rust/src/librustc_trans/trans/meth.rs
Ariel Ben-Yehuda bd1f73420a Stop using Rc in TraitRef and TraitDef
The former stopped making sense when we started interning substs and made
TraitRef a 2-word copy type, and I'm moving the latter into an arena as
they live as long as the type context.
2015-04-30 15:09:11 +03:00

868 lines
35 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use arena::TypedArena;
use back::abi;
use back::link;
use llvm::{ValueRef, get_param};
use metadata::csearch;
use middle::subst::{Subst, Substs};
use middle::subst::VecPerParamSpace;
use middle::subst;
use middle::traits;
use middle::ty::ClosureTyper;
use trans::base::*;
use trans::build::*;
use trans::callee::*;
use trans::callee;
use trans::cleanup;
use trans::closure;
use trans::common::*;
use trans::consts;
use trans::datum::*;
use trans::debuginfo::DebugLoc;
use trans::declare;
use trans::expr::SaveIn;
use trans::expr;
use trans::glue;
use trans::machine;
use trans::monomorphize;
use trans::type_::Type;
use trans::type_of::*;
use middle::ty::{self, Ty};
use middle::ty::MethodCall;
use util::ppaux::Repr;
use syntax::abi::{Rust, RustCall};
use syntax::parse::token;
use syntax::{ast, ast_map, attr, visit};
use syntax::codemap::DUMMY_SP;
use syntax::ptr::P;
// drop_glue pointer, size, align.
const VTABLE_OFFSET: usize = 3;
/// The main "translation" pass for methods. Generates code
/// for non-monomorphized methods only. Other methods will
/// be generated once they are invoked with specific type parameters,
/// see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`.
pub fn trans_impl(ccx: &CrateContext,
name: ast::Ident,
impl_items: &[P<ast::ImplItem>],
generics: &ast::Generics,
id: ast::NodeId) {
let _icx = push_ctxt("meth::trans_impl");
let tcx = ccx.tcx();
debug!("trans_impl(name={}, id={})", name.repr(tcx), id);
let mut v = TransItemVisitor { ccx: ccx };
// Both here and below with generic methods, be sure to recurse and look for
// items that we need to translate.
if !generics.ty_params.is_empty() {
for impl_item in impl_items {
match impl_item.node {
ast::MethodImplItem(..) => {
visit::walk_impl_item(&mut v, impl_item);
}
_ => {}
}
}
return;
}
for impl_item in impl_items {
match impl_item.node {
ast::MethodImplItem(ref sig, ref body) => {
if sig.generics.ty_params.is_empty() {
let trans_everywhere = attr::requests_inline(&impl_item.attrs);
for (ref ccx, is_origin) in ccx.maybe_iter(trans_everywhere) {
let llfn = get_item_val(ccx, impl_item.id);
let empty_substs = tcx.mk_substs(Substs::trans_empty());
trans_fn(ccx, &sig.decl, body, llfn,
empty_substs, impl_item.id, &[]);
update_linkage(ccx,
llfn,
Some(impl_item.id),
if is_origin { OriginalTranslation } else { InlinedCopy });
}
}
visit::walk_impl_item(&mut v, impl_item);
}
_ => {}
}
}
}
pub fn trans_method_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
method_call: MethodCall,
self_expr: Option<&ast::Expr>,
arg_cleanup_scope: cleanup::ScopeId)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_method_callee");
let (origin, method_ty) =
bcx.tcx().method_map
.borrow()
.get(&method_call)
.map(|method| (method.origin.clone(), method.ty))
.unwrap();
match origin {
ty::MethodStatic(did) |
ty::MethodStaticClosure(did) => {
Callee {
bcx: bcx,
data: Fn(callee::trans_fn_ref(bcx.ccx(),
did,
MethodCallKey(method_call),
bcx.fcx.param_substs).val),
}
}
ty::MethodTypeParam(ty::MethodParam {
ref trait_ref,
method_num,
impl_def_id: _
}) => {
let trait_ref = ty::Binder(bcx.monomorphize(trait_ref));
let span = bcx.tcx().map.span(method_call.expr_id);
debug!("method_call={:?} trait_ref={}",
method_call,
trait_ref.repr(bcx.tcx()));
let origin = fulfill_obligation(bcx.ccx(),
span,
trait_ref.clone());
debug!("origin = {}", origin.repr(bcx.tcx()));
trans_monomorphized_callee(bcx,
method_call,
trait_ref.def_id(),
method_num,
origin)
}
ty::MethodTraitObject(ref mt) => {
let self_expr = match self_expr {
Some(self_expr) => self_expr,
None => {
bcx.sess().span_bug(bcx.tcx().map.span(method_call.expr_id),
"self expr wasn't provided for trait object \
callee (trying to call overloaded op?)")
