870 lines
25 KiB
Rust
870 lines
25 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Optional values
|
|
//!
|
|
//! Type `Option` represents an optional value: every `Option`
|
|
//! is either `Some` and contains a value, or `None`, and
|
|
//! does not. `Option` types are very common in Rust code, as
|
|
//! they have a number of uses:
|
|
//!
|
|
//! * Initial values
|
|
//! * Return values for functions that are not defined
|
|
//! over their entire input range (partial functions)
|
|
//! * Return value for otherwise reporting simple errors, where `None` is
|
|
//! returned on error
|
|
//! * Optional struct fields
|
|
//! * Struct fields that can be loaned or "taken"
|
|
//! * Optional function arguments
|
|
//! * Nullable pointers
|
|
//! * Swapping things out of difficult situations
|
|
//!
|
|
//! Options are commonly paired with pattern matching to query the presence
|
|
//! of a value and take action, always accounting for the `None` case.
|
|
//!
|
|
//! ```
|
|
//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
|
|
//! if denominator == 0.0 {
|
|
//! None
|
|
//! } else {
|
|
//! Some(numerator / denominator)
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // The return value of the function is an option
|
|
//! let result = divide(2.0, 3.0);
|
|
//!
|
|
//! // Pattern match to retrieve the value
|
|
//! match result {
|
|
//! // The division was valid
|
|
//! Some(x) => println!("Result: {}", x),
|
|
//! // The division was invalid
|
|
//! None => println!("Cannot divide by 0")
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//
|
|
// FIXME: Show how `Option` is used in practice, with lots of methods
|
|
//
|
|
//! # Options and pointers ("nullable" pointers)
|
|
//!
|
|
//! Rust's pointer types must always point to a valid location; there are
|
|
//! no "null" pointers. Instead, Rust has *optional* pointers, like
|
|
//! the optional owned box, `Option<Box<T>>`.
|
|
//!
|
|
//! The following example uses `Option` to create an optional box of
|
|
//! `int`. Notice that in order to use the inner `int` value first the
|
|
//! `check_optional` function needs to use pattern matching to
|
|
//! determine whether the box has a value (i.e. it is `Some(...)`) or
|
|
//! not (`None`).
|
|
//!
|
|
//! ```
|
|
//! let optional: Option<Box<int>> = None;
|
|
//! check_optional(&optional);
|
|
//!
|
|
//! let optional: Option<Box<int>> = Some(box 9000);
|
|
//! check_optional(&optional);
|
|
//!
|
|
//! fn check_optional(optional: &Option<Box<int>>) {
|
|
//! match *optional {
|
|
//! Some(ref p) => println!("have value {}", p),
|
|
//! None => println!("have no value")
|
|
//! }
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! This usage of `Option` to create safe nullable pointers is so
|
|
//! common that Rust does special optimizations to make the
|
|
//! representation of `Option<Box<T>>` a single pointer. Optional pointers
|
|
//! in Rust are stored as efficiently as any other pointer type.
|
|
//!
|
|
//! # Examples
|
|
//!
|
|
//! Basic pattern matching on `Option`:
|
|
//!
|
|
//! ```
|
|
//! let msg = Some("howdy");
|
|
//!
|
|
//! // Take a reference to the contained string
|
|
//! match msg {
|
|
//! Some(ref m) => println!("{}", *m),
|
|
//! None => ()
|
|
//! }
|
|
//!
|
|
//! // Remove the contained string, destroying the Option
|
|
//! let unwrapped_msg = match msg {
|
|
//! Some(m) => m,
|
|
//! None => "default message"
|
|
//! };
|
|
//! ```
|
|
//!
|
|
//! Initialize a result to `None` before a loop:
|
|
//!
|
|
//! ```
|
|
//! enum Kingdom { Plant(uint, &'static str), Animal(uint, &'static str) }
|
|
//!
|
|
//! // A list of data to search through.
|
|
//! let all_the_big_things = [
|
|
//! Plant(250, "redwood"),
|
|
//! Plant(230, "noble fir"),
|
|
//! Plant(229, "sugar pine"),
|
|
//! Animal(25, "blue whale"),
|
|
//! Animal(19, "fin whale"),
|
|
//! Animal(15, "north pacific right whale"),
|
|
//! ];
|
|
//!
|
|
//! // We're going to search for the name of the biggest animal,
|
|
//! // but to start with we've just got `None`.
