rust/src/librustc_trans/context.rs

1164 lines
45 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm;
use llvm::{ContextRef, ModuleRef, ValueRef};
use rustc::dep_graph::{DepGraph, DepNode, DepTrackingMap, DepTrackingMapConfig, WorkProduct};
use middle::cstore::LinkMeta;
use rustc::hir;
use rustc::hir::def::ExportMap;
use rustc::hir::def_id::DefId;
use rustc::traits;
use debuginfo;
use callee::Callee;
use base;
use declare;
use glue::DropGlueKind;
use monomorphize::Instance;
use partitioning::CodegenUnit;
use trans_item::TransItem;
use type_::Type;
use rustc_data_structures::base_n;
use rustc::ty::subst::Substs;
use rustc::ty::{self, Ty, TyCtxt};
use session::config::NoDebugInfo;
use session::Session;
use session::config;
use symbol_map::SymbolMap;
use util::nodemap::{NodeSet, DefIdMap, FxHashMap, FxHashSet};
use std::ffi::{CStr, CString};
use std::cell::{Cell, RefCell};
use std::marker::PhantomData;
use std::ptr;
use std::iter;
use std::rc::Rc;
use std::str;
use syntax::ast;
use syntax::symbol::InternedString;
use syntax_pos::DUMMY_SP;
use abi::{Abi, FnType};
pub struct Stats {
pub n_glues_created: Cell<usize>,
pub n_null_glues: Cell<usize>,
pub n_real_glues: Cell<usize>,
pub n_fns: Cell<usize>,
pub n_inlines: Cell<usize>,
pub n_closures: Cell<usize>,
pub n_llvm_insns: Cell<usize>,
pub llvm_insns: RefCell<FxHashMap<String, usize>>,
// (ident, llvm-instructions)
pub fn_stats: RefCell<Vec<(String, usize)> >,
}
/// The shared portion of a `CrateContext`. There is one `SharedCrateContext`
/// per crate. The data here is shared between all compilation units of the
/// crate, so it must not contain references to any LLVM data structures
/// (aside from metadata-related ones).
pub struct SharedCrateContext<'a, 'tcx: 'a> {
metadata_llmod: ModuleRef,
metadata_llcx: ContextRef,
export_map: ExportMap,
exported_symbols: NodeSet,
link_meta: LinkMeta,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
empty_param_env: ty::ParameterEnvironment<'tcx>,
stats: Stats,
check_overflow: bool,
use_dll_storage_attrs: bool,
translation_items: RefCell<FxHashSet<TransItem<'tcx>>>,
trait_cache: RefCell<DepTrackingMap<TraitSelectionCache<'tcx>>>,
project_cache: RefCell<DepTrackingMap<ProjectionCache<'tcx>>>,
}
/// The local portion of a `CrateContext`. There is one `LocalCrateContext`
/// per compilation unit. Each one has its own LLVM `ContextRef` so that
/// several compilation units may be optimized in parallel. All other LLVM
/// data structures in the `LocalCrateContext` are tied to that `ContextRef`.
pub struct LocalCrateContext<'tcx> {
llmod: ModuleRef,
llcx: ContextRef,
previous_work_product: Option<WorkProduct>,
codegen_unit: CodegenUnit<'tcx>,
needs_unwind_cleanup_cache: RefCell<FxHashMap<Ty<'tcx>, bool>>,
fn_pointer_shims: RefCell<FxHashMap<Ty<'tcx>, ValueRef>>,
drop_glues: RefCell<FxHashMap<DropGlueKind<'tcx>, (ValueRef, FnType)>>,
/// Cache instances of monomorphic and polymorphic items
instances: RefCell<FxHashMap<Instance<'tcx>, ValueRef>>,
/// Cache generated vtables
vtables: RefCell<FxHashMap<(ty::Ty<'tcx>,
Option<ty::PolyExistentialTraitRef<'tcx>>), ValueRef>>,
/// Cache of constant strings,
const_cstr_cache: RefCell<FxHashMap<InternedString, ValueRef>>,
/// Reverse-direction for const ptrs cast from globals.
/// Key is a ValueRef holding a *T,
/// Val is a ValueRef holding a *[T].
///
/// Needed because LLVM loses pointer->pointee association
/// when we ptrcast, and we have to ptrcast during translation
/// of a [T] const because we form a slice, a (*T,usize) pair, not
/// a pointer to an LLVM array type. Similar for trait objects.
const_unsized: RefCell<FxHashMap<ValueRef, ValueRef>>,
/// Cache of emitted const globals (value -> global)
const_globals: RefCell<FxHashMap<ValueRef, ValueRef>>,
/// Cache of emitted const values
const_values: RefCell<FxHashMap<(ast::NodeId, &'tcx Substs<'tcx>), ValueRef>>,
/// Cache of external const values
extern_const_values: RefCell<DefIdMap<ValueRef>>,
/// Mapping from static definitions to their DefId's.
statics: RefCell<FxHashMap<ValueRef, DefId>>,
impl_method_cache: RefCell<FxHashMap<(DefId, ast::Name), DefId>>,
/// Cache of closure wrappers for bare fn's.
closure_bare_wrapper_cache: RefCell<FxHashMap<ValueRef, ValueRef>>,
/// List of globals for static variables which need to be passed to the
/// LLVM function ReplaceAllUsesWith (RAUW) when translation is complete.
