rust/src/librustc/middle/trans/common.rs

1349 lines
41 KiB
Rust

/**
Code that is useful in various trans modules.
*/
use libc::c_uint;
use vec::raw::to_ptr;
use std::map::{HashMap,Set};
use syntax::{ast, ast_map};
use driver::session;
use session::Session;
use middle::ty;
use back::{link, abi, upcall};
use syntax::codemap::span;
use lib::llvm::{llvm, target_data, type_names, associate_type,
name_has_type};
use lib::llvm::{ModuleRef, ValueRef, TypeRef, BasicBlockRef, BuilderRef};
use lib::llvm::{True, False, Bool};
use metadata::{csearch};
use metadata::common::link_meta;
use syntax::ast_map::path;
use util::ppaux::ty_to_str;
use syntax::print::pprust::expr_to_str;
use syntax::parse::token::ident_interner;
use syntax::ast::ident;
type namegen = fn@(~str) -> ident;
fn new_namegen(intr: @ident_interner) -> namegen {
return fn@(prefix: ~str) -> ident {
return intr.gensym(@fmt!("%s_%u", prefix, intr.gensym(@prefix).repr))
};
}
type addrspace = c_uint;
// Address spaces communicate to LLVM which destructors need to run for
// specifc types.
// 0 is ignored by the GC, and is used for all non-GC'd pointers.
// 1 is for opaque GC'd boxes.
// >= 2 are for specific types (e.g. resources).
const default_addrspace: addrspace = 0;
const gc_box_addrspace: addrspace = 1;
type addrspace_gen = fn@() -> addrspace;
fn new_addrspace_gen() -> addrspace_gen {
let i = @mut 1;
return fn@() -> addrspace { *i += 1; *i };
}
type tydesc_info =
{ty: ty::t,
tydesc: ValueRef,
size: ValueRef,
align: ValueRef,
addrspace: addrspace,
mut take_glue: Option<ValueRef>,
mut drop_glue: Option<ValueRef>,
mut free_glue: Option<ValueRef>,
mut visit_glue: Option<ValueRef>};
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
type stats =
{mut n_static_tydescs: uint,
mut n_glues_created: uint,
mut n_null_glues: uint,
mut n_real_glues: uint,
mut n_fns: uint,
mut n_monos: uint,
mut n_inlines: uint,
mut n_closures: uint,
llvm_insn_ctxt: @mut ~[~str],
llvm_insns: HashMap<~str, uint>,
fn_times: @mut ~[{ident: ~str, time: int}]};
struct BuilderRef_res {
B: BuilderRef,
drop { llvm::LLVMDisposeBuilder(self.B); }
}
fn BuilderRef_res(B: BuilderRef) -> BuilderRef_res {
BuilderRef_res {
B: B
}
}
// Crate context. Every crate we compile has one of these.
type crate_ctxt = {
sess: session::Session,
llmod: ModuleRef,
td: target_data,
tn: type_names,
externs: HashMap<~str, ValueRef>,
intrinsics: HashMap<~str, ValueRef>,
item_vals: HashMap<ast::node_id, ValueRef>,
exp_map2: resolve::ExportMap2,
reachable: reachable::map,
item_symbols: HashMap<ast::node_id, ~str>,
mut main_fn: Option<ValueRef>,
link_meta: link_meta,
enum_sizes: HashMap<ty::t, uint>,
discrims: HashMap<ast::def_id, ValueRef>,
discrim_symbols: HashMap<ast::node_id, ~str>,
tydescs: HashMap<ty::t, @tydesc_info>,
// Set when running emit_tydescs to enforce that no more tydescs are
// created.
mut finished_tydescs: bool,
// Track mapping of external ids to local items imported for inlining
external: HashMap<ast::def_id, Option<ast::node_id>>,
// Cache instances of monomorphized functions
monomorphized: HashMap<mono_id, ValueRef>,
monomorphizing: HashMap<ast::def_id, uint>,
// Cache computed type parameter uses (see type_use.rs)
type_use_cache: HashMap<ast::def_id, ~[type_use::type_uses]>,
// Cache generated vtables
vtables: HashMap<mono_id, ValueRef>,
// Cache of constant strings,
const_cstr_cache: HashMap<~str, ValueRef>,
// Reverse-direction for const ptrs cast from globals.
// Key is an int, cast from a ValueRef holding a *T,
// Val is a ValueRef holding a *[T].
//
// Needed because LLVM loses pointer->pointee association
// when we ptrcast, and we have to ptrcast during translation
// of a [T] const because we form a slice, a [*T,int] pair, not
// a pointer to an LLVM array type.
const_globals: HashMap<int, ValueRef>,
// Cache of emitted const values
const_values: HashMap<ast::node_id, ValueRef>,
module_data: HashMap<~str, ValueRef>,
lltypes: HashMap<ty::t, TypeRef>,
names: namegen,
next_addrspace: addrspace_gen,
symbol_hasher: @hash::State,
type_hashcodes: HashMap<ty::t, ~str>,
type_short_names: HashMap<ty::t, ~str>,
all_llvm_symbols: Set<~str>,
tcx: ty::ctxt,
maps: astencode::maps,
stats: stats,
upcalls: @upcall::upcalls,
rtcalls: HashMap<~str, ast::def_id>,
tydesc_type: TypeRef,
int_type: TypeRef,
float_type: TypeRef,
task_type: TypeRef,
opaque_vec_type: TypeRef,
builder: BuilderRef_res,
shape_cx: shape::ctxt,
crate_map: ValueRef,
// Set when at least one function uses GC. Needed so that
// decl_gc_metadata knows whether to link to the module metadata, which
// is not emitted by LLVM's GC pass when no functions use GC.
