rust/src/librustc/middle/stability.rs
2015-12-17 05:43:27 +00:00

739 lines
29 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A pass that annotates every item and method with its stability level,
//! propagating default levels lexically from parent to children ast nodes.
pub use self::StabilityLevel::*;
use session::Session;
use lint;
use middle::cstore::{CrateStore, LOCAL_CRATE};
use middle::def;
use middle::def_id::{CRATE_DEF_INDEX, DefId};
use middle::ty;
use middle::privacy::AccessLevels;
use syntax::parse::token::InternedString;
use syntax::codemap::{Span, DUMMY_SP};
use syntax::ast;
use syntax::ast::{NodeId, Attribute};
use syntax::feature_gate::{GateIssue, emit_feature_err};
use syntax::attr::{self, Stability, Deprecation, AttrMetaMethods};
use util::nodemap::{DefIdMap, FnvHashSet, FnvHashMap};
use rustc_front::hir;
use rustc_front::hir::{Crate, Item, Generics, StructField, Variant};
use rustc_front::intravisit::{self, Visitor};
use std::mem::replace;
use std::cmp::Ordering;
#[derive(RustcEncodable, RustcDecodable, PartialEq, PartialOrd, Clone, Copy, Debug, Eq, Hash)]
pub enum StabilityLevel {
Unstable,
Stable,
}
impl StabilityLevel {
pub fn from_attr_level(level: &attr::StabilityLevel) -> Self {
if level.is_stable() { Stable } else { Unstable }
}
}
#[derive(PartialEq)]
enum AnnotationKind {
// Annotation is required if not inherited from unstable parents
Required,
// Annotation is useless, reject it
Prohibited,
// Annotation itself is useless, but it can be propagated to children
Container,
}
/// A stability index, giving the stability level for items and methods.
pub struct Index<'tcx> {
/// This is mostly a cache, except the stabilities of local items
/// are filled by the annotator.
stab_map: DefIdMap<Option<&'tcx Stability>>,
depr_map: DefIdMap<Option<Deprecation>>,
/// Maps for each crate whether it is part of the staged API.
staged_api: FnvHashMap<ast::CrateNum, bool>
}
// A private tree-walker for producing an Index.
struct Annotator<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
index: &'a mut Index<'tcx>,
parent_stab: Option<&'tcx Stability>,
parent_depr: Option<Deprecation>,
access_levels: &'a AccessLevels,
in_trait_impl: bool,
in_enum: bool,
}
impl<'a, 'tcx: 'a> Annotator<'a, 'tcx> {
// Determine the stability for a node based on its attributes and inherited
// stability. The stability is recorded in the index and used as the parent.
fn annotate<F>(&mut self, id: NodeId, attrs: &Vec<Attribute>,
item_sp: Span, kind: AnnotationKind, visit_children: F)
where F: FnOnce(&mut Annotator)
{
if self.index.staged_api[&LOCAL_CRATE] && self.tcx.sess.features.borrow().staged_api {
debug!("annotate(id = {:?}, attrs = {:?})", id, attrs);
if let Some(..) = attr::find_deprecation(self.tcx.sess.diagnostic(), attrs, item_sp) {
self.tcx.sess.span_err(item_sp, "`#[deprecated]` cannot be used in staged api, \
use `#[rustc_deprecated]` instead");
}
if let Some(mut stab) = attr::find_stability(self.tcx.sess.diagnostic(),
attrs, item_sp) {
// Error if prohibited, or can't inherit anything from a container
if kind == AnnotationKind::Prohibited ||
(kind == AnnotationKind::Container &&
stab.level.is_stable() &&
stab.rustc_depr.is_none()) {
self.tcx.sess.span_err(item_sp, "This stability annotation is useless");
}
debug!("annotate: found {:?}", stab);
// If parent is deprecated and we're not, inherit this by merging
// deprecated_since and its reason.
if let Some(parent_stab) = self.parent_stab {
if parent_stab.rustc_depr.is_some() && stab.rustc_depr.is_none() {
stab.rustc_depr = parent_stab.rustc_depr.clone()
}
}
let stab = self.tcx.intern_stability(stab);
// Check if deprecated_since < stable_since. If it is,
// this is *almost surely* an accident.