}
};
trans_trait_callee(bcx,
monomorphize_type(bcx, method_ty),
mt.vtable_index,
self_expr,
arg_cleanup_scope)
}
}
}
pub fn trans_static_method_callee<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
method_id: ast::DefId,
trait_id: ast::DefId,
expr_id: ast::NodeId,
param_substs: &'tcx subst::Substs<'tcx>)
-> Datum<'tcx, Rvalue>
{
let _icx = push_ctxt("meth::trans_static_method_callee");
let tcx = ccx.tcx();
debug!("trans_static_method_callee(method_id={:?}, trait_id={}, \
expr_id={})",
method_id,
ty::item_path_str(tcx, trait_id),
expr_id);
let mname = if method_id.krate == ast::LOCAL_CRATE {
match tcx.map.get(method_id.node) {
ast_map::NodeTraitItem(trait_item) => trait_item.ident.name,
_ => panic!("callee is not a trait method")
}
} else {
csearch::get_item_path(tcx, method_id).last().unwrap().name()
};
debug!("trans_static_method_callee: method_id={:?}, expr_id={}, \
name={}", method_id, expr_id, token::get_name(mname));
// Find the substitutions for the fn itself. This includes
// type parameters that belong to the trait but also some that
// belong to the method:
let rcvr_substs = node_id_substs(ccx, ExprId(expr_id), param_substs);
let subst::SeparateVecsPerParamSpace {
types: rcvr_type,
selfs: rcvr_self,
fns: rcvr_method
} = rcvr_substs.types.split();
// Lookup the precise impl being called. To do that, we need to
// create a trait reference identifying the self type and other
// input type parameters. To create that trait reference, we have
// to pick apart the type parameters to identify just those that
// pertain to the trait. This is easiest to explain by example:
//
// trait Convert {
// fn from<U:Foo>(n: U) -> Option<Self>;
// }
// ...
// let f = <Vec<int> as Convert>::from::<String>(...)
//
// Here, in this call, which I've written with explicit UFCS
// notation, the set of type parameters will be:
//
// rcvr_type: [] <-- nothing declared on the trait itself
// rcvr_self: [Vec<int>] <-- the self type
// rcvr_method: [String] <-- method type parameter
//
// So we create a trait reference using the first two,
// basically corresponding to `<Vec<int> as Convert>`.
// The remaining type parameters (`rcvr_method`) will be used below.
let trait_substs =
Substs::erased(VecPerParamSpace::new(rcvr_type,
rcvr_self,
Vec::new()));
let trait_substs = tcx.mk_substs(trait_substs);
debug!("trait_substs={}", trait_substs.repr(tcx));
let trait_ref = ty::Binder(ty::TraitRef { def_id: trait_id,
substs: trait_substs });
let vtbl = fulfill_obligation(ccx,
DUMMY_SP,
trait_ref);
// Now that we know which impl is being used, we can dispatch to
// the actual function:
match vtbl {
traits::VtableImpl(traits::VtableImplData {
impl_def_id: impl_did,
substs: impl_substs,
nested: _ }) =>
{
assert!(impl_substs.types.all(|t| !ty::type_needs_infer(*t)));
// Create the substitutions that are in scope. This combines
// the type parameters from the impl with those declared earlier.