mut uses_gc: bool,
dbg_cx: Option<debuginfo::debug_ctxt>,
mut do_not_commit_warning_issued: bool};
// Types used for llself.
struct ValSelfData {
v: ValueRef,
t: ty::t,
is_owned: bool
}
enum local_val { local_mem(ValueRef), local_imm(ValueRef), }
// Here `self_ty` is the real type of the self parameter to this method. It
// will only be set in the case of default methods.
type param_substs = {tys: ~[ty::t],
vtables: Option<typeck::vtable_res>,
bounds: @~[ty::param_bounds],
self_ty: Option<ty::t>};
fn param_substs_to_str(tcx: ty::ctxt, substs: &param_substs) -> ~str {
fmt!("param_substs {tys:%?, vtables:%?, bounds:%?}",
substs.tys.map(|t| ty_to_str(tcx, *t)),
substs.vtables.map(|vs| vs.map(|v| v.to_str(tcx))),
substs.bounds.map(|b| ty::param_bounds_to_str(tcx, *b)))
}
// Function context. Every LLVM function we create will have one of
// these.
type fn_ctxt = @{
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of
// instructions for this function that will go in the .text
// section of the executable we're generating.
llfn: ValueRef,
// The two implicit arguments that arrive in the function we're creating.
// For instance, foo(int, int) is really foo(ret*, env*, int, int).
llenv: ValueRef,
llretptr: ValueRef,
// These elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A block for all the function's static allocas, so that LLVM
// will coalesce them into a single alloca call.
mut llstaticallocas: BasicBlockRef,
// A block containing code that copies incoming arguments to space
// already allocated by code in one of the llallocas blocks.
// (LLVM requires that arguments be copied to local allocas before
// allowing most any operation to be performed on them.)
mut llloadenv: BasicBlockRef,
mut llreturn: BasicBlockRef,
// The 'self' value currently in use in this function, if there
// is one.
//
// NB: This is the type of the self *variable*, not the self *type*. The
// self type is set only for default methods, while the self variable is
// set for all methods.
mut llself: Option<ValSelfData>,
// The a value alloca'd for calls to upcalls.rust_personality. Used when
// outputting the resume instruction.
mut personality: Option<ValueRef>,
// If this is a for-loop body that returns, this holds the pointers needed
// for that
mut loop_ret: Option<{flagptr: ValueRef, retptr: ValueRef}>,
// Maps arguments to allocas created for them in llallocas.
llargs: HashMap<ast::node_id, local_val>,
// Maps the def_ids for local variables to the allocas created for
// them in llallocas.
lllocals: HashMap<ast::node_id, local_val>,
// Same as above, but for closure upvars
llupvars: HashMap<ast::node_id, ValueRef>,
// The node_id of the function, or -1 if it doesn't correspond to
// a user-defined function.
id: ast::node_id,
// The def_id of the impl we're inside, or None if we aren't inside one.
impl_id: Option<ast::def_id>,
// If this function is being monomorphized, this contains the type
// substitutions used.
param_substs: Option<param_substs>,
// The source span and nesting context where this function comes from, for
// error reporting and symbol generation.
span: Option<span>,
path: path,
// This function's enclosing crate context.
ccx: @crate_ctxt
};
fn warn_not_to_commit(ccx: @crate_ctxt, msg: ~str) {
if !ccx.do_not_commit_warning_issued {
ccx.do_not_commit_warning_issued = true;
ccx.sess.warn(msg + ~" -- do not commit like this!");
}
}
// Heap selectors. Indicate which heap something should go on.
enum heap {
heap_shared,
heap_exchange,
}
enum cleantype {
normal_exit_only,
normal_exit_and_unwind
}
enum cleanup {
clean(fn@(block) -> block, cleantype),
clean_temp(ValueRef, fn@(block) -> block, cleantype),
}
impl cleantype : cmp::Eq {
pure fn eq(other: &cleantype) -> bool {
match self {
normal_exit_only => {
match (*other) {
normal_exit_only => true,
_ => false
}
}
normal_exit_and_unwind => {
match (*other) {
normal_exit_and_unwind => true,
_ => false
}
}
}
}
pure fn ne(other: &cleantype) -> bool { !self.eq(other) }
}
// Used to remember and reuse existing cleanup paths
// target: none means the path ends in an resume instruction
type cleanup_path = {target: Option<BasicBlockRef>,
dest: BasicBlockRef};
fn scope_clean_changed(scope_info: scope_info) {
if scope_info.cleanup_paths.len() > 0u { scope_info.cleanup_paths = ~[]; }
scope_info.landing_pad = None;
}
fn cleanup_type(cx: ty::ctxt, ty: ty::t) -> cleantype {
if ty::type_needs_unwind_cleanup(cx, ty) {
normal_exit_and_unwind
} else {
normal_exit_only
}
}
// This is not the same as datum::Datum::root(), which is used to keep copies
// of @ values live for as long as a borrowed pointer to the interior exists.