|
|
//! let mut name_of_biggest_animal = None;
|
|
//! let mut size_of_biggest_animal = 0;
|
|
//! for big_thing in all_the_big_things.iter() {
|
|
//! match *big_thing {
|
|
//! Animal(size, name) if size > size_of_biggest_animal => {
|
|
//! // Now we've found the name of some big animal
|
|
//! size_of_biggest_animal = size;
|
|
//! name_of_biggest_animal = Some(name);
|
|
//! }
|
|
//! Animal(..) | Plant(..) => ()
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! match name_of_biggest_animal {
|
|
//! Some(name) => println!("the biggest animal is {}", name),
|
|
//! None => println!("there are no animals :(")
|
|
//! }
|
|
//! ```
|
|
|
|
use cmp::{Eq, TotalEq, TotalOrd};
|
|
use default::Default;
|
|
use iter::{Iterator, DoubleEndedIterator, FromIterator, ExactSize};
|
|
use mem;
|
|
use slice;
|
|
|
|
/// The `Option`
|
|
#[deriving(Clone, Eq, Ord, TotalEq, TotalOrd)]
|
|
pub enum Option<T> {
|
|
/// No value
|
|
None,
|
|
/// Some value `T`
|
|
Some(T)
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// Type implementation
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
impl<T> Option<T> {
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Querying the contained values
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Returns `true` if the option is a `Some` value
|
|
#[inline]
|
|
pub fn is_some(&self) -> bool {
|
|
match *self {
|
|
Some(_) => true,
|
|
None => false
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the option is a `None` value
|
|
#[inline]
|
|
pub fn is_none(&self) -> bool {
|
|
!self.is_some()
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Adapter for working with references
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Convert from `Option<T>` to `Option<&T>`
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Convert an `Option<~str>` into an `Option<int>`, preserving the original.
|
|
/// The `map` method takes the `self` argument by value, consuming the original,
|
|
/// so this technique uses `as_ref` to first take an `Option` to a reference
|
|
/// to the value inside the original.
|
|
///
|
|
/// ```
|
|
/// let num_as_str: Option<~str> = Some("10".to_owned());
|
|
/// // First, cast `Option<~str>` to `Option<&~str>` with `as_ref`,
|
|
/// // then consume *that* with `map`, leaving `num_as_str` on the stack.
|
|
/// let num_as_int: Option<uint> = num_as_str.as_ref().map(|n| n.len());
|
|
/// println!("still can print num_as_str: {}", num_as_str);
|
|
/// ```
|
|
#[inline]
|
|
pub fn as_ref<'r>(&'r self) -> Option<&'r T> {
|
|
match *self { Some(ref x) => Some(x), None => None }
|
|
}
|
|
|
|
/// Convert from `Option<T>` to `Option<&mut T>`
|
|
#[inline]
|
|
pub fn as_mut<'r>(&'r mut self) -> Option<&'r mut T> {
|
|
match *self { Some(ref mut x) => Some(x), None => None }
|
|
}
|
|
|
|
/// Convert from `Option<T>` to `&[T]` (without copying)
|
|
#[inline]
|
|
pub fn as_slice<'r>(&'r self) -> &'r [T] {
|
|
match *self {
|
|
Some(ref x) => slice::ref_slice(x),
|
|
None => &[]
|
|
}
|
|
}
|
|
|
|
/// Convert from `Option<T>` to `&mut [T]` (without copying)
|
|
#[inline]
|
|
pub fn as_mut_slice<'r>(&'r mut self) -> &'r mut [T] {
|
|
match *self {
|
|
Some(ref mut x) => slice::mut_ref_slice(x),
|
|
None => &mut []
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Getting to contained values
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Moves a value out of an option type and returns it, consuming the `Option`.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Fails if the self value equals `None`.
|
|
///
|
|
/// # Safety note
|
|
///
|
|
/// In general, because this function may fail, its use is discouraged.
|
|
/// Instead, prefer to use pattern matching and handle the `None`
|
|
/// case explicitly.
|
|
#[inline]
|
|
pub fn unwrap(self) -> T {
|
|
match self {
|
|
Some(val) => val,
|
|
None => fail!("called `Option::unwrap()` on a `None` value"),
|
|
}
|
|
}
|
|
|
|
/// Returns the contained value or a default.
|
|
#[inline]
|
|
pub fn unwrap_or(self, def: T) -> T {
|
|
match self {
|
|
Some(x) => x,
|
|
None => def
|
|
}
|
|
}
|
|
|
|
/// Returns the contained value or computes it from a closure.