// To see what I mean, consider a possible impl:
//
// impl<T> Convert for Vec<T> {
// fn from<U:Foo>(n: U) { ... }
// }
//
// Recall that we matched `<Vec<int> as Convert>`. Trait
// resolution will have given us a substitution
// containing `impl_substs=[[T=int],[],[]]` (the type
// parameters defined on the impl). We combine
// that with the `rcvr_method` from before, which tells us
// the type parameters from the *method*, to yield
// `callee_substs=[[T=int],[],[U=String]]`.
let subst::SeparateVecsPerParamSpace {
types: impl_type,
selfs: impl_self,
fns: _
} = impl_substs.types.split();
let callee_substs =
Substs::erased(VecPerParamSpace::new(impl_type,
impl_self,
rcvr_method));
let mth_id = method_with_name(ccx, impl_did, mname);
trans_fn_ref_with_substs(ccx, mth_id, ExprId(expr_id),
param_substs,
callee_substs)
}
traits::VtableObject(ref data) => {
let trait_item_def_ids =
ty::trait_item_def_ids(ccx.tcx(), trait_id);
let method_offset_in_trait =
trait_item_def_ids.iter()
.position(|item| item.def_id() == method_id)
.unwrap();
let (llfn, ty) =
trans_object_shim(ccx,
data.object_ty,
data.upcast_trait_ref.clone(),
method_offset_in_trait);
immediate_rvalue(llfn, ty)
}
_ => {
tcx.sess.bug(&format!("static call to invalid vtable: {}",
vtbl.repr(tcx)));
}
}
}
fn method_with_name(ccx: &CrateContext, impl_id: ast::DefId, name: ast::Name)
-> ast::DefId {
match ccx.impl_method_cache().borrow().get(&(impl_id, name)).cloned() {
Some(m) => return m,
None => {}
}
let impl_items = ccx.tcx().impl_items.borrow();
let impl_items =
impl_items.get(&impl_id)
.expect("could not find impl while translating");
let meth_did = impl_items.iter()
.find(|&did| {
ty::impl_or_trait_item(ccx.tcx(), did.def_id()).name() == name
}).expect("could not find method while \
translating");
ccx.impl_method_cache().borrow_mut().insert((impl_id, name),
meth_did.def_id());
meth_did.def_id()
}
fn trans_monomorphized_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
method_call: MethodCall,
trait_id: ast::DefId,
n_method: usize,
vtable: traits::Vtable<'tcx, ()>)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_monomorphized_callee");
match vtable {
traits::VtableImpl(vtable_impl) => {
let ccx = bcx.ccx();
let impl_did = vtable_impl.impl_def_id;
let mname = match ty::trait_item(ccx.tcx(), trait_id, n_method) {
ty::MethodTraitItem(method) => method.name,
_ => {
bcx.tcx().sess.bug("can't monomorphize a non-method trait \
item")
}
};
let mth_id = method_with_name(bcx.ccx(), impl_did, mname);
// create a concatenated set of substitutions which includes
// those from the impl and those from the method:
let callee_substs =
combine_impl_and_methods_tps(
bcx, MethodCallKey(method_call), vtable_impl.substs);
// translate the function
let llfn = trans_fn_ref_with_substs(bcx.ccx(),
mth_id,
MethodCallKey(method_call),
bcx.fcx.param_substs,
callee_substs).val;
Callee { bcx: bcx, data: Fn(llfn) }
}
traits::VtableClosure(closure_def_id, substs) => {
// The substitutions should have no type parameters remaining
// after passing through fulfill_obligation
let trait_closure_kind = bcx.tcx().lang_items.fn_trait_kind(trait_id).unwrap();
let llfn = closure::trans_closure_method(bcx.ccx(),
closure_def_id,
substs,
MethodCallKey(method_call),
bcx.fcx.param_substs,
trait_closure_kind);
Callee {
bcx: bcx,
data: Fn(llfn),
}
}
traits::VtableFnPointer(fn_ty) => {
let trait_closure_kind = bcx.tcx().lang_items.fn_trait_kind(trait_id).unwrap();
let llfn = trans_fn_pointer_shim(bcx.ccx(), trait_closure_kind, fn_ty);
Callee { bcx: bcx, data: Fn(llfn) }
}
traits::VtableObject(ref data) => {
let (llfn, _) = trans_object_shim(bcx.ccx(),
data.object_ty,
data.upcast_trait_ref.clone(),
n_method);
Callee { bcx: bcx, data: Fn(llfn) }
}
traits::VtableBuiltin(..) |
traits::VtableDefaultImpl(..) |
traits::VtableParam(..) => {
bcx.sess().bug(
&format!("resolved vtable bad vtable {} in trans",
vtable.repr(bcx.tcx())));
}
}
}
/// Creates a concatenated set of substitutions which includes those from the impl and those from
/// the method. This are some subtle complications here. Statically, we have a list of type
/// parameters like `[T0, T1, T2, M1, M2, M3]` where `Tn` are type parameters that appear on the
/// receiver. For example, if the receiver is a method parameter `A` with a bound like
/// `trait<B,C,D>` then `Tn` would be `[B,C,D]`.