// In the new GC, we can identify immediates on the stack without difficulty,
// but have trouble knowing where non-immediates are on the stack. For
// non-immediates, we must add an additional level of indirection, which
// allows us to alloca a pointer with the right addrspace.
fn root_for_cleanup(bcx: block, v: ValueRef, t: ty::t)
-> {root: ValueRef, rooted: bool} {
let ccx = bcx.ccx();
let addrspace = base::get_tydesc(ccx, t).addrspace;
if addrspace > gc_box_addrspace {
let llty = type_of::type_of_rooted(ccx, t);
let root = base::alloca(bcx, llty);
build::Store(bcx, build::PointerCast(bcx, v, llty), root);
{root: root, rooted: true}
} else {
{root: v, rooted: false}
}
}
fn add_clean(bcx: block, val: ValueRef, t: ty::t) {
if !ty::type_needs_drop(bcx.tcx(), t) { return; }
debug!("add_clean(%s, %s, %s)",
bcx.to_str(), val_str(bcx.ccx().tn, val),
ty_to_str(bcx.ccx().tcx, t));
let {root, rooted} = root_for_cleanup(bcx, val, t);
let cleanup_type = cleanup_type(bcx.tcx(), t);
do in_scope_cx(bcx) |scope_info| {
scope_info.cleanups.push(
clean(|a| glue::drop_ty_root(a, root, rooted, t),
cleanup_type));
scope_clean_changed(scope_info);
}
}
fn add_clean_temp_immediate(cx: block, val: ValueRef, ty: ty::t) {
if !ty::type_needs_drop(cx.tcx(), ty) { return; }
debug!("add_clean_temp_immediate(%s, %s, %s)",
cx.to_str(), val_str(cx.ccx().tn, val),
ty_to_str(cx.ccx().tcx, ty));
let cleanup_type = cleanup_type(cx.tcx(), ty);
do in_scope_cx(cx) |scope_info| {
scope_info.cleanups.push(
clean_temp(val, |a| glue::drop_ty_immediate(a, val, ty),
cleanup_type));
scope_clean_changed(scope_info);
}
}
fn add_clean_temp_mem(bcx: block, val: ValueRef, t: ty::t) {
if !ty::type_needs_drop(bcx.tcx(), t) { return; }
debug!("add_clean_temp_mem(%s, %s, %s)",
bcx.to_str(), val_str(bcx.ccx().tn, val),
ty_to_str(bcx.ccx().tcx, t));
let {root, rooted} = root_for_cleanup(bcx, val, t);
let cleanup_type = cleanup_type(bcx.tcx(), t);
do in_scope_cx(bcx) |scope_info| {
scope_info.cleanups.push(
clean_temp(val, |a| glue::drop_ty_root(a, root, rooted, t),
cleanup_type));
scope_clean_changed(scope_info);
}
}
fn add_clean_free(cx: block, ptr: ValueRef, heap: heap) {
let free_fn = match heap {
heap_shared => |a| glue::trans_free(a, ptr),
heap_exchange => |a| glue::trans_unique_free(a, ptr)
};
do in_scope_cx(cx) |scope_info| {
scope_info.cleanups.push(clean_temp(ptr, free_fn,
normal_exit_and_unwind));
scope_clean_changed(scope_info);
}
}
// Note that this only works for temporaries. We should, at some point, move
// to a system where we can also cancel the cleanup on local variables, but
// this will be more involved. For now, we simply zero out the local, and the
// drop glue checks whether it is zero.
fn revoke_clean(cx: block, val: ValueRef) {
do in_scope_cx(cx) |scope_info| {
let cleanup_pos = vec::position(
scope_info.cleanups,
|cu| match *cu {
clean_temp(v, _, _) if v == val => true,
_ => false
});
for cleanup_pos.each |i| {
scope_info.cleanups =
vec::append(vec::slice(scope_info.cleanups, 0u, *i),
vec::view(scope_info.cleanups,
*i + 1u,
scope_info.cleanups.len()));
scope_clean_changed(scope_info);
}
}
}
fn block_cleanups(bcx: block) -> ~[cleanup] {
match bcx.kind {
block_non_scope => ~[],
block_scope(inf) => inf.cleanups
}
}
enum block_kind {
// A scope at the end of which temporary values created inside of it are
// cleaned up. May correspond to an actual block in the language, but also
// to an implicit scope, for example, calls introduce an implicit scope in
// which the arguments are evaluated and cleaned up.
block_scope(scope_info),
// A non-scope block is a basic block created as a translation artifact
// from translating code that expresses conditional logic rather than by
// explicit { ... } block structure in the source language. It's called a
// non-scope block because it doesn't introduce a new variable scope.
block_non_scope,
}
type scope_info = {
loop_break: Option<block>,
loop_label: Option<ident>,
// A list of functions that must be run at when leaving this
// block, cleaning up any variables that were introduced in the
// block.
mut cleanups: ~[cleanup],
// Existing cleanup paths that may be reused, indexed by destination and
// cleared when the set of cleanups changes.
mut cleanup_paths: ~[cleanup_path],
// Unwinding landing pad. Also cleared when cleanups change.
mut landing_pad: Option<BasicBlockRef>,
};
trait get_node_info {
fn info() -> Option<node_info>;
}
impl @ast::expr: get_node_info {
fn info() -> Option<node_info> {
Some({id: self.id, span: self.span})
}
}
impl ast::blk: get_node_info {
fn info() -> Option<node_info> {
Some({id: self.node.id, span: self.span})
}
}
// XXX: Work around a trait parsing bug. remove after snapshot
type optional_boxed_ast_expr = Option<@ast::expr>;
impl optional_boxed_ast_expr: get_node_info {
fn info() -> Option<node_info> {
self.chain_ref(|s| s.info())
}
}
type node_info = {
id: ast::node_id,
span: span
};
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
struct block_ {
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
// block to the function pointed to by llfn. We insert
// instructions into that block by way of this block context.
