~Any;
|
|
|
|
let mut task;
|
|
{
|
|
let msg_s = match msg.as_ref::<&'static str>() {
|
|
Some(s) => *s,
|
|
None => match msg.as_ref::<~str>() {
|
|
Some(s) => s.as_slice(),
|
|
None => "~Any",
|
|
}
|
|
};
|
|
|
|
// It is assumed that all reasonable rust code will have a local task at
|
|
// all times. This means that this `try_take` will succeed almost all of
|
|
// the time. There are border cases, however, when the runtime has
|
|
// *almost* set up the local task, but hasn't quite gotten there yet. In
|
|
// order to get some better diagnostics, we print on failure and
|
|
// immediately abort the whole process if there is no local task
|
|
// available.
|
|
let opt_task: Option<~Task> = Local::try_take();
|
|
task = match opt_task {
|
|
Some(t) => t,
|
|
None => {
|
|
rterrln!("failed at '{}', {}:{}", msg_s, file, line);
|
|
unsafe { intrinsics::abort() }
|
|
}
|
|
};
|
|
|
|
// See comments in io::stdio::with_task_stdout as to why we have to be
|
|
// careful when using an arbitrary I/O handle from the task. We
|
|
// essentially need to dance to make sure when a task is in TLS when
|
|
// running user code.
|
|
let name = task.name.take();
|
|
{
|
|
let n = name.as_ref().map(|n| n.as_slice()).unwrap_or("<unnamed>");
|
|
|
|
match task.stderr.take() {
|
|
Some(mut stderr) => {
|
|
Local::put(task);
|
|
format_args!(|args| ::fmt::writeln(stderr, args),
|
|
"task '{}' failed at '{}', {}:{}",
|
|
n, msg_s, file, line);
|
|
task = Local::take();
|
|
|
|
match util::replace(&mut task.stderr, Some(stderr)) {
|
|
Some(prev) => {
|
|
Local::put(task);
|
|
drop(prev);
|
|
task = Local::take();
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
None => {
|
|
rterrln!("task '{}' failed at '{}', {}:{}", n, msg_s,
|
|
file, line);
|
|
}
|
|
}
|
|
}
|
|
task.name = name;
|
|
|
|
if task.unwinder.unwinding {
|
|
// If a task fails while it's already unwinding then we
|
|
// have limited options. Currently our preference is to
|
|
// just abort. In the future we may consider resuming
|
|
// unwinding or otherwise exiting the task cleanly.
|
|
rterrln!("task failed during unwinding (double-failure - total drag!)")
|
|
rterrln!("rust must abort now. so sorry.");
|
|
unsafe { intrinsics::abort() }
|
|
}
|
|
}
|
|
|
|
// The unwinder won't actually use the task at all, so we put the task back
|
|
// into TLS right before we invoke the unwinder, but this means we need an
|
|
// unsafe reference back to the unwinder once it's in TLS.
|
|
Local::put(task);
|
|
unsafe {
|
|
let task: *mut Task = Local::unsafe_borrow();
|
|
(*task).unwinder.begin_unwind(msg);
|
|
}
|
|
}
|