|
|
#[inline]
|
|
pub fn unwrap_or_else(self, f: || -> T) -> T {
|
|
match self {
|
|
Some(x) => x,
|
|
None => f()
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Transforming contained values
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Convert an `Option<~str>` into an `Option<uint>`, consuming the original:
|
|
///
|
|
/// ```
|
|
/// let num_as_str: Option<~str> = Some("10".to_owned());
|
|
/// // `Option::map` takes self *by value*, consuming `num_as_str`
|
|
/// let num_as_int: Option<uint> = num_as_str.map(|n| n.len());
|
|
/// ```
|
|
#[inline]
|
|
pub fn map<U>(self, f: |T| -> U) -> Option<U> {
|
|
match self { Some(x) => Some(f(x)), None => None }
|
|
}
|
|
|
|
/// Applies a function to the contained value or returns a default.
|
|
#[inline]
|
|
pub fn map_or<U>(self, def: U, f: |T| -> U) -> U {
|
|
match self { None => def, Some(t) => f(t) }
|
|
}
|
|
|
|
/// Applies a function to the contained value or does nothing.
|
|
/// Returns true if the contained value was mutated.
|
|
pub fn mutate(&mut self, f: |T| -> T) -> bool {
|
|
if self.is_some() {
|
|
*self = Some(f(self.take_unwrap()));
|
|
true
|
|
} else { false }
|
|
}
|
|
|
|
/// Applies a function to the contained value or sets it to a default.
|
|
/// Returns true if the contained value was mutated, or false if set to the default.
|
|
pub fn mutate_or_set(&mut self, def: T, f: |T| -> T) -> bool {
|
|
if self.is_some() {
|
|
*self = Some(f(self.take_unwrap()));
|
|
true
|
|
} else {
|
|
*self = Some(def);
|
|
false
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Iterator constructors
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Returns an iterator over the possibly contained value.
|
|
#[inline]
|
|
pub fn iter<'r>(&'r self) -> Item<&'r T> {
|
|
Item{opt: self.as_ref()}
|
|
}
|
|
|
|
/// Returns a mutable iterator over the possibly contained value.
|
|
#[inline]
|
|
pub fn mut_iter<'r>(&'r mut self) -> Item<&'r mut T> {
|
|
Item{opt: self.as_mut()}
|
|
}
|
|
|
|
/// Returns a consuming iterator over the possibly contained value.
|
|
#[inline]
|
|
pub fn move_iter(self) -> Item<T> {
|
|
Item{opt: self}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Boolean operations on the values, eager and lazy
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Returns `None` if the option is `None`, otherwise returns `optb`.
|
|
#[inline]
|
|
pub fn and<U>(self, optb: Option<U>) -> Option<U> {
|
|
match self {
|
|
Some(_) => optb,
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
/// Returns `None` if the option is `None`, otherwise calls `f` with the
|
|
/// wrapped value and returns the result.
|
|
#[inline]
|
|
pub fn and_then<U>(self, f: |T| -> Option<U>) -> Option<U> {
|
|
match self {
|
|
Some(x) => f(x),
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
/// Returns the option if it contains a value, otherwise returns `optb`.
|
|
#[inline]
|
|
pub fn or(self, optb: Option<T>) -> Option<T> {
|
|
match self {
|
|
Some(_) => self,
|
|
None => optb
|
|
}
|
|
}
|
|
|
|
/// Returns the option if it contains a value, otherwise calls `f` and
|
|
/// returns the result.
|
|
#[inline]
|
|
pub fn or_else(self, f: || -> Option<T>) -> Option<T> {
|
|
match self {
|
|
Some(_) => self,
|
|
None => f()
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Misc
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Takes the value out of the option, leaving a `None` in its place.
|
|
#[inline]
|
|
pub fn take(&mut self) -> Option<T> {
|
|
mem::replace(self, None)
|
|
}
|
|
|
|
/// Filters an optional value using a given function.
|
|
#[inline(always)]
|
|
pub fn filtered(self, f: |t: &T| -> bool) -> Option<T> {
|
|
match self {
|
|
Some(x) => if f(&x) { Some(x) } else { None },
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// Applies a function zero or more times until the result is `None`.
|
|
#[inline]
|
|
pub fn while_some(self, f: |v: T| -> Option<T>) {
|
|
let mut opt = self;
|
|
loop {
|
|
match opt {
|
|
Some(x) => opt = f(x),
|
|
None => break
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// Common special cases
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
/// The option dance. Moves a value out of an option type and returns it,
|
|
/// replacing the original with `None`.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Fails if the value equals `None`.