// The block pointing to this one in the function's digraph.
llbb: BasicBlockRef,
mut terminated: bool,
mut unreachable: bool,
parent: Option<block>,
// The 'kind' of basic block this is.
kind: block_kind,
// Is this block part of a landing pad?
is_lpad: bool,
// info about the AST node this block originated from, if any
node_info: Option<node_info>,
// The function context for the function to which this block is
// attached.
fcx: fn_ctxt
}
fn block_(llbb: BasicBlockRef, parent: Option<block>, -kind: block_kind,
is_lpad: bool, node_info: Option<node_info>, fcx: fn_ctxt)
-> block_ {
block_ {
llbb: llbb,
terminated: false,
unreachable: false,
parent: parent,
kind: move kind,
is_lpad: is_lpad,
node_info: node_info,
fcx: fcx
}
}
/* This must be enum and not type, or trans goes into an infinite loop (#2572)
*/
enum block = @block_;
fn mk_block(llbb: BasicBlockRef, parent: Option<block>, -kind: block_kind,
is_lpad: bool, node_info: Option<node_info>, fcx: fn_ctxt)
-> block {
block(@block_(llbb, parent, move kind, is_lpad, node_info, fcx))
}
// First two args are retptr, env
const first_real_arg: uint = 2u;
struct Result {
bcx: block,
val: ValueRef
}
fn rslt(bcx: block, val: ValueRef) -> Result {
Result {bcx: bcx, val: val}
}
impl Result {
fn unpack(bcx: &mut block) -> ValueRef {
*bcx = self.bcx;
return self.val;
}
}
fn ty_str(tn: type_names, t: TypeRef) -> ~str {
return lib::llvm::type_to_str(tn, t);
}
fn val_ty(v: ValueRef) -> TypeRef { return llvm::LLVMTypeOf(v); }
fn val_str(tn: type_names, v: ValueRef) -> ~str {
return ty_str(tn, val_ty(v));
}
// Returns the nth element of the given LLVM structure type.
fn struct_elt(llstructty: TypeRef, n: uint) -> TypeRef unsafe {
let elt_count = llvm::LLVMCountStructElementTypes(llstructty) as uint;
assert (n < elt_count);
let elt_tys = vec::from_elem(elt_count, T_nil());
llvm::LLVMGetStructElementTypes(llstructty, to_ptr(elt_tys));
return llvm::LLVMGetElementType(elt_tys[n]);
}
fn in_scope_cx(cx: block, f: fn(scope_info)) {
let mut cur = cx;
loop {
match cur.kind {
block_scope(inf) => {
debug!("in_scope_cx: selected cur=%s (cx=%s)",
cur.to_str(), cx.to_str());
f(inf);
return;
}
_ => ()
}
cur = block_parent(cur);
}
}
fn block_parent(cx: block) -> block {
match cx.parent {
Some(b) => b,
None => cx.sess().bug(fmt!("block_parent called on root block %?",
cx))
}
}
// Accessors
impl block {
pure fn ccx() -> @crate_ctxt { self.fcx.ccx }
pure fn tcx() -> ty::ctxt { self.fcx.ccx.tcx }
pure fn sess() -> Session { self.fcx.ccx.sess }
fn node_id_to_str(id: ast::node_id) -> ~str {
ast_map::node_id_to_str(self.tcx().items, id, self.sess().intr())
}
fn expr_to_str(e: @ast::expr) -> ~str {
util::ppaux::expr_repr(self.tcx(), e)
}
fn expr_is_lval(e: @ast::expr) -> bool {
ty::expr_is_lval(self.tcx(), self.ccx().maps.method_map, e)
}
fn expr_kind(e: @ast::expr) -> ty::ExprKind {
ty::expr_kind(self.tcx(), self.ccx().maps.method_map, e)
}
fn def(nid: ast::node_id) -> ast::def {
match self.tcx().def_map.find(nid) {
Some(v) => v,
None => {
self.tcx().sess.bug(fmt!(
"No def associated with node id %?", nid));
}
}
}
fn val_str(val: ValueRef) -> ~str {
val_str(self.ccx().tn, val)
}
fn llty_str(llty: TypeRef) -> ~str {
ty_str(self.ccx().tn, llty)
}
fn ty_to_str(t: ty::t) -> ~str {
ty_to_str(self.tcx(), t)
}
fn to_str() -> ~str {
match self.node_info {
Some(node_info) => {
fmt!("[block %d]", node_info.id)
}
None => {
fmt!("[block %x]", ptr::addr_of(&(*self)) as uint)
}
}
}
}
// LLVM type constructors.
fn T_void() -> TypeRef {
// Note: For the time being llvm is kinda busted here, it has the notion
// of a 'void' type that can only occur as part of the signature of a
// function, but no general unit type of 0-sized value. This is, afaict,
// vestigial from its C heritage, and we'll be attempting to submit a
// patch upstream to fix it. In the mean time we only model function
// outputs (Rust functions and C functions) using T_void, and model the
// Rust general purpose nil type you can construct as 1-bit (always
// zero). This makes the result incorrect for now -- things like a tuple
// of 10 nil values will have 10-bit size -- but it doesn't seem like we
// have any other options until it's fixed upstream.
return llvm::LLVMVoidType();
}
fn T_nil() -> TypeRef {
// NB: See above in T_void().