if let (&Some(attr::RustcDeprecation {since: ref dep_since, ..}),
&attr::Stable {since: ref stab_since}) = (&stab.rustc_depr, &stab.level) {
// Explicit version of iter::order::lt to handle parse errors properly
for (dep_v, stab_v) in dep_since.split(".").zip(stab_since.split(".")) {
if let (Ok(dep_v), Ok(stab_v)) = (dep_v.parse::<u64>(), stab_v.parse()) {
match dep_v.cmp(&stab_v) {
Ordering::Less => {
self.tcx.sess.span_err(item_sp, "An API can't be stabilized \
after it is deprecated");
break
}
Ordering::Equal => continue,
Ordering::Greater => break,
}
} else {
// Act like it isn't less because the question is now nonsensical,
// and this makes us not do anything else interesting.
self.tcx.sess.span_err(item_sp, "Invalid stability or deprecation \
version found");
break
}
}
}
let def_id = self.tcx.map.local_def_id(id);
self.index.stab_map.insert(def_id, Some(stab));
let orig_parent_stab = replace(&mut self.parent_stab, Some(stab));
visit_children(self);
self.parent_stab = orig_parent_stab;
} else {
debug!("annotate: not found, parent = {:?}", self.parent_stab);
let mut is_error = kind == AnnotationKind::Required &&
self.access_levels.is_reachable(id) &&
!self.tcx.sess.opts.test;
if let Some(stab) = self.parent_stab {
if stab.level.is_unstable() {
let def_id = self.tcx.map.local_def_id(id);
self.index.stab_map.insert(def_id, Some(stab));
is_error = false;
}
}
if is_error {
self.tcx.sess.span_err(item_sp, "This node does not have \
a stability attribute");
}
visit_children(self);
}
} else {
// Emit errors for non-staged-api crates.
for attr in attrs {
let tag = attr.name();
if tag == "unstable" || tag == "stable" || tag == "rustc_deprecated" {
attr::mark_used(attr);
self.tcx.sess.span_err(attr.span(), "stability attributes may not be used \
outside of the standard library");
}
}
if let Some(depr) = attr::find_deprecation(self.tcx.sess.diagnostic(), attrs, item_sp) {
if kind == AnnotationKind::Prohibited {
self.tcx.sess.span_err(item_sp, "This deprecation annotation is useless");
}
// `Deprecation` is just two pointers, no need to intern it
let def_id = self.tcx.map.local_def_id(id);
self.index.depr_map.insert(def_id, Some(depr.clone()));
let orig_parent_depr = replace(&mut self.parent_depr, Some(depr));
visit_children(self);
self.parent_depr = orig_parent_depr;
} else if let Some(depr) = self.parent_depr.clone() {
let def_id = self.tcx.map.local_def_id(id);
self.index.depr_map.insert(def_id, Some(depr));
visit_children(self);
} else {
visit_children(self);
}
}
}
}
impl<'a, 'tcx, 'v> Visitor<'v> for Annotator<'a, 'tcx> {
/// Because stability levels are scoped lexically, we want to walk
/// nested items in the context of the outer item, so enable
/// deep-walking.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, i: &Item) {
let orig_in_trait_impl = self.in_trait_impl;
let orig_in_enum = self.in_enum;
let mut kind = AnnotationKind::Required;
match i.node {
// Inherent impls and foreign modules serve only as containers for other items,
// they don't have their own stability. They still can be annotated as unstable
// and propagate this unstability to children, but this annotation is completely
// optional. They inherit stability from their parents when unannotated.