|
|
#[inline]
|
|
pub fn take_unwrap(&mut self) -> T {
|
|
match self.take() {
|
|
Some(x) => x,
|
|
None => fail!("called `Option::take_unwrap()` on a `None` value")
|
|
}
|
|
}
|
|
|
|
/// Gets an immutable reference to the value inside an option.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Fails if the value equals `None`
|
|
///
|
|
/// # Safety note
|
|
///
|
|
/// In general, because this function may fail, its use is discouraged
|
|
/// (calling `get` on `None` is akin to dereferencing a null pointer).
|
|
/// Instead, prefer to use pattern matching and handle the `None`
|
|
/// case explicitly.
|
|
#[inline]
|
|
pub fn get_ref<'a>(&'a self) -> &'a T {
|
|
match *self {
|
|
Some(ref x) => x,
|
|
None => fail!("called `Option::get_ref()` on a `None` value"),
|
|
}
|
|
}
|
|
|
|
/// Gets a mutable reference to the value inside an option.
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Fails if the value equals `None`
|
|
///
|
|
/// # Safety note
|
|
///
|
|
/// In general, because this function may fail, its use is discouraged
|
|
/// (calling `get` on `None` is akin to dereferencing a null pointer).
|
|
/// Instead, prefer to use pattern matching and handle the `None`
|
|
/// case explicitly.
|
|
#[inline]
|
|
pub fn get_mut_ref<'a>(&'a mut self) -> &'a mut T {
|
|
match *self {
|
|
Some(ref mut x) => x,
|
|
None => fail!("called `Option::get_mut_ref()` on a `None` value"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Default> Option<T> {
|
|
/// Returns the contained value or a default
|
|
///
|
|
/// Consumes the `self` argument then, if `Some`, returns the contained
|
|
/// value, otherwise if `None`, returns the default value for that
|
|
/// type.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Convert a string to an integer, turning poorly-formed strings
|
|
/// into 0 (the default value for integers). `from_str` converts
|
|
/// a string to any other type that implements `FromStr`, returning
|
|
/// `None` on error.
|
|
///
|
|
/// ```
|
|
/// let good_year_from_input = "1909";
|
|
/// let bad_year_from_input = "190blarg";
|
|
/// let good_year = from_str(good_year_from_input).unwrap_or_default();
|
|
/// let bad_year = from_str(bad_year_from_input).unwrap_or_default();
|
|
///
|
|
/// assert_eq!(1909, good_year);
|
|
/// assert_eq!(0, bad_year);
|
|
/// ```
|
|
#[inline]
|
|
pub fn unwrap_or_default(self) -> T {
|
|
match self {
|
|
Some(x) => x,
|
|
None => Default::default()
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// Trait implementations
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
impl<T> Default for Option<T> {
|
|
#[inline]
|
|
fn default() -> Option<T> { None }
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// The Option Iterator
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// An `Option` iterator that yields either one or zero elements
|
|
///
|
|
/// The `Item` iterator is returned by the `iter`, `mut_iter` and `move_iter`
|
|
/// methods on `Option`.
|
|
#[deriving(Clone)]
|
|
pub struct Item<A> {
|
|
opt: Option<A>
|
|
}
|
|
|
|
impl<A> Iterator<A> for Item<A> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
self.opt.take()
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (uint, Option<uint>) {
|
|
match self.opt {
|
|
Some(_) => (1, Some(1)),
|
|
None => (0, Some(0)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A> DoubleEndedIterator<A> for Item<A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
self.opt.take()
|
|
}
|
|
}
|
|
|
|
impl<A> ExactSize<A> for Item<A> {}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// Free functions
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Takes each element in the `Iterator`: if it is `None`, no further
|
|
/// elements are taken, and the `None` is returned. Should no `None` occur, a
|
|
/// vector containing the values of each `Option` is returned.
|
|
///
|
|
/// Here is an example which increments every integer in a vector,
|
|
/// checking for overflow:
|
|
///
|
|
/// fn inc_conditionally(x: uint) -> Option<uint> {
|
|
/// if x == uint::MAX { return None; }
|
|
/// else { return Some(x+1u); }
|
|
/// }
|
|
/// let v = [1u, 2, 3];
|
|
/// let res = collect(v.iter().map(|&x| inc_conditionally(x)));
|
|
/// assert!(res == Some(~[2u, 3, 4]));
|
|
#[inline]
|
|
pub fn collect<T, Iter: Iterator<Option<T>>, V: FromIterator<T>>(iter: Iter) -> Option<V> {
|
|
// FIXME(#11084): This should be twice as fast once this bug is closed.