///
/// The weird part is that the type `A` might now be bound to any other type, such as `foo<X>`.
/// In that case, the vector we want is: `[X, M1, M2, M3]`. Therefore, what we do now is to slice
/// off the method type parameters and append them to the type parameters from the type that the
/// receiver is mapped to.
fn combine_impl_and_methods_tps<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
node: ExprOrMethodCall,
rcvr_substs: subst::Substs<'tcx>)
-> subst::Substs<'tcx>
{
let ccx = bcx.ccx();
let node_substs = node_id_substs(ccx, node, bcx.fcx.param_substs);
debug!("rcvr_substs={}", rcvr_substs.repr(ccx.tcx()));
debug!("node_substs={}", node_substs.repr(ccx.tcx()));
// Break apart the type parameters from the node and type
// parameters from the receiver.
let node_method = node_substs.types.split().fns;
let subst::SeparateVecsPerParamSpace {
types: rcvr_type,
selfs: rcvr_self,
fns: rcvr_method
} = rcvr_substs.types.clone().split();
assert!(rcvr_method.is_empty());
subst::Substs {
regions: subst::ErasedRegions,
types: subst::VecPerParamSpace::new(rcvr_type, rcvr_self, node_method)
}
}
/// Create a method callee where the method is coming from a trait object (e.g., Box<Trait> type).
/// In this case, we must pull the fn pointer out of the vtable that is packaged up with the
/// object. Objects are represented as a pair, so we first evaluate the self expression and then
/// extract the self data and vtable out of the pair.
fn trans_trait_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
method_ty: Ty<'tcx>,
vtable_index: usize,
self_expr: &ast::Expr,
arg_cleanup_scope: cleanup::ScopeId)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_trait_callee");
let mut bcx = bcx;
// Translate self_datum and take ownership of the value by
// converting to an rvalue.
let self_datum = unpack_datum!(
bcx, expr::trans(bcx, self_expr));
let llval = if bcx.fcx.type_needs_drop(self_datum.ty) {
let self_datum = unpack_datum!(
bcx, self_datum.to_rvalue_datum(bcx, "trait_callee"));
// Convert to by-ref since `trans_trait_callee_from_llval` wants it
// that way.
let self_datum = unpack_datum!(
bcx, self_datum.to_ref_datum(bcx));
// Arrange cleanup in case something should go wrong before the
// actual call occurs.
self_datum.add_clean(bcx.fcx, arg_cleanup_scope)
} else {
// We don't have to do anything about cleanups for &Trait and &mut Trait.
assert!(self_datum.kind.is_by_ref());
self_datum.val
};
trans_trait_callee_from_llval(bcx, method_ty, vtable_index, llval)
}
/// Same as `trans_trait_callee()` above, except that it is given a by-ref pointer to the object
/// pair.
pub fn trans_trait_callee_from_llval<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
callee_ty: Ty<'tcx>,
vtable_index: usize,
llpair: ValueRef)
-> Callee<'blk, 'tcx> {
let _icx = push_ctxt("meth::trans_trait_callee");
let ccx = bcx.ccx();
// Load the data pointer from the object.
debug!("trans_trait_callee_from_llval(callee_ty={}, vtable_index={}, llpair={})",
callee_ty.repr(ccx.tcx()),
vtable_index,
bcx.val_to_string(llpair));
let llboxptr = GEPi(bcx, llpair, &[0, abi::FAT_PTR_ADDR]);
let llbox = Load(bcx, llboxptr);
let llself = PointerCast(bcx, llbox, Type::i8p(ccx));
// Replace the self type (&Self or Box<Self>) with an opaque pointer.