hir::ItemImpl(_, _, _, None, _, _) | hir::ItemForeignMod(..) => {
self.in_trait_impl = false;
kind = AnnotationKind::Container;
}
hir::ItemImpl(_, _, _, Some(_), _, _) => {
self.in_trait_impl = true;
}
hir::ItemStruct(ref sd, _) => {
self.in_enum = false;
if !sd.is_struct() {
self.annotate(sd.id(), &i.attrs, i.span, AnnotationKind::Required, |_| {})
}
}
hir::ItemEnum(..) => {
self.in_enum = true;
}
_ => {}
}
self.annotate(i.id, &i.attrs, i.span, kind, |v| {
intravisit::walk_item(v, i)
});
self.in_trait_impl = orig_in_trait_impl;
self.in_enum = orig_in_enum;
}
fn visit_trait_item(&mut self, ti: &hir::TraitItem) {
self.annotate(ti.id, &ti.attrs, ti.span, AnnotationKind::Required, |v| {
intravisit::walk_trait_item(v, ti);
});
}
fn visit_impl_item(&mut self, ii: &hir::ImplItem) {
let kind = if self.in_trait_impl {
AnnotationKind::Prohibited
} else {
AnnotationKind::Required
};
self.annotate(ii.id, &ii.attrs, ii.span, kind, |v| {
intravisit::walk_impl_item(v, ii);
});
}
fn visit_variant(&mut self, var: &Variant, g: &'v Generics, item_id: NodeId) {
self.annotate(var.node.data.id(), &var.node.attrs, var.span, AnnotationKind::Required, |v| {
intravisit::walk_variant(v, var, g, item_id);
})
}
fn visit_struct_field(&mut self, s: &StructField) {
// FIXME: This is temporary, can't use attributes with tuple variant fields until snapshot
let kind = if self.in_enum && s.node.kind.is_unnamed() {
AnnotationKind::Prohibited
} else {
AnnotationKind::Required
};
self.annotate(s.node.id, &s.node.attrs, s.span, kind, |v| {
intravisit::walk_struct_field(v, s);
});
}
fn visit_foreign_item(&mut self, i: &hir::ForeignItem) {
self.annotate(i.id, &i.attrs, i.span, AnnotationKind::Required, |v| {
intravisit::walk_foreign_item(v, i);
});
}
fn visit_macro_def(&mut self, md: &'v hir::MacroDef) {
if md.imported_from.is_none() {
self.annotate(md.id, &md.attrs, md.span, AnnotationKind::Required, |_| {});
}
}
}
impl<'tcx> Index<'tcx> {
/// Construct the stability index for a crate being compiled.
pub fn build(&mut self, tcx: &ty::ctxt<'tcx>, krate: &Crate, access_levels: &AccessLevels) {
let mut annotator = Annotator {
tcx: tcx,
index: self,
parent_stab: None,
parent_depr: None,
access_levels: access_levels,
in_trait_impl: false,
in_enum: false,
};
annotator.annotate(ast::CRATE_NODE_ID, &krate.attrs, krate.span, AnnotationKind::Required,
|v| intravisit::walk_crate(v, krate));
}
pub fn new(krate: &Crate) -> Index<'tcx> {
let mut is_staged_api = false;
for attr in &krate.attrs {
if attr.name() == "stable" || attr.name() == "unstable" {
is_staged_api = true;
break
}
}
let mut staged_api = FnvHashMap();
staged_api.insert(LOCAL_CRATE, is_staged_api);
Index {
staged_api: staged_api,
stab_map: DefIdMap(),
depr_map: DefIdMap(),
}
}
}
/// Cross-references the feature names of unstable APIs with enabled
/// features and possibly prints errors. Returns a list of all
/// features used.
pub fn check_unstable_api_usage(tcx: &ty::ctxt)
-> FnvHashMap<InternedString, StabilityLevel> {
let ref active_lib_features = tcx.sess.features.borrow().declared_lib_features;
// Put the active features into a map for quick lookup
let active_features = active_lib_features.iter().map(|&(ref s, _)| s.clone()).collect();
let mut checker = Checker {
tcx: tcx,
active_features: active_features,
used_features: FnvHashMap(),
in_skip_block: 0,
};
intravisit::walk_crate(&mut checker, tcx.map.krate());
let used_features = checker.used_features;
return used_features;
}
struct Checker<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
active_features: FnvHashSet<InternedString>,
used_features: FnvHashMap<InternedString, StabilityLevel>,
// Within a block where feature gate checking can be skipped.