/// (We have to make sure we don't invalidate any ValueRefs referring
/// to constants.)
statics_to_rauw: RefCell<Vec<(ValueRef, ValueRef)>>,
lltypes: RefCell<FxHashMap<Ty<'tcx>, Type>>,
llsizingtypes: RefCell<FxHashMap<Ty<'tcx>, Type>>,
type_hashcodes: RefCell<FxHashMap<Ty<'tcx>, String>>,
int_type: Type,
opaque_vec_type: Type,
str_slice_type: Type,
/// Holds the LLVM values for closure IDs.
closure_vals: RefCell<FxHashMap<Instance<'tcx>, ValueRef>>,
dbg_cx: Option<debuginfo::CrateDebugContext<'tcx>>,
eh_personality: Cell<Option<ValueRef>>,
eh_unwind_resume: Cell<Option<ValueRef>>,
rust_try_fn: Cell<Option<ValueRef>>,
intrinsics: RefCell<FxHashMap<&'static str, ValueRef>>,
/// Depth of the current type-of computation - used to bail out
type_of_depth: Cell<usize>,
symbol_map: Rc<SymbolMap<'tcx>>,
/// A counter that is used for generating local symbol names
local_gen_sym_counter: Cell<usize>,
}
// Implement DepTrackingMapConfig for `trait_cache`
pub struct TraitSelectionCache<'tcx> {
data: PhantomData<&'tcx ()>
}
impl<'tcx> DepTrackingMapConfig for TraitSelectionCache<'tcx> {
type Key = ty::PolyTraitRef<'tcx>;
type Value = traits::Vtable<'tcx, ()>;
fn to_dep_node(key: &ty::PolyTraitRef<'tcx>) -> DepNode<DefId> {
key.to_poly_trait_predicate().dep_node()
}
}
// # Global Cache
pub struct ProjectionCache<'gcx> {
data: PhantomData<&'gcx ()>
}
impl<'gcx> DepTrackingMapConfig for ProjectionCache<'gcx> {
type Key = Ty<'gcx>;
type Value = Ty<'gcx>;
fn to_dep_node(key: &Self::Key) -> DepNode<DefId> {
// Ideally, we'd just put `key` into the dep-node, but we
// can't put full types in there. So just collect up all the
// def-ids of structs/enums as well as any traits that we
// project out of. It doesn't matter so much what we do here,
// except that if we are too coarse, we'll create overly
// coarse edges between impls and the trans. For example, if
// we just used the def-id of things we are projecting out of,
// then the key for `<Foo as SomeTrait>::T` and `<Bar as
// SomeTrait>::T` would both share a dep-node
// (`TraitSelect(SomeTrait)`), and hence the impls for both
// `Foo` and `Bar` would be considered inputs. So a change to
// `Bar` would affect things that just normalized `Foo`.
// Anyway, this heuristic is not ideal, but better than
// nothing.
let def_ids: Vec<DefId> =
key.walk()
.filter_map(|t| match t.sty {
ty::TyAdt(adt_def, _) => Some(adt_def.did),
ty::TyProjection(ref proj) => Some(proj.trait_ref.def_id),
_ => None,
})
.collect();
DepNode::TraitSelect(def_ids)
}
}
/// This list owns a number of LocalCrateContexts and binds them to their common
/// SharedCrateContext. This type just exists as a convenience, something to
/// pass around all LocalCrateContexts with and get an iterator over them.
pub struct CrateContextList<'a, 'tcx: 'a> {
shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccxs: Vec<LocalCrateContext<'tcx>>,
}
impl<'a, 'tcx: 'a> CrateContextList<'a, 'tcx> {
pub fn new(shared_ccx: &'a SharedCrateContext<'a, 'tcx>,
codegen_units: Vec<CodegenUnit<'tcx>>,
previous_work_products: Vec<Option<WorkProduct>>,
symbol_map: Rc<SymbolMap<'tcx>>)
-> CrateContextList<'a, 'tcx> {
CrateContextList {
shared: shared_ccx,
local_ccxs: codegen_units.into_iter().zip(previous_work_products).map(|(cgu, wp)| {
LocalCrateContext::new(shared_ccx, cgu, wp, symbol_map.clone())
}).collect()
}
}
/// Iterate over all crate contexts, whether or not they need
/// translation. That is, whether or not a `.o` file is available
/// for re-use from a previous incr. comp.).
pub fn iter_all<'b>(&'b self) -> CrateContextIterator<'b, 'tcx> {
CrateContextIterator {
shared: self.shared,
index: 0,
local_ccxs: &self.local_ccxs[..],
filter_to_previous_work_product_unavail: false,
}
}
/// Iterator over all CCX that need translation (cannot reuse results from
/// previous incr. comp.).
pub fn iter_need_trans<'b>(&'b self) -> CrateContextIterator<'b, 'tcx> {
CrateContextIterator {
shared: self.shared,
index: 0,
local_ccxs: &self.local_ccxs[..],
filter_to_previous_work_product_unavail: true,
}
}
pub fn shared(&self) -> &'a SharedCrateContext<'a, 'tcx> {
self.shared
}
}
/// A CrateContext value binds together one LocalCrateContext with the
/// SharedCrateContext. It exists as a convenience wrapper, so we don't have to
/// pass around (SharedCrateContext, LocalCrateContext) tuples all over trans.
pub struct CrateContext<'a, 'tcx: 'a> {
shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccxs: &'a [LocalCrateContext<'tcx>],
/// The index of `local` in `local_ccxs`. This is used in
/// `maybe_iter(true)` to identify the original `LocalCrateContext`.