|
|
let mut iter = iter.scan(false, |state, x| {
|
|
match x {
|
|
Some(x) => Some(x),
|
|
None => {
|
|
*state = true;
|
|
None
|
|
}
|
|
}
|
|
});
|
|
|
|
let v: V = FromIterator::from_iter(iter.by_ref());
|
|
|
|
if iter.state {
|
|
None
|
|
} else {
|
|
Some(v)
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// Tests
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use realstd::option::collect;
|
|
use realstd::prelude::*;
|
|
use realstd::iter::range;
|
|
|
|
use str::StrSlice;
|
|
use kinds::marker;
|
|
use slice::ImmutableVector;
|
|
|
|
#[test]
|
|
fn test_get_ptr() {
|
|
unsafe {
|
|
let x = box 0;
|
|
let addr_x: *int = ::mem::transmute(&*x);
|
|
let opt = Some(x);
|
|
let y = opt.unwrap();
|
|
let addr_y: *int = ::mem::transmute(&*y);
|
|
assert_eq!(addr_x, addr_y);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_get_str() {
|
|
let x = "test".to_owned();
|
|
let addr_x = x.as_ptr();
|
|
let opt = Some(x);
|
|
let y = opt.unwrap();
|
|
let addr_y = y.as_ptr();
|
|
assert_eq!(addr_x, addr_y);
|
|
}
|
|
|
|
#[test]
|
|
fn test_get_resource() {
|
|
use realstd::rc::Rc;
|
|
use cell::RefCell;
|
|
|
|
struct R {
|
|
i: Rc<RefCell<int>>,
|
|
}
|
|
|
|
#[unsafe_destructor]
|
|
impl ::ops::Drop for R {
|
|
fn drop(&mut self) {
|
|
let ii = &*self.i;
|
|
let i = ii.borrow().clone();
|
|
*ii.borrow_mut() = i + 1;
|
|
}
|
|
}
|
|
|
|
fn R(i: Rc<RefCell<int>>) -> R {
|
|
R {
|
|
i: i
|
|
}
|
|
}
|
|
|
|
let i = Rc::new(RefCell::new(0));
|
|
{
|
|
let x = R(i.clone());
|
|
let opt = Some(x);
|
|
let _y = opt.unwrap();
|
|
}
|
|
assert_eq!(*i.borrow(), 1);
|
|
}
|
|
|
|
#[test]
|
|
fn test_option_dance() {
|
|
let x = Some(());
|
|
let mut y = Some(5);
|
|
let mut y2 = 0;
|
|
for _x in x.iter() {
|
|
y2 = y.take_unwrap();
|
|
}
|
|
assert_eq!(y2, 5);
|
|
assert!(y.is_none());
|
|
}
|
|
|
|
#[test] #[should_fail]
|
|
fn test_option_too_much_dance() {
|
|
let mut y = Some(marker::NoCopy);
|
|
let _y2 = y.take_unwrap();
|
|
let _y3 = y.take_unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_and() {
|
|
let x: Option<int> = Some(1);
|
|
assert_eq!(x.and(Some(2)), Some(2));
|
|
assert_eq!(x.and(None::<int>), None);
|
|
|
|
let x: Option<int> = None;
|
|
assert_eq!(x.and(Some(2)), None);
|
|
assert_eq!(x.and(None::<int>), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_and_then() {
|
|
let x: Option<int> = Some(1);
|
|
assert_eq!(x.and_then(|x| Some(x + 1)), Some(2));
|
|
assert_eq!(x.and_then(|_| None::<int>), None);
|
|
|
|
let x: Option<int> = None;
|
|
assert_eq!(x.and_then(|x| Some(x + 1)), None);
|
|
assert_eq!(x.and_then(|_| None::<int>), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_or() {
|
|
let x: Option<int> = Some(1);
|
|
assert_eq!(x.or(Some(2)), Some(1));
|
|
assert_eq!(x.or(None), Some(1));
|
|
|
|
let x: Option<int> = None;
|
|
assert_eq!(x.or(Some(2)), Some(2));
|
|
assert_eq!(x.or(None), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_or_else() {
|
|
let x: Option<int> = Some(1);
|
|
assert_eq!(x.or_else(|| Some(2)), Some(1));
|
|
assert_eq!(x.or_else(|| None), Some(1));
|
|
|
|
let x: Option<int> = None;
|
|
assert_eq!(x.or_else(|| Some(2)), Some(2));
|
|
assert_eq!(x.or_else(|| None), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_option_while_some() {