return llvm::LLVMInt1Type();
}
fn T_metadata() -> TypeRef { return llvm::LLVMMetadataType(); }
fn T_i1() -> TypeRef { return llvm::LLVMInt1Type(); }
fn T_i8() -> TypeRef { return llvm::LLVMInt8Type(); }
fn T_i16() -> TypeRef { return llvm::LLVMInt16Type(); }
fn T_i32() -> TypeRef { return llvm::LLVMInt32Type(); }
fn T_i64() -> TypeRef { return llvm::LLVMInt64Type(); }
fn T_f32() -> TypeRef { return llvm::LLVMFloatType(); }
fn T_f64() -> TypeRef { return llvm::LLVMDoubleType(); }
fn T_bool() -> TypeRef { return T_i1(); }
fn T_int(targ_cfg: @session::config) -> TypeRef {
return match targ_cfg.arch {
session::arch_x86 => T_i32(),
session::arch_x86_64 => T_i64(),
session::arch_arm => T_i32()
};
}
fn T_int_ty(cx: @crate_ctxt, t: ast::int_ty) -> TypeRef {
match t {
ast::ty_i => cx.int_type,
ast::ty_char => T_char(),
ast::ty_i8 => T_i8(),
ast::ty_i16 => T_i16(),
ast::ty_i32 => T_i32(),
ast::ty_i64 => T_i64()
}
}
fn T_uint_ty(cx: @crate_ctxt, t: ast::uint_ty) -> TypeRef {
match t {
ast::ty_u => cx.int_type,
ast::ty_u8 => T_i8(),
ast::ty_u16 => T_i16(),
ast::ty_u32 => T_i32(),
ast::ty_u64 => T_i64()
}
}
fn T_float_ty(cx: @crate_ctxt, t: ast::float_ty) -> TypeRef {
match t {
ast::ty_f => cx.float_type,
ast::ty_f32 => T_f32(),
ast::ty_f64 => T_f64()
}
}
fn T_float(targ_cfg: @session::config) -> TypeRef {
return match targ_cfg.arch {
session::arch_x86 => T_f64(),
session::arch_x86_64 => T_f64(),
session::arch_arm => T_f64()
};
}
fn T_char() -> TypeRef { return T_i32(); }
fn T_size_t(targ_cfg: @session::config) -> TypeRef {
return T_int(targ_cfg);
}
fn T_fn(inputs: ~[TypeRef], output: TypeRef) -> TypeRef unsafe {
return llvm::LLVMFunctionType(output, to_ptr(inputs),
inputs.len() as c_uint,
False);
}
fn T_fn_pair(cx: @crate_ctxt, tfn: TypeRef) -> TypeRef {
return T_struct(~[T_ptr(tfn), T_opaque_cbox_ptr(cx)]);
}
fn T_ptr(t: TypeRef) -> TypeRef {
return llvm::LLVMPointerType(t, default_addrspace);
}
fn T_root(t: TypeRef, addrspace: addrspace) -> TypeRef {
return llvm::LLVMPointerType(t, addrspace);
}
fn T_struct(elts: ~[TypeRef]) -> TypeRef unsafe {
return llvm::LLVMStructType(to_ptr(elts), elts.len() as c_uint, False);
}
fn T_named_struct(name: ~str) -> TypeRef {
let c = llvm::LLVMGetGlobalContext();
return str::as_c_str(name, |buf| llvm::LLVMStructCreateNamed(c, buf));
}
fn set_struct_body(t: TypeRef, elts: ~[TypeRef]) unsafe {
llvm::LLVMStructSetBody(t, to_ptr(elts),
elts.len() as c_uint, False);
}
fn T_empty_struct() -> TypeRef { return T_struct(~[]); }
// A vtable is, in reality, a vtable pointer followed by zero or more pointers
// to tydescs and other vtables that it closes over. But the types and number
// of those are rarely known to the code that needs to manipulate them, so
// they are described by this opaque type.
fn T_vtable() -> TypeRef { T_array(T_ptr(T_i8()), 1u) }
fn T_task(targ_cfg: @session::config) -> TypeRef {
let t = T_named_struct(~"task");
// Refcount
// Delegate pointer
// Stack segment pointer
// Runtime SP
// Rust SP
// GC chain
// Domain pointer
// Crate cache pointer
let t_int = T_int(targ_cfg);
let elems =
~[t_int, t_int, t_int, t_int,
t_int, t_int, t_int, t_int];
set_struct_body(t, elems);
return t;
}
fn T_tydesc_field(cx: @crate_ctxt, field: uint) -> TypeRef unsafe {
// Bit of a kludge: pick the fn typeref out of the tydesc..
let tydesc_elts: ~[TypeRef] =
vec::from_elem::<TypeRef>(abi::n_tydesc_fields,
T_nil());
llvm::LLVMGetStructElementTypes(cx.tydesc_type,
to_ptr::<TypeRef>(tydesc_elts));
let t = llvm::LLVMGetElementType(tydesc_elts[field]);
return t;
}
fn T_generic_glue_fn(cx: @crate_ctxt) -> TypeRef {
let s = ~"glue_fn";
match name_has_type(cx.tn, s) {
Some(t) => return t,
_ => ()
}
let t = T_tydesc_field(cx, abi::tydesc_field_drop_glue);
associate_type(cx.tn, s, t);
return t;
}
fn T_tydesc(targ_cfg: @session::config) -> TypeRef {
let tydesc = T_named_struct(~"tydesc");
let tydescpp = T_ptr(T_ptr(tydesc));
let pvoid = T_ptr(T_i8());
let glue_fn_ty =
T_ptr(T_fn(~[T_ptr(T_nil()), T_ptr(T_nil()), tydescpp,
pvoid], T_void()));
let int_type = T_int(targ_cfg);
let elems =
~[int_type, int_type,
glue_fn_ty, glue_fn_ty, glue_fn_ty, glue_fn_ty,
T_ptr(T_i8()), T_ptr(T_i8())];
set_struct_body(tydesc, elems);
return tydesc;
}
fn T_array(t: TypeRef, n: uint) -> TypeRef {
return llvm::LLVMArrayType(t, n as c_uint);
}
// Interior vector.