index: usize,
}
pub struct CrateContextIterator<'a, 'tcx: 'a> {
shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccxs: &'a [LocalCrateContext<'tcx>],
index: usize,
/// if true, only return results where `previous_work_product` is none
filter_to_previous_work_product_unavail: bool,
}
impl<'a, 'tcx> Iterator for CrateContextIterator<'a,'tcx> {
type Item = CrateContext<'a, 'tcx>;
fn next(&mut self) -> Option<CrateContext<'a, 'tcx>> {
loop {
if self.index >= self.local_ccxs.len() {
return None;
}
let index = self.index;
self.index += 1;
let ccx = CrateContext {
shared: self.shared,
index: index,
local_ccxs: self.local_ccxs,
};
if
self.filter_to_previous_work_product_unavail &&
ccx.previous_work_product().is_some()
{
continue;
}
return Some(ccx);
}
}
}
pub fn get_reloc_model(sess: &Session) -> llvm::RelocMode {
let reloc_model_arg = match sess.opts.cg.relocation_model {
Some(ref s) => &s[..],
None => &sess.target.target.options.relocation_model[..],
};
match ::back::write::RELOC_MODEL_ARGS.iter().find(
|&&arg| arg.0 == reloc_model_arg) {
Some(x) => x.1,
_ => {
sess.err(&format!("{:?} is not a valid relocation mode",
sess.opts
.cg
.code_model));
sess.abort_if_errors();
bug!();
}
}
}
fn is_any_library(sess: &Session) -> bool {
sess.crate_types.borrow().iter().any(|ty| {
*ty != config::CrateTypeExecutable
})
}
pub fn is_pie_binary(sess: &Session) -> bool {
!is_any_library(sess) && get_reloc_model(sess) == llvm::RelocMode::PIC
}
unsafe fn create_context_and_module(sess: &Session, mod_name: &str) -> (ContextRef, ModuleRef) {
let llcx = llvm::LLVMContextCreate();
let mod_name = CString::new(mod_name).unwrap();
let llmod = llvm::LLVMModuleCreateWithNameInContext(mod_name.as_ptr(), llcx);
// Ensure the data-layout values hardcoded remain the defaults.
if sess.target.target.options.is_builtin {
let tm = ::back::write::create_target_machine(sess);
llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, tm);
llvm::LLVMRustDisposeTargetMachine(tm);
let data_layout = llvm::LLVMGetDataLayout(llmod);
let data_layout = str::from_utf8(CStr::from_ptr(data_layout).to_bytes())
.ok().expect("got a non-UTF8 data-layout from LLVM");
// Unfortunately LLVM target specs change over time, and right now we
// don't have proper support to work with any more than one
// `data_layout` than the one that is in the rust-lang/rust repo. If
// this compiler is configured against a custom LLVM, we may have a
// differing data layout, even though we should update our own to use
// that one.
//
// As an interim hack, if CFG_LLVM_ROOT is not an empty string then we
// disable this check entirely as we may be configured with something
// that has a different target layout.
//
// Unsure if this will actually cause breakage when rustc is configured
// as such.
//
// FIXME(#34960)
let cfg_llvm_root = option_env!("CFG_LLVM_ROOT").unwrap_or("");
let custom_llvm_used = cfg_llvm_root.trim() != "";
if !custom_llvm_used && sess.target.target.data_layout != data_layout {
bug!("data-layout for builtin `{}` target, `{}`, \
differs from LLVM default, `{}`",
sess.target.target.llvm_target,
sess.target.target.data_layout,
data_layout);
}
}
let data_layout = CString::new(&sess.target.target.data_layout[..]).unwrap();
llvm::LLVMSetDataLayout(llmod, data_layout.as_ptr());
let llvm_target = sess.target.target.llvm_target.as_bytes();
let llvm_target = CString::new(llvm_target).unwrap();
llvm::LLVMRustSetNormalizedTarget(llmod, llvm_target.as_ptr());
if is_pie_binary(sess) {
llvm::LLVMRustSetModulePIELevel(llmod);
}
(llcx, llmod)
}
impl<'b, 'tcx> SharedCrateContext<'b, 'tcx> {
pub fn new(tcx: TyCtxt<'b, 'tcx, 'tcx>,
export_map: ExportMap,
link_meta: LinkMeta,
exported_symbols: NodeSet,
check_overflow: bool)
-> SharedCrateContext<'b, 'tcx> {
let (metadata_llcx, metadata_llmod) = unsafe {
create_context_and_module(&tcx.sess, "metadata")
};
// An interesting part of Windows which MSVC forces our hand on (and
// apparently MinGW didn't) is the usage of `dllimport` and `dllexport`
// attributes in LLVM IR as well as native dependencies (in C these
// correspond to `__declspec(dllimport)`).
//
// Whenever a dynamic library is built by MSVC it must have its public
// interface specified by functions tagged with `dllexport` or otherwise
// they're not available to be linked against. This poses a few problems
// for the compiler, some of which are somewhat fundamental, but we use
// the `use_dll_storage_attrs` variable below to attach the `dllexport`
// attribute to all LLVM functions that are exported e.g. they're
// already tagged with external linkage). This is suboptimal for a few
// reasons:
//
// * If an object file will never be included in a dynamic library,
// there's no need to attach the dllexport attribute. Most object
// files in Rust are not destined to become part of a dll as binaries
// are statically linked by default.