let llcallee_ty = match callee_ty.sty {
ty::ty_bare_fn(_, ref f) if f.abi == Rust || f.abi == RustCall => {
let fake_sig =
ty::Binder(ty::FnSig {
inputs: f.sig.0.inputs[1..].to_vec(),
output: f.sig.0.output,
variadic: f.sig.0.variadic,
});
type_of_rust_fn(ccx, Some(Type::i8p(ccx)), &fake_sig, f.abi)
}
_ => {
ccx.sess().bug("meth::trans_trait_callee given non-bare-rust-fn");
}
};
let llvtable = Load(bcx,
PointerCast(bcx,
GEPi(bcx, llpair,
&[0, abi::FAT_PTR_EXTRA]),
Type::vtable(ccx).ptr_to().ptr_to()));
let mptr = Load(bcx, GEPi(bcx, llvtable, &[0, vtable_index + VTABLE_OFFSET]));
let mptr = PointerCast(bcx, mptr, llcallee_ty.ptr_to());
return Callee {
bcx: bcx,
data: TraitItem(MethodData {
llfn: mptr,
llself: llself,
})
};
}
/// Generate a shim function that allows an object type like `SomeTrait` to
/// implement the type `SomeTrait`. Imagine a trait definition:
///
/// trait SomeTrait { fn get(&self) -> int; ... }
///
/// And a generic bit of code:
///
/// fn foo<T:SomeTrait>(t: &T) {
/// let x = SomeTrait::get;
/// x(t)
/// }
///
/// What is the value of `x` when `foo` is invoked with `T=SomeTrait`?
/// The answer is that it it is a shim function generate by this
/// routine:
///
/// fn shim(t: &SomeTrait) -> int {
/// // ... call t.get() virtually ...
/// }
///
/// In fact, all virtual calls can be thought of as normal trait calls
/// that go through this shim function.
pub fn trans_object_shim<'a, 'tcx>(
ccx: &'a CrateContext<'a, 'tcx>,
object_ty: Ty<'tcx>,
upcast_trait_ref: ty::PolyTraitRef<'tcx>,
method_offset_in_trait: usize)
-> (ValueRef, Ty<'tcx>)
{
let _icx = push_ctxt("trans_object_shim");
let tcx = ccx.tcx();
let trait_id = upcast_trait_ref.def_id();
debug!("trans_object_shim(object_ty={}, upcast_trait_ref={}, method_offset_in_trait={})",
object_ty.repr(tcx),
upcast_trait_ref.repr(tcx),
method_offset_in_trait);
let object_trait_ref =
match object_ty.sty {
ty::ty_trait(ref data) => {
data.principal_trait_ref_with_self_ty(tcx, object_ty)
}
_ => {
tcx.sess.bug(&format!("trans_object_shim() called on non-object: {}",
object_ty.repr(tcx)));
}
};
// Upcast to the trait in question and extract out the substitutions.
let upcast_trait_ref = ty::erase_late_bound_regions(tcx, &upcast_trait_ref);
let object_substs = upcast_trait_ref.substs.clone().erase_regions();
debug!("trans_object_shim: object_substs={}", object_substs.repr(tcx));
// Lookup the type of this method as declared in the trait and apply substitutions.
let method_ty = match ty::trait_item(tcx, trait_id, method_offset_in_trait) {
ty::MethodTraitItem(method) => method,
_ => {
tcx.sess.bug("can't create a method shim for a non-method item")
}
};
let fty = monomorphize::apply_param_substs(tcx, &object_substs, &method_ty.fty);
let fty = tcx.mk_bare_fn(fty);
let method_ty = opaque_method_ty(tcx, fty);
debug!("trans_object_shim: fty={} method_ty={}", fty.repr(tcx), method_ty.repr(tcx));
//
let shim_fn_ty = ty::mk_bare_fn(tcx, None, fty);
let method_bare_fn_ty = ty::mk_bare_fn(tcx, None, method_ty);
let function_name = link::mangle_internal_name_by_type_and_seq(ccx, shim_fn_ty, "object_shim");
let llfn = declare::define_internal_rust_fn(ccx, &function_name, shim_fn_ty).unwrap_or_else(||{
ccx.sess().bug(&format!("symbol `{}` already defined", function_name));
});
let sig = ty::erase_late_bound_regions(ccx.tcx(), &fty.sig);
let empty_substs = tcx.mk_substs(Substs::trans_empty());
let (block_arena, fcx): (TypedArena<_>, FunctionContext);
block_arena = TypedArena::new();
fcx = new_fn_ctxt(ccx,
llfn,
ast::DUMMY_NODE_ID,
false,
sig.output,
empty_substs,
None,
&block_arena);
let mut bcx = init_function(&fcx, false, sig.output);
// the first argument (`self`) will be a trait object
let llobject = get_param(fcx.llfn, fcx.arg_pos(0) as u32);
debug!("trans_object_shim: llobject={}",
bcx.val_to_string(llobject));
// the remaining arguments will be, well, whatever they are
let input_tys =
match fty.abi {
RustCall => {
// unpack the tuple to extract the input type arguments:
match sig.inputs[1].sty {
ty::ty_tup(ref tys) => &**tys,
_ => {
bcx.sess().bug(
&format!("rust-call expects a tuple not {}",
sig.inputs[1].repr(tcx)));
}
}
}
_ => {
// skip the self parameter:
&sig.inputs[1..]