fn T_vec2(targ_cfg: @session::config, t: TypeRef) -> TypeRef {
return T_struct(~[T_int(targ_cfg), // fill
T_int(targ_cfg), // alloc
T_array(t, 0u)]); // elements
}
fn T_vec(ccx: @crate_ctxt, t: TypeRef) -> TypeRef {
return T_vec2(ccx.sess.targ_cfg, t);
}
// Note that the size of this one is in bytes.
fn T_opaque_vec(targ_cfg: @session::config) -> TypeRef {
return T_vec2(targ_cfg, T_i8());
}
// Let T be the content of a box @T. tuplify_box_ty(t) returns the
// representation of @T as a tuple (i.e., the ty::t version of what T_box()
// returns).
fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t {
let ptr = ty::mk_ptr(tcx, {ty: ty::mk_nil(tcx), mutbl: ast::m_imm});
return ty::mk_tup(tcx, ~[ty::mk_uint(tcx), ty::mk_type(tcx),
ptr, ptr,
t]);
}
fn T_box_header_fields(cx: @crate_ctxt) -> ~[TypeRef] {
let ptr = T_ptr(T_i8());
return ~[cx.int_type, T_ptr(cx.tydesc_type), ptr, ptr];
}
fn T_box_header(cx: @crate_ctxt) -> TypeRef {
return T_struct(T_box_header_fields(cx));
}
fn T_box(cx: @crate_ctxt, t: TypeRef) -> TypeRef {
return T_struct(vec::append(T_box_header_fields(cx), ~[t]));
}
fn T_box_ptr(t: TypeRef) -> TypeRef {
return llvm::LLVMPointerType(t, gc_box_addrspace);
}
fn T_opaque_box(cx: @crate_ctxt) -> TypeRef {
return T_box(cx, T_i8());
}
fn T_opaque_box_ptr(cx: @crate_ctxt) -> TypeRef {
return T_box_ptr(T_opaque_box(cx));
}
fn T_unique(cx: @crate_ctxt, t: TypeRef) -> TypeRef {
return T_struct(vec::append(T_box_header_fields(cx), ~[t]));
}
fn T_unique_ptr(t: TypeRef) -> TypeRef {
return llvm::LLVMPointerType(t, gc_box_addrspace);
}
fn T_port(cx: @crate_ctxt, _t: TypeRef) -> TypeRef {
return T_struct(~[cx.int_type]); // Refcount
}
fn T_chan(cx: @crate_ctxt, _t: TypeRef) -> TypeRef {
return T_struct(~[cx.int_type]); // Refcount
}
fn T_taskptr(cx: @crate_ctxt) -> TypeRef { return T_ptr(cx.task_type); }
// This type must never be used directly; it must always be cast away.
fn T_typaram(tn: type_names) -> TypeRef {
let s = ~"typaram";
match name_has_type(tn, s) {
Some(t) => return t,
_ => ()
}
let t = T_i8();
associate_type(tn, s, t);
return t;
}
fn T_typaram_ptr(tn: type_names) -> TypeRef { return T_ptr(T_typaram(tn)); }
fn T_opaque_cbox_ptr(cx: @crate_ctxt) -> TypeRef {
// closures look like boxes (even when they are fn~ or fn&)
// see trans_closure.rs
return T_opaque_box_ptr(cx);
}
fn T_enum_discrim(cx: @crate_ctxt) -> TypeRef {
return cx.int_type;
}
fn T_opaque_enum(cx: @crate_ctxt) -> TypeRef {
let s = ~"opaque_enum";
match name_has_type(cx.tn, s) {
Some(t) => return t,
_ => ()
}
let t = T_struct(~[T_enum_discrim(cx), T_i8()]);
associate_type(cx.tn, s, t);
return t;
}
fn T_opaque_enum_ptr(cx: @crate_ctxt) -> TypeRef {
return T_ptr(T_opaque_enum(cx));
}
fn T_captured_tydescs(cx: @crate_ctxt, n: uint) -> TypeRef {
return T_struct(vec::from_elem::<TypeRef>(n, T_ptr(cx.tydesc_type)));
}
fn T_opaque_trait(cx: @crate_ctxt, vstore: ty::vstore) -> TypeRef {
match vstore {
ty::vstore_box => {
T_struct(~[T_ptr(cx.tydesc_type), T_opaque_box_ptr(cx)])
}
ty::vstore_uniq => {
T_struct(~[T_ptr(cx.tydesc_type),
T_unique_ptr(T_unique(cx, T_i8())),
T_ptr(cx.tydesc_type)])
}
_ => T_struct(~[T_ptr(cx.tydesc_type), T_ptr(T_i8())])
}
}
fn T_opaque_port_ptr() -> TypeRef { return T_ptr(T_i8()); }
fn T_opaque_chan_ptr() -> TypeRef { return T_ptr(T_i8()); }
// LLVM constant constructors.
fn C_null(t: TypeRef) -> ValueRef { return llvm::LLVMConstNull(t); }
fn C_integral(t: TypeRef, u: u64, sign_extend: Bool) -> ValueRef {
return llvm::LLVMConstInt(t, u, sign_extend);
}
fn C_floating(s: ~str, t: TypeRef) -> ValueRef {
return str::as_c_str(s, |buf| llvm::LLVMConstRealOfString(t, buf));
}
fn C_nil() -> ValueRef {
// NB: See comment above in T_void().