// * If the compiler is emitting both an rlib and a dylib, the same
// source object file is currently used but with MSVC this may be less
// feasible. The compiler may be able to get around this, but it may
// involve some invasive changes to deal with this.
//
// The flipside of this situation is that whenever you link to a dll and
// you import a function from it, the import should be tagged with
// `dllimport`. At this time, however, the compiler does not emit
// `dllimport` for any declarations other than constants (where it is
// required), which is again suboptimal for even more reasons!
//
// * Calling a function imported from another dll without using
// `dllimport` causes the linker/compiler to have extra overhead (one
// `jmp` instruction on x86) when calling the function.
// * The same object file may be used in different circumstances, so a
// function may be imported from a dll if the object is linked into a
// dll, but it may be just linked against if linked into an rlib.
// * The compiler has no knowledge about whether native functions should
// be tagged dllimport or not.
//
// For now the compiler takes the perf hit (I do not have any numbers to
// this effect) by marking very little as `dllimport` and praying the
// linker will take care of everything. Fixing this problem will likely
// require adding a few attributes to Rust itself (feature gated at the
// start) and then strongly recommending static linkage on MSVC!
let use_dll_storage_attrs = tcx.sess.target.target.options.is_like_msvc;
SharedCrateContext {
metadata_llmod: metadata_llmod,
metadata_llcx: metadata_llcx,
export_map: export_map,
exported_symbols: exported_symbols,
link_meta: link_meta,
empty_param_env: tcx.empty_parameter_environment(),
tcx: tcx,
stats: Stats {
n_glues_created: Cell::new(0),
n_null_glues: Cell::new(0),
n_real_glues: Cell::new(0),
n_fns: Cell::new(0),
n_inlines: Cell::new(0),
n_closures: Cell::new(0),
n_llvm_insns: Cell::new(0),
llvm_insns: RefCell::new(FxHashMap()),
fn_stats: RefCell::new(Vec::new()),
},
check_overflow: check_overflow,
use_dll_storage_attrs: use_dll_storage_attrs,
translation_items: RefCell::new(FxHashSet()),
trait_cache: RefCell::new(DepTrackingMap::new(tcx.dep_graph.clone())),
project_cache: RefCell::new(DepTrackingMap::new(tcx.dep_graph.clone())),
}
}
pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
self.tcx.type_needs_drop_given_env(ty, &self.empty_param_env)
}
pub fn type_is_sized(&self, ty: Ty<'tcx>) -> bool {
ty.is_sized(self.tcx, &self.empty_param_env, DUMMY_SP)
}
pub fn metadata_llmod(&self) -> ModuleRef {
self.metadata_llmod
}
pub fn metadata_llcx(&self) -> ContextRef {
self.metadata_llcx
}
pub fn export_map<'a>(&'a self) -> &'a ExportMap {
&self.export_map
}
pub fn exported_symbols<'a>(&'a self) -> &'a NodeSet {
&self.exported_symbols
}
pub fn trait_cache(&self) -> &RefCell<DepTrackingMap<TraitSelectionCache<'tcx>>> {
&self.trait_cache
}
pub fn project_cache(&self) -> &RefCell<DepTrackingMap<ProjectionCache<'tcx>>> {
&self.project_cache
}
pub fn link_meta<'a>(&'a self) -> &'a LinkMeta {
&self.link_meta
}
pub fn tcx<'a>(&'a self) -> TyCtxt<'a, 'tcx, 'tcx> {
self.tcx
}
pub fn sess<'a>(&'a self) -> &'a Session {
&self.tcx.sess
}
pub fn dep_graph<'a>(&'a self) -> &'a DepGraph {
&self.tcx.dep_graph
}
pub fn stats<'a>(&'a self) -> &'a Stats {
&self.stats
}
pub fn use_dll_storage_attrs(&self) -> bool {
self.use_dll_storage_attrs
}
pub fn translation_items(&self) -> &RefCell<FxHashSet<TransItem<'tcx>>> {
&self.translation_items
}
/// Given the def-id of some item that has no type parameters, make
/// a suitable "empty substs" for it.
pub fn empty_substs_for_def_id(&self, item_def_id: DefId) -> &'tcx Substs<'tcx> {
Substs::for_item(self.tcx(), item_def_id,
|_, _| self.tcx().mk_region(ty::ReErased),
|_, _| {
bug!("empty_substs_for_def_id: {:?} has type parameters", item_def_id)
})
}
pub fn metadata_symbol_name(&self) -> String {
format!("rust_metadata_{}_{}",
self.link_meta().crate_name,
self.link_meta().crate_hash)
}
}
impl<'tcx> LocalCrateContext<'tcx> {
fn new<'a>(shared: &SharedCrateContext<'a, 'tcx>,
codegen_unit: CodegenUnit<'tcx>,
previous_work_product: Option<WorkProduct>,
symbol_map: Rc<SymbolMap<'tcx>>)
-> LocalCrateContext<'tcx> {
unsafe {
// Append ".rs" to LLVM module identifier.
//
// LLVM code generator emits a ".file filename" directive
// for ELF backends. Value of the "filename" is set as the
// LLVM module identifier. Due to a LLVM MC bug[1], LLVM
// crashes if the module identifier is same as other symbols
// such as a function name in the module.