}
};
let llargs: Vec<_> =
input_tys.iter()
.enumerate()
.map(|(i, _)| {
let llarg = get_param(fcx.llfn, fcx.arg_pos(i+1) as u32);
debug!("trans_object_shim: input #{} == {}",
i, bcx.val_to_string(llarg));
llarg
})
.collect();
assert!(!fcx.needs_ret_allocas);
let dest =
fcx.llretslotptr.get().map(
|_| expr::SaveIn(fcx.get_ret_slot(bcx, sig.output, "ret_slot")));
let method_offset_in_vtable =
traits::get_vtable_index_of_object_method(bcx.tcx(),
object_trait_ref.clone(),
trait_id,
method_offset_in_trait);
debug!("trans_object_shim: method_offset_in_vtable={}",
method_offset_in_vtable);
bcx = trans_call_inner(bcx,
DebugLoc::None,
method_bare_fn_ty,
|bcx, _| trans_trait_callee_from_llval(bcx,
method_bare_fn_ty,
method_offset_in_vtable,
llobject),
ArgVals(&llargs),
dest).bcx;
finish_fn(&fcx, bcx, sig.output, DebugLoc::None);
(llfn, method_bare_fn_ty)
}
/// Creates a returns a dynamic vtable for the given type and vtable origin.
/// This is used only for objects.
///
/// The `trait_ref` encodes the erased self type. Hence if we are
/// making an object `Foo<Trait>` from a value of type `Foo<T>`, then
/// `trait_ref` would map `T:Trait`.
pub fn get_vtable<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
param_substs: &'tcx subst::Substs<'tcx>)
-> ValueRef
{
let tcx = ccx.tcx();
let _icx = push_ctxt("meth::get_vtable");
debug!("get_vtable(trait_ref={})", trait_ref.repr(tcx));
// Check the cache.
match ccx.vtables().borrow().get(&trait_ref) {
Some(&val) => { return val }
None => { }
}
// Not in the cache. Build it.
let methods = traits::supertraits(tcx, trait_ref.clone()).flat_map(|trait_ref| {
let vtable = fulfill_obligation(ccx, DUMMY_SP, trait_ref.clone());
match vtable {
// Should default trait error here?
traits::VtableDefaultImpl(_) |
traits::VtableBuiltin(_) => {
Vec::new().into_iter()
}
traits::VtableImpl(
traits::VtableImplData {
impl_def_id: id,
substs,
nested: _ }) => {
emit_vtable_methods(ccx, id, substs, param_substs).into_iter()
}
traits::VtableClosure(closure_def_id, substs) => {
let trait_closure_kind = tcx.lang_items.fn_trait_kind(trait_ref.def_id()).unwrap();
let llfn = closure::trans_closure_method(ccx,
closure_def_id,
substs,
ExprId(0),
param_substs,
trait_closure_kind);
vec![llfn].into_iter()
}
traits::VtableFnPointer(bare_fn_ty) => {
let trait_closure_kind = tcx.lang_items.fn_trait_kind(trait_ref.def_id()).unwrap();
vec![trans_fn_pointer_shim(ccx, trait_closure_kind, bare_fn_ty)].into_iter()
}
traits::VtableObject(ref data) => {
// this would imply that the Self type being erased is
// an object type; this cannot happen because we
// cannot cast an unsized type into a trait object
tcx.sess.bug(
&format!("cannot get vtable for an object type: {}",
data.repr(tcx)));
}
traits::VtableParam(..) => {
tcx.sess.bug(
&format!("resolved vtable for {} to bad vtable {} in trans",
trait_ref.repr(tcx),
vtable.repr(tcx)));
}
}
});
let size_ty = sizing_type_of(ccx, trait_ref.self_ty());
let size = machine::llsize_of_alloc(ccx, size_ty);
let align = align_of(ccx, trait_ref.self_ty());
let components: Vec<_> = vec![
// Generate a destructor for the vtable.