|
|
let mut i = 0;
|
|
Some(10).while_some(|j| {
|
|
i += 1;
|
|
if j > 0 {
|
|
Some(j-1)
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
assert_eq!(i, 11);
|
|
}
|
|
|
|
#[test]
|
|
fn test_unwrap() {
|
|
assert_eq!(Some(1).unwrap(), 1);
|
|
assert_eq!(Some("hello".to_owned()).unwrap(), "hello".to_owned());
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_unwrap_fail1() {
|
|
let x: Option<int> = None;
|
|
x.unwrap();
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
fn test_unwrap_fail2() {
|
|
let x: Option<~str> = None;
|
|
x.unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_unwrap_or() {
|
|
let x: Option<int> = Some(1);
|
|
assert_eq!(x.unwrap_or(2), 1);
|
|
|
|
let x: Option<int> = None;
|
|
assert_eq!(x.unwrap_or(2), 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_unwrap_or_else() {
|
|
let x: Option<int> = Some(1);
|
|
assert_eq!(x.unwrap_or_else(|| 2), 1);
|
|
|
|
let x: Option<int> = None;
|
|
assert_eq!(x.unwrap_or_else(|| 2), 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_filtered() {
|
|
let some_stuff = Some(42);
|
|
let modified_stuff = some_stuff.filtered(|&x| {x < 10});
|
|
assert_eq!(some_stuff.unwrap(), 42);
|
|
assert!(modified_stuff.is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter() {
|
|
let val = 5;
|
|
|
|
let x = Some(val);
|
|
let mut it = x.iter();
|
|
|
|
assert_eq!(it.size_hint(), (1, Some(1)));
|
|
assert_eq!(it.next(), Some(&val));
|
|
assert_eq!(it.size_hint(), (0, Some(0)));
|
|
assert!(it.next().is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_mut_iter() {
|
|
let val = 5;
|
|
let new_val = 11;
|
|
|
|
let mut x = Some(val);
|
|
{
|
|
let mut it = x.mut_iter();
|
|
|
|
assert_eq!(it.size_hint(), (1, Some(1)));
|
|
|
|
match it.next() {
|
|
Some(interior) => {
|
|
assert_eq!(*interior, val);
|
|
*interior = new_val;
|
|
}
|
|
None => assert!(false),
|
|
}
|
|
|
|
assert_eq!(it.size_hint(), (0, Some(0)));
|
|
assert!(it.next().is_none());
|
|
}
|
|
assert_eq!(x, Some(new_val));
|
|
}
|
|
|
|
#[test]
|
|
fn test_ord() {
|
|
let small = Some(1.0);
|
|
let big = Some(5.0);
|
|
let nan = Some(0.0/0.0);
|
|
assert!(!(nan < big));
|
|
assert!(!(nan > big));
|
|
assert!(small < big);
|
|
assert!(None < big);
|
|
assert!(big > None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mutate() {
|
|
let mut x = Some(3i);
|
|
assert!(x.mutate(|i| i+1));
|
|
assert_eq!(x, Some(4i));
|
|
assert!(x.mutate_or_set(0, |i| i+1));
|
|
assert_eq!(x, Some(5i));
|
|
x = None;
|
|
assert!(!x.mutate(|i| i+1));
|
|
assert_eq!(x, None);
|
|
assert!(!x.mutate_or_set(0i, |i| i+1));
|
|
assert_eq!(x, Some(0i));
|
|
}
|
|
|
|
#[test]
|
|
fn test_collect() {
|
|
let v: Option<Vec<int>> = collect(range(0, 0)
|
|
.map(|_| Some(0)));
|
|
assert_eq!(v, Some(vec![]));
|
|
|
|
let v: Option<Vec<int>> = collect(range(0, 3)
|
|
.map(|x| Some(x)));
|
|
assert_eq!(v, Some(vec![0, 1, 2]));
|
|
|
|
let v: Option<Vec<int>> = collect(range(0, 3)
|
|
.map(|x| if x > 1 { None } else { Some(x) }));
|
|
assert_eq!(v, None);
|
|
|
|
// test that it does not take more elements than it needs
|
|
let mut functions = [|| Some(()), || None, || fail!()];
|
|
|
|
let v: Option<Vec<()>> = collect(functions.mut_iter().map(|f| (*f)()));
|
|
|
|
assert_eq!(v, None);
|
|
}
|
|
}
|