// 1. http://llvm.org/bugs/show_bug.cgi?id=11479
let llmod_id = format!("{}.rs", codegen_unit.name());
let (llcx, llmod) = create_context_and_module(&shared.tcx.sess,
&llmod_id[..]);
let dbg_cx = if shared.tcx.sess.opts.debuginfo != NoDebugInfo {
let dctx = debuginfo::CrateDebugContext::new(llmod);
debuginfo::metadata::compile_unit_metadata(shared, &dctx, shared.tcx.sess);
Some(dctx)
} else {
None
};
let local_ccx = LocalCrateContext {
llmod: llmod,
llcx: llcx,
previous_work_product: previous_work_product,
codegen_unit: codegen_unit,
needs_unwind_cleanup_cache: RefCell::new(FxHashMap()),
fn_pointer_shims: RefCell::new(FxHashMap()),
drop_glues: RefCell::new(FxHashMap()),
instances: RefCell::new(FxHashMap()),
vtables: RefCell::new(FxHashMap()),
const_cstr_cache: RefCell::new(FxHashMap()),
const_unsized: RefCell::new(FxHashMap()),
const_globals: RefCell::new(FxHashMap()),
const_values: RefCell::new(FxHashMap()),
extern_const_values: RefCell::new(DefIdMap()),
statics: RefCell::new(FxHashMap()),
impl_method_cache: RefCell::new(FxHashMap()),
closure_bare_wrapper_cache: RefCell::new(FxHashMap()),
statics_to_rauw: RefCell::new(Vec::new()),
lltypes: RefCell::new(FxHashMap()),
llsizingtypes: RefCell::new(FxHashMap()),
type_hashcodes: RefCell::new(FxHashMap()),
int_type: Type::from_ref(ptr::null_mut()),
opaque_vec_type: Type::from_ref(ptr::null_mut()),
str_slice_type: Type::from_ref(ptr::null_mut()),
closure_vals: RefCell::new(FxHashMap()),
dbg_cx: dbg_cx,
eh_personality: Cell::new(None),
eh_unwind_resume: Cell::new(None),
rust_try_fn: Cell::new(None),
intrinsics: RefCell::new(FxHashMap()),
type_of_depth: Cell::new(0),
symbol_map: symbol_map,
local_gen_sym_counter: Cell::new(0),
};
let (int_type, opaque_vec_type, str_slice_ty, mut local_ccx) = {
// Do a little dance to create a dummy CrateContext, so we can
// create some things in the LLVM module of this codegen unit
let mut local_ccxs = vec![local_ccx];
let (int_type, opaque_vec_type, str_slice_ty) = {
let dummy_ccx = LocalCrateContext::dummy_ccx(shared,
local_ccxs.as_mut_slice());
let mut str_slice_ty = Type::named_struct(&dummy_ccx, "str_slice");
str_slice_ty.set_struct_body(&[Type::i8p(&dummy_ccx),
Type::int(&dummy_ccx)],
false);
(Type::int(&dummy_ccx), Type::opaque_vec(&dummy_ccx), str_slice_ty)
};
(int_type, opaque_vec_type, str_slice_ty, local_ccxs.pop().unwrap())
};
local_ccx.int_type = int_type;
local_ccx.opaque_vec_type = opaque_vec_type;
local_ccx.str_slice_type = str_slice_ty;
local_ccx
}
}
/// Create a dummy `CrateContext` from `self` and the provided
/// `SharedCrateContext`. This is somewhat dangerous because `self` may
/// not be fully initialized.
///
/// This is used in the `LocalCrateContext` constructor to allow calling
/// functions that expect a complete `CrateContext`, even before the local
/// portion is fully initialized and attached to the `SharedCrateContext`.
fn dummy_ccx<'a>(shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccxs: &'a [LocalCrateContext<'tcx>])
-> CrateContext<'a, 'tcx> {
assert!(local_ccxs.len() == 1);
CrateContext {
shared: shared,
index: 0,
local_ccxs: local_ccxs
}
}
}
impl<'b, 'tcx> CrateContext<'b, 'tcx> {
pub fn shared(&self) -> &'b SharedCrateContext<'b, 'tcx> {
self.shared
}
fn local(&self) -> &'b LocalCrateContext<'tcx> {
&self.local_ccxs[self.index]
}
pub fn tcx<'a>(&'a self) -> TyCtxt<'a, 'tcx, 'tcx> {
self.shared.tcx
}
pub fn sess<'a>(&'a self) -> &'a Session {
&self.shared.tcx.sess
}
pub fn get_intrinsic(&self, key: &str) -> ValueRef {
if let Some(v) = self.intrinsics().borrow().get(key).cloned() {
return v;
}
match declare_intrinsic(self, key) {
Some(v) => return v,
None => bug!("unknown intrinsic '{}'", key)
}
}
pub fn llmod(&self) -> ModuleRef {
self.local().llmod
}
pub fn llcx(&self) -> ContextRef {
self.local().llcx
}
pub fn previous_work_product(&self) -> Option<&WorkProduct> {
self.local().previous_work_product.as_ref()
}
pub fn codegen_unit(&self) -> &CodegenUnit<'tcx> {
&self.local().codegen_unit
}
pub fn td(&self) -> llvm::TargetDataRef {
unsafe { llvm::LLVMRustGetModuleDataLayout(self.llmod()) }
}
pub fn export_map<'a>(&'a self) -> &'a ExportMap {
&self.shared.export_map
}
pub fn exported_symbols<'a>(&'a self) -> &'a NodeSet {