return C_integral(T_i1(), 0u64, False);
}
fn C_bool(b: bool) -> ValueRef {
C_integral(T_bool(), if b { 1u64 } else { 0u64 }, False)
}
fn C_i32(i: i32) -> ValueRef {
return C_integral(T_i32(), i as u64, True);
}
fn C_i64(i: i64) -> ValueRef {
return C_integral(T_i64(), i as u64, True);
}
fn C_int(cx: @crate_ctxt, i: int) -> ValueRef {
return C_integral(cx.int_type, i as u64, True);
}
fn C_uint(cx: @crate_ctxt, i: uint) -> ValueRef {
return C_integral(cx.int_type, i as u64, False);
}
fn C_u8(i: uint) -> ValueRef { return C_integral(T_i8(), i as u64, False); }
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
fn C_cstr(cx: @crate_ctxt, s: ~str) -> ValueRef {
match cx.const_cstr_cache.find(s) {
Some(llval) => return llval,
None => ()
}
let sc = do str::as_c_str(s) |buf| {
llvm::LLVMConstString(buf, str::len(s) as c_uint, False)
};
let g =
str::as_c_str(fmt!("str%u", cx.names(~"str").repr),
|buf| llvm::LLVMAddGlobal(cx.llmod, val_ty(sc), buf));
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage);
cx.const_cstr_cache.insert(s, g);
return g;
}
fn C_estr_slice(cx: @crate_ctxt, s: ~str) -> ValueRef {
let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), T_ptr(T_i8()));
C_struct(~[cs, C_uint(cx, str::len(s) + 1u /* +1 for null */)])
}
// Returns a Plain Old LLVM String:
fn C_postr(s: ~str) -> ValueRef {
return do str::as_c_str(s) |buf| {
llvm::LLVMConstString(buf, str::len(s) as c_uint, False)
};
}
fn C_zero_byte_arr(size: uint) -> ValueRef unsafe {
let mut i = 0u;
let mut elts: ~[ValueRef] = ~[];
while i < size { elts.push(C_u8(0u)); i += 1u; }
return llvm::LLVMConstArray(T_i8(), vec::raw::to_ptr(elts),
elts.len() as c_uint);
}
fn C_struct(elts: &[ValueRef]) -> ValueRef {
do vec::as_imm_buf(elts) |ptr, len| {
llvm::LLVMConstStruct(ptr, len as c_uint, False)
}
}
fn C_named_struct(T: TypeRef, elts: &[ValueRef]) -> ValueRef {
do vec::as_imm_buf(elts) |ptr, len| {
llvm::LLVMConstNamedStruct(T, ptr, len as c_uint)
}
}
fn C_array(ty: TypeRef, elts: ~[ValueRef]) -> ValueRef unsafe {
return llvm::LLVMConstArray(ty, vec::raw::to_ptr(elts),
elts.len() as c_uint);
}
fn C_bytes(bytes: ~[u8]) -> ValueRef unsafe {
return llvm::LLVMConstString(
cast::reinterpret_cast(&vec::raw::to_ptr(bytes)),
bytes.len() as c_uint, True);
}
fn C_bytes_plus_null(bytes: ~[u8]) -> ValueRef unsafe {
return llvm::LLVMConstString(
cast::reinterpret_cast(&vec::raw::to_ptr(bytes)),
bytes.len() as c_uint, False);
}
fn C_shape(ccx: @crate_ctxt, bytes: ~[u8]) -> ValueRef {
let llshape = C_bytes_plus_null(bytes);
let name = fmt!("shape%u", ccx.names(~"shape").repr);
let llglobal = str::as_c_str(name, |buf| {
llvm::LLVMAddGlobal(ccx.llmod, val_ty(llshape), buf)
});
llvm::LLVMSetInitializer(llglobal, llshape);
llvm::LLVMSetGlobalConstant(llglobal, True);
lib::llvm::SetLinkage(llglobal, lib::llvm::InternalLinkage);
return llvm::LLVMConstPointerCast(llglobal, T_ptr(T_i8()));
}
fn get_param(fndecl: ValueRef, param: uint) -> ValueRef {
llvm::LLVMGetParam(fndecl, param as c_uint)
}
// Used to identify cached monomorphized functions and vtables
enum mono_param_id {
mono_precise(ty::t, Option<~[mono_id]>),
mono_any,
mono_repr(uint /* size */,
uint /* align */,
bool /* is_float */,
datum::DatumMode),
}
type mono_id_ = {
def: ast::def_id,
params: ~[mono_param_id],
impl_did_opt: Option<ast::def_id>
};
type mono_id = @mono_id_;
impl mono_param_id : cmp::Eq {
pure fn eq(other: &mono_param_id) -> bool {
match (self, (*other)) {
(mono_precise(ty_a, ids_a), mono_precise(ty_b, ids_b)) => {
ty_a == ty_b && ids_a == ids_b
}
(mono_any, mono_any) => true,
(mono_repr(size_a, align_a, is_float_a, mode_a),
mono_repr(size_b, align_b, is_float_b, mode_b)) => {
size_a == size_b && align_a == align_b &&
is_float_a == is_float_b && mode_a == mode_b
}
(mono_precise(*), _) => false,
(mono_any, _) => false,
(mono_repr(*), _) => false
}
}
pure fn ne(other: &mono_param_id) -> bool { !self.eq(other) }
}
impl mono_id_ : cmp::Eq {
pure fn eq(other: &mono_id_) -> bool {
return self.def == (*other).def && self.params == (*other).params;