glue::get_drop_glue(ccx, trait_ref.self_ty()),
C_uint(ccx, size),
C_uint(ccx, align)
].into_iter().chain(methods).collect();
let vtable = consts::addr_of(ccx, C_struct(ccx, &components, false), "vtable");
ccx.vtables().borrow_mut().insert(trait_ref, vtable);
vtable
}
fn emit_vtable_methods<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
impl_id: ast::DefId,
substs: subst::Substs<'tcx>,
param_substs: &'tcx subst::Substs<'tcx>)
-> Vec<ValueRef>
{
let tcx = ccx.tcx();
debug!("emit_vtable_methods(impl_id={}, substs={}, param_substs={})",
impl_id.repr(tcx),
substs.repr(tcx),
param_substs.repr(tcx));
let trt_id = match ty::impl_trait_ref(tcx, impl_id) {
Some(t_id) => t_id.def_id,
None => ccx.sess().bug("make_impl_vtable: don't know how to \
make a vtable for a type impl!")
};
ty::populate_implementations_for_trait_if_necessary(tcx, trt_id);
let nullptr = C_null(Type::nil(ccx).ptr_to());
let trait_item_def_ids = ty::trait_item_def_ids(tcx, trt_id);
trait_item_def_ids
.iter()
// Filter out non-method items.
.filter_map(|item_def_id| {
match *item_def_id {
ty::MethodTraitItemId(def_id) => Some(def_id),
_ => None,
}
})
// Now produce pointers for each remaining method. If the
// method could never be called from this object, just supply
// null.
.map(|trait_method_def_id| {
debug!("emit_vtable_methods: trait_method_def_id={}",
trait_method_def_id.repr(tcx));
let trait_method_type = match ty::impl_or_trait_item(tcx, trait_method_def_id) {
ty::MethodTraitItem(m) => m,
_ => ccx.sess().bug("should be a method, not other assoc item"),
};
let name = trait_method_type.name;
// Some methods cannot be called on an object; skip those.
if !traits::is_vtable_safe_method(tcx, trt_id, &trait_method_type) {
debug!("emit_vtable_methods: not vtable safe");
return nullptr;
}
debug!("emit_vtable_methods: trait_method_type={}",
trait_method_type.repr(tcx));
// The substitutions we have are on the impl, so we grab
// the method type from the impl to substitute into.
let impl_method_def_id = method_with_name(ccx, impl_id, name);
let impl_method_type = match ty::impl_or_trait_item(tcx, impl_method_def_id) {
ty::MethodTraitItem(m) => m,
_ => ccx.sess().bug("should be a method, not other assoc item"),
};
debug!("emit_vtable_methods: impl_method_type={}",
impl_method_type.repr(tcx));
// If this is a default method, it's possible that it
// relies on where clauses that do not hold for this
// particular set of type parameters. Note that this
// method could then never be called, so we do not want to
// try and trans it, in that case. Issue #23435.
if ty::provided_source(tcx, impl_method_def_id).is_some() {
let predicates = impl_method_type.predicates.predicates.subst(tcx, &substs);
if !normalize_and_test_predicates(ccx, predicates.into_vec()) {
debug!("emit_vtable_methods: predicates do not hold");
return nullptr;
}
}
trans_fn_ref_with_substs(ccx,
impl_method_def_id,
ExprId(0),
param_substs,
substs.clone()).val
})
.collect()
}
/// Replace the self type (&Self or Box<Self>) with an opaque pointer.
pub fn opaque_method_ty<'tcx>(tcx: &ty::ctxt<'tcx>, method_ty: &ty::BareFnTy<'tcx>)
-> &'tcx ty::BareFnTy<'tcx> {
let mut inputs = method_ty.sig.0.inputs.clone();
inputs[0] = ty::mk_mut_ptr(tcx, ty::mk_mach_int(tcx, ast::TyI8));
tcx.mk_bare_fn(ty::BareFnTy {
unsafety: method_ty.unsafety,
abi: method_ty.abi,
sig: ty::Binder(ty::FnSig {
inputs: inputs,
output: method_ty.sig.0.output,
variadic: method_ty.sig.0.variadic,
}),
})
}