&self.shared.exported_symbols
}
pub fn link_meta<'a>(&'a self) -> &'a LinkMeta {
&self.shared.link_meta
}
pub fn needs_unwind_cleanup_cache(&self) -> &RefCell<FxHashMap<Ty<'tcx>, bool>> {
&self.local().needs_unwind_cleanup_cache
}
pub fn fn_pointer_shims(&self) -> &RefCell<FxHashMap<Ty<'tcx>, ValueRef>> {
&self.local().fn_pointer_shims
}
pub fn drop_glues<'a>(&'a self)
-> &'a RefCell<FxHashMap<DropGlueKind<'tcx>, (ValueRef, FnType)>> {
&self.local().drop_glues
}
pub fn instances<'a>(&'a self) -> &'a RefCell<FxHashMap<Instance<'tcx>, ValueRef>> {
&self.local().instances
}
pub fn vtables<'a>(&'a self)
-> &'a RefCell<FxHashMap<(ty::Ty<'tcx>,
Option<ty::PolyExistentialTraitRef<'tcx>>), ValueRef>> {
&self.local().vtables
}
pub fn const_cstr_cache<'a>(&'a self) -> &'a RefCell<FxHashMap<InternedString, ValueRef>> {
&self.local().const_cstr_cache
}
pub fn const_unsized<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, ValueRef>> {
&self.local().const_unsized
}
pub fn const_globals<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, ValueRef>> {
&self.local().const_globals
}
pub fn const_values<'a>(&'a self) -> &'a RefCell<FxHashMap<(ast::NodeId, &'tcx Substs<'tcx>),
ValueRef>> {
&self.local().const_values
}
pub fn extern_const_values<'a>(&'a self) -> &'a RefCell<DefIdMap<ValueRef>> {
&self.local().extern_const_values
}
pub fn statics<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, DefId>> {
&self.local().statics
}
pub fn impl_method_cache<'a>(&'a self)
-> &'a RefCell<FxHashMap<(DefId, ast::Name), DefId>> {
&self.local().impl_method_cache
}
pub fn closure_bare_wrapper_cache<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, ValueRef>> {
&self.local().closure_bare_wrapper_cache
}
pub fn statics_to_rauw<'a>(&'a self) -> &'a RefCell<Vec<(ValueRef, ValueRef)>> {
&self.local().statics_to_rauw
}
pub fn lltypes<'a>(&'a self) -> &'a RefCell<FxHashMap<Ty<'tcx>, Type>> {
&self.local().lltypes
}
pub fn llsizingtypes<'a>(&'a self) -> &'a RefCell<FxHashMap<Ty<'tcx>, Type>> {
&self.local().llsizingtypes
}
pub fn type_hashcodes<'a>(&'a self) -> &'a RefCell<FxHashMap<Ty<'tcx>, String>> {
&self.local().type_hashcodes
}
pub fn stats<'a>(&'a self) -> &'a Stats {
&self.shared.stats
}
pub fn int_type(&self) -> Type {
self.local().int_type
}
pub fn opaque_vec_type(&self) -> Type {
self.local().opaque_vec_type
}
pub fn str_slice_type(&self) -> Type {
self.local().str_slice_type
}
pub fn closure_vals<'a>(&'a self) -> &'a RefCell<FxHashMap<Instance<'tcx>, ValueRef>> {
&self.local().closure_vals
}
pub fn dbg_cx<'a>(&'a self) -> &'a Option<debuginfo::CrateDebugContext<'tcx>> {
&self.local().dbg_cx
}
pub fn rust_try_fn<'a>(&'a self) -> &'a Cell<Option<ValueRef>> {
&self.local().rust_try_fn
}
fn intrinsics<'a>(&'a self) -> &'a RefCell<FxHashMap<&'static str, ValueRef>> {
&self.local().intrinsics
}
pub fn obj_size_bound(&self) -> u64 {
self.tcx().data_layout.obj_size_bound()
}
pub fn report_overbig_object(&self, obj: Ty<'tcx>) -> ! {
self.sess().fatal(
&format!("the type `{:?}` is too big for the current architecture",
obj))
}
pub fn enter_type_of(&self, ty: Ty<'tcx>) -> TypeOfDepthLock<'b, 'tcx> {
let current_depth = self.local().type_of_depth.get();
debug!("enter_type_of({:?}) at depth {:?}", ty, current_depth);
if current_depth > self.sess().recursion_limit.get() {
self.sess().fatal(
&format!("overflow representing the type `{}`", ty))
}
self.local().type_of_depth.set(current_depth + 1);
TypeOfDepthLock(self.local())
}
pub fn layout_of(&self, ty: Ty<'tcx>) -> &'tcx ty::layout::Layout {
self.tcx().infer_ctxt((), traits::Reveal::All).enter(|infcx| {
ty.layout(&infcx).unwrap_or_else(|e| {
match e {
ty::layout::LayoutError::SizeOverflow(_) =>
self.sess().fatal(&e.to_string()),
_ => bug!("failed to get layout for `{}`: {}", ty, e)
}
})
})
}
pub fn check_overflow(&self) -> bool {
self.shared.check_overflow
}
pub fn use_dll_storage_attrs(&self) -> bool {
self.shared.use_dll_storage_attrs()
}
pub fn symbol_map(&self) -> &SymbolMap<'tcx> {
&*self.local().symbol_map
}
pub fn translation_items(&self) -> &RefCell<FxHashSet<TransItem<'tcx>>> {
&self.shared.translation_items
}
/// Given the def-id of some item that has no type parameters, make
/// a suitable "empty substs" for it.