}
pure fn ne(other: &mono_id_) -> bool { !self.eq(other) }
}
impl mono_param_id : to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
match self {
mono_precise(t, mids) =>
to_bytes::iter_bytes_3(&0u8, &ty::type_id(t), &mids, lsb0, f),
mono_any => 1u8.iter_bytes(lsb0, f),
mono_repr(ref a, ref b, ref c, ref d) =>
to_bytes::iter_bytes_5(&2u8, a, b, c, d, lsb0, f)
}
}
}
impl mono_id_ : core::to_bytes::IterBytes {
pure fn iter_bytes(+lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_2(&self.def, &self.params, lsb0, f);
}
}
fn umax(cx: block, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
return build::Select(cx, cond, b, a);
}
fn umin(cx: block, a: ValueRef, b: ValueRef) -> ValueRef {
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
return build::Select(cx, cond, a, b);
}
fn align_to(cx: block, off: ValueRef, align: ValueRef) -> ValueRef {
let mask = build::Sub(cx, align, C_int(cx.ccx(), 1));
let bumped = build::Add(cx, off, mask);
return build::And(cx, bumped, build::Not(cx, mask));
}
fn path_str(sess: session::Session, p: path) -> ~str {
let mut r = ~"", first = true;
for vec::each(p) |e| {
match *e {
ast_map::path_name(s) | ast_map::path_mod(s) => {
if first { first = false; }
else { r += ~"::"; }
r += sess.str_of(s);
}
}
}
r
}
fn monomorphize_type(bcx: block, t: ty::t) -> ty::t {
match bcx.fcx.param_substs {
Some(substs) => {
ty::subst_tps(bcx.tcx(), substs.tys, substs.self_ty, t)
}
_ => { assert !ty::type_has_params(t); t }
}
}
fn node_id_type(bcx: block, id: ast::node_id) -> ty::t {
let tcx = bcx.tcx();
let t = ty::node_id_to_type(tcx, id);
monomorphize_type(bcx, t)
}
fn expr_ty(bcx: block, ex: @ast::expr) -> ty::t {
node_id_type(bcx, ex.id)
}
fn node_id_type_params(bcx: block, id: ast::node_id) -> ~[ty::t] {
let tcx = bcx.tcx();
let params = ty::node_id_to_type_params(tcx, id);
match bcx.fcx.param_substs {
Some(substs) => {
do vec::map(params) |t| {
ty::subst_tps(tcx, substs.tys, substs.self_ty, *t)
}
}
_ => params
}
}
fn node_vtables(bcx: block, id: ast::node_id) -> Option<typeck::vtable_res> {
let raw_vtables = bcx.ccx().maps.vtable_map.find(id);
raw_vtables.map(
|vts| meth::resolve_vtables_in_fn_ctxt(bcx.fcx, *vts))
}
fn resolve_vtables_in_fn_ctxt(fcx: fn_ctxt, vts: typeck::vtable_res)
-> typeck::vtable_res
{
@vec::map(*vts, |d| resolve_vtable_in_fn_ctxt(fcx, *d))
}
// Apply the typaram substitutions in the fn_ctxt to a vtable. This should
// eliminate any vtable_params.
fn resolve_vtable_in_fn_ctxt(fcx: fn_ctxt, vt: typeck::vtable_origin)
-> typeck::vtable_origin
{
let tcx = fcx.ccx.tcx;
match vt {
typeck::vtable_static(trait_id, tys, sub) => {
let tys = match fcx.param_substs {
Some(substs) => {
do vec::map(tys) |t| {
ty::subst_tps(tcx, substs.tys, substs.self_ty, *t)
}
}
_ => tys
};
typeck::vtable_static(trait_id, tys,
resolve_vtables_in_fn_ctxt(fcx, sub))
}
typeck::vtable_param(n_param, n_bound) => {
match fcx.param_substs {
Some(ref substs) => {
find_vtable(tcx, substs, n_param, n_bound)
}
_ => {
tcx.sess.bug(fmt!(
"resolve_vtable_in_fn_ctxt: asked to lookup %? but \
no vtables in the fn_ctxt!", vt))
}
}
}
_ => vt
}
}
fn find_vtable(tcx: ty::ctxt, ps: &param_substs,
n_param: uint, n_bound: uint)
-> typeck::vtable_origin
{
debug!("find_vtable_in_fn_ctxt(n_param=%u, n_bound=%u, ps=%?)",
n_param, n_bound, param_substs_to_str(tcx, ps));
let mut vtable_off = n_bound, i = 0u;
// Vtables are stored in a flat array, finding the right one is
// somewhat awkward
for vec::each(*ps.bounds) |bounds| {
if i >= n_param { break; }
for vec::each(**bounds) |bound| {
match *bound { ty::bound_trait(_) => vtable_off += 1u, _ => () }
}
i += 1u;
}
ps.vtables.get()[vtable_off]
}
fn dummy_substs(tps: ~[ty::t]) -> ty::substs {
{self_r: Some(ty::re_bound(ty::br_self)),
self_ty: None,
tps: tps}
}
fn struct_field(index: uint) -> [uint * 3] {
//! The GEPi sequence to access a field of a record/struct.
[0, 0, index]
}
fn struct_dtor() -> [uint * 2] {
//! The GEPi sequence to access the dtor of a struct.
[0, 1]
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//