pub fn empty_substs_for_def_id(&self, item_def_id: DefId) -> &'tcx Substs<'tcx> {
self.shared().empty_substs_for_def_id(item_def_id)
}
/// Generate a new symbol name with the given prefix. This symbol name must
/// only be used for definitions with `internal` or `private` linkage.
pub fn generate_local_symbol_name(&self, prefix: &str) -> String {
let idx = self.local().local_gen_sym_counter.get();
self.local().local_gen_sym_counter.set(idx + 1);
// Include a '.' character, so there can be no accidental conflicts with
// user defined names
let mut name = String::with_capacity(prefix.len() + 6);
name.push_str(prefix);
name.push_str(".");
base_n::push_str(idx as u64, base_n::ALPHANUMERIC_ONLY, &mut name);
name
}
pub fn eh_personality(&self) -> ValueRef {
// The exception handling personality function.
//
// If our compilation unit has the `eh_personality` lang item somewhere
// within it, then we just need to translate that. Otherwise, we're
// building an rlib which will depend on some upstream implementation of
// this function, so we just codegen a generic reference to it. We don't
// specify any of the types for the function, we just make it a symbol
// that LLVM can later use.
//
// Note that MSVC is a little special here in that we don't use the
// `eh_personality` lang item at all. Currently LLVM has support for
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
// *name of the personality function* to decide what kind of unwind side
// tables/landing pads to emit. It looks like Dwarf is used by default,
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
// an "exception", but for MSVC we want to force SEH. This means that we
// can't actually have the personality function be our standard
// `rust_eh_personality` function, but rather we wired it up to the
// CRT's custom personality function, which forces LLVM to consider
// landing pads as "landing pads for SEH".
if let Some(llpersonality) = self.local().eh_personality.get() {
return llpersonality
}
let tcx = self.tcx();
let llfn = match tcx.lang_items.eh_personality() {
Some(def_id) if !base::wants_msvc_seh(self.sess()) => {
Callee::def(self, def_id, tcx.intern_substs(&[])).reify(self)
}
_ => {
let name = if base::wants_msvc_seh(self.sess()) {
"__CxxFrameHandler3"
} else {
"rust_eh_personality"
};
let fty = Type::variadic_func(&[], &Type::i32(self));
declare::declare_cfn(self, name, fty)
}
};
self.local().eh_personality.set(Some(llfn));
llfn
}
// Returns a ValueRef of the "eh_unwind_resume" lang item if one is defined,
// otherwise declares it as an external function.
pub fn eh_unwind_resume(&self) -> ValueRef {
use attributes;
let unwresume = &self.local().eh_unwind_resume;
if let Some(llfn) = unwresume.get() {
return llfn;
}
let tcx = self.tcx();
assert!(self.sess().target.target.options.custom_unwind_resume);
if let Some(def_id) = tcx.lang_items.eh_unwind_resume() {
let llfn = Callee::def(self, def_id, tcx.intern_substs(&[])).reify(self);
unwresume.set(Some(llfn));
return llfn;
}
let ty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
unsafety: hir::Unsafety::Unsafe,
abi: Abi::C,
sig: ty::Binder(tcx.mk_fn_sig(
iter::once(tcx.mk_mut_ptr(tcx.types.u8)),
tcx.types.never,
false
)),
}));
let llfn = declare::declare_fn(self, "rust_eh_unwind_resume", ty);
attributes::unwind(llfn, true);
unwresume.set(Some(llfn));
llfn
}
}
pub struct TypeOfDepthLock<'a, 'tcx: 'a>(&'a LocalCrateContext<'tcx>);
impl<'a, 'tcx> Drop for TypeOfDepthLock<'a, 'tcx> {
fn drop(&mut self) {
self.0.type_of_depth.set(self.0.type_of_depth.get() - 1);
}
}
/// Declare any llvm intrinsics that you might need
fn declare_intrinsic(ccx: &CrateContext, key: &str) -> Option<ValueRef> {
macro_rules! ifn {
($name:expr, fn() -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::func(&[], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
return Some(f);
}
);
($name:expr, fn(...) -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::variadic_func(&[], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
return Some(f);
}
);
($name:expr, fn($($arg:expr),*) -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::func(&[$($arg),*], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
return Some(f);
}
);
}
macro_rules! mk_struct {
($($field_ty:expr),*) => (Type::struct_(ccx, &[$($field_ty),*], false))
}
let i8p = Type::i8p(ccx);
let void = Type::void(ccx);
let i1 = Type::i1(ccx);
let t_i8 = Type::i8(ccx);
let t_i16 = Type::i16(ccx);
let t_i32 = Type::i32(ccx);
let t_i64 = Type::i64(ccx);
let t_i128 = Type::i128(ccx);
let t_f32 = Type::f32(ccx);
let t_f64 = Type::f64(ccx);
ifn!("llvm.memcpy.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void);
ifn!("llvm.memcpy.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void);
ifn!("llvm.memcpy.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void);
ifn!("llvm.memmove.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void);
ifn!("llvm.memmove.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void);
ifn!("llvm.memmove.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void);
ifn!("llvm.memset.p0i8.i16", fn(i8p, t_i8, t_i16, t_i32, i1) -> void);
ifn!("llvm.memset.p0i8.i32", fn(i8p, t_i8, t_i32, t_i32, i1) -> void);
ifn!("llvm.memset.p0i8.i64", fn(i8p, t_i8, t_i64, t_i32, i1) -> void);
ifn!("llvm.trap", fn() -> void);
ifn!("llvm.debugtrap", fn() -> void);
ifn!("llvm.frameaddress", fn(t_i32) -> i8p);
ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32);
ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64);
ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.pow.f64", fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.sqrt.f32", fn(t_f32) -> t_f32);
ifn!("llvm.sqrt.f64", fn(t_f64) -> t_f64);
ifn!("llvm.sin.f32", fn(t_f32) -> t_f32);
ifn!("llvm.sin.f64", fn(t_f64) -> t_f64);
ifn!("llvm.cos.f32", fn(t_f32) -> t_f32);
ifn!("llvm.cos.f64", fn(t_f64) -> t_f64);
ifn!("llvm.exp.f32", fn(t_f32) -> t_f32);
ifn!("llvm.exp.f64", fn(t_f64) -> t_f64);
ifn!("llvm.exp2.f32", fn(t_f32) -> t_f32);
ifn!("llvm.exp2.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log10.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log10.f64", fn(t_f64) -> t_f64);
ifn!("llvm.log2.f32", fn(t_f32) -> t_f32);
ifn!("llvm.log2.f64", fn(t_f64) -> t_f64);
ifn!("llvm.fma.f32", fn(t_f32, t_f32, t_f32) -> t_f32);
ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64);
ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32);
ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64);
ifn!("llvm.floor.f32", fn(t_f32) -> t_f32);
ifn!("llvm.floor.f64", fn(t_f64) -> t_f64);
ifn!("llvm.ceil.f32", fn(t_f32) -> t_f32);
ifn!("llvm.ceil.f64", fn(t_f64) -> t_f64);
ifn!("llvm.trunc.f32", fn(t_f32) -> t_f32);
ifn!("llvm.trunc.f64", fn(t_f64) -> t_f64);
ifn!("llvm.copysign.f32", fn(t_f32, t_f32) -> t_f32);
ifn!("llvm.copysign.f64", fn(t_f64, t_f64) -> t_f64);
ifn!("llvm.round.f32", fn(t_f32) -> t_f32);
ifn!("llvm.round.f64", fn(t_f64) -> t_f64);
ifn!("llvm.rint.f32", fn(t_f32) -> t_f32);
ifn!("llvm.rint.f64", fn(t_f64) -> t_f64);
ifn!("llvm.nearbyint.f32", fn(t_f32) -> t_f32);
ifn!("llvm.nearbyint.f64", fn(t_f64) -> t_f64);
ifn!("llvm.ctpop.i8", fn(t_i8) -> t_i8);
ifn!("llvm.ctpop.i16", fn(t_i16) -> t_i16);
ifn!("llvm.ctpop.i32", fn(t_i32) -> t_i32);
ifn!("llvm.ctpop.i64", fn(t_i64) -> t_i64);
ifn!("llvm.ctpop.i128", fn(t_i128) -> t_i128);
ifn!("llvm.ctlz.i8", fn(t_i8 , i1) -> t_i8);
ifn!("llvm.ctlz.i16", fn(t_i16, i1) -> t_i16);
ifn!("llvm.ctlz.i32", fn(t_i32, i1) -> t_i32);
ifn!("llvm.ctlz.i64", fn(t_i64, i1) -> t_i64);
ifn!("llvm.ctlz.i128", fn(t_i128, i1) -> t_i128);
ifn!("llvm.cttz.i8", fn(t_i8 , i1) -> t_i8);
ifn!("llvm.cttz.i16", fn(t_i16, i1) -> t_i16);
ifn!("llvm.cttz.i32", fn(t_i32, i1) -> t_i32);
ifn!("llvm.cttz.i64", fn(t_i64, i1) -> t_i64);
ifn!("llvm.cttz.i128", fn(t_i128, i1) -> t_i128);
ifn!("llvm.bswap.i16", fn(t_i16) -> t_i16);
ifn!("llvm.bswap.i32", fn(t_i32) -> t_i32);
ifn!("llvm.bswap.i64", fn(t_i64) -> t_i64);
ifn!("llvm.bswap.i128", fn(t_i128) -> t_i128);
ifn!("llvm.sadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.sadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.sadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.sadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.sadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.uadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.uadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.uadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.uadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.uadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.ssub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.ssub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.ssub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.ssub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.ssub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.usub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.usub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.usub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.usub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.usub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.smul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.smul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.smul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.smul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.smul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.umul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1});
ifn!("llvm.umul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1});
ifn!("llvm.umul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1});
ifn!("llvm.umul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1});
ifn!("llvm.umul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1});
ifn!("llvm.lifetime.start", fn(t_i64,i8p) -> void);
ifn!("llvm.lifetime.end", fn(t_i64, i8p) -> void);
ifn!("llvm.expect.i1", fn(i1, i1) -> i1);
ifn!("llvm.eh.typeid.for", fn(i8p) -> t_i32);
ifn!("llvm.localescape", fn(...) -> void);
ifn!("llvm.localrecover", fn(i8p, i8p, t_i32) -> i8p);
ifn!("llvm.x86.seh.recoverfp", fn(i8p, i8p) -> i8p);
ifn!("llvm.assume", fn(i1) -> void);
if ccx.sess().opts.debuginfo != NoDebugInfo {
ifn!("llvm.dbg.declare", fn(Type::metadata(ccx), Type::metadata(ccx)) -> void);
ifn!("llvm.dbg.value", fn(Type::metadata(ccx), t_i64, Type::metadata(ccx)) -> void);
}
return None;
}