in_skip_block: u32,
}
impl<'a, 'tcx> Checker<'a, 'tcx> {
fn check(&mut self, id: DefId, span: Span,
stab: &Option<&Stability>, _depr: &Option<Deprecation>) {
if !is_staged_api(self.tcx, id) {
return;
}
// Only the cross-crate scenario matters when checking unstable APIs
let cross_crate = !id.is_local();
if !cross_crate {
return
}
// We don't need to check for stability - presumably compiler generated code.
if self.in_skip_block > 0 {
return;
}
match *stab {
Some(&Stability { level: attr::Unstable {ref reason, issue}, ref feature, .. }) => {
self.used_features.insert(feature.clone(), Unstable);
if !self.active_features.contains(feature) {
let msg = match *reason {
Some(ref r) => format!("use of unstable library feature '{}': {}",
&feature, &r),
None => format!("use of unstable library feature '{}'", &feature)
};
emit_feature_err(&self.tcx.sess.parse_sess.span_diagnostic,
&feature, span, GateIssue::Library(Some(issue)), &msg);
}
}
Some(&Stability { ref level, ref feature, .. }) => {
self.used_features.insert(feature.clone(), StabilityLevel::from_attr_level(level));
// Stable APIs are always ok to call and deprecated APIs are
// handled by a lint.
}
None => {
// This is an 'unmarked' API, which should not exist
// in the standard library.
if self.tcx.sess.features.borrow().unmarked_api {
self.tcx.sess.span_warn(span, "use of unmarked library feature");
self.tcx.sess.span_note(span, "this is either a bug in the library you are \
using or a bug in the compiler - please \
report it in both places");
} else {
self.tcx.sess.span_err(span, "use of unmarked library feature");
self.tcx.sess.span_note(span, "this is either a bug in the library you are \
using or a bug in the compiler - please \
report it in both places");
self.tcx.sess.span_note(span, "use #![feature(unmarked_api)] in the \
crate attributes to override this");
}
}
}
}
}
impl<'a, 'v, 'tcx> Visitor<'v> for Checker<'a, 'tcx> {
/// Because stability levels are scoped lexically, we want to walk
/// nested items in the context of the outer item, so enable
/// deep-walking.
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.tcx.map.expect_item(item.id))
}
fn visit_item(&mut self, item: &hir::Item) {
// When compiling with --test we don't enforce stability on the
// compiler-generated test module, demarcated with `DUMMY_SP` plus the
// name `__test`
if item.span == DUMMY_SP && item.name.as_str() == "__test" { return }
check_item(self.tcx, item, true,
&mut |id, sp, stab, depr| self.check(id, sp, stab, depr));
intravisit::walk_item(self, item);
}
fn visit_expr(&mut self, ex: &hir::Expr) {
check_expr(self.tcx, ex,
&mut |id, sp, stab, depr| self.check(id, sp, stab, depr));
intravisit::walk_expr(self, ex);
}
fn visit_path(&mut self, path: &hir::Path, id: ast::NodeId) {
check_path(self.tcx, path, id,
&mut |id, sp, stab, depr| self.check(id, sp, stab, depr));
intravisit::walk_path(self, path)
}
fn visit_path_list_item(&mut self, prefix: &hir::Path, item: &hir::PathListItem) {
check_path_list_item(self.tcx, item,
&mut |id, sp, stab, depr| self.check(id, sp, stab, depr));
intravisit::walk_path_list_item(self, prefix, item)
}
fn visit_pat(&mut self, pat: &hir::Pat) {
check_pat(self.tcx, pat,
&mut |id, sp, stab, depr| self.check(id, sp, stab, depr));
intravisit::walk_pat(self, pat)
}
fn visit_block(&mut self, b: &hir::Block) {
let old_skip_count = self.in_skip_block;
match b.rules {
hir::BlockCheckMode::PushUnstableBlock => {
self.in_skip_block += 1;
}
hir::BlockCheckMode::PopUnstableBlock => {
self.in_skip_block = self.in_skip_block.checked_sub(1).unwrap();
}
_ => {}
}
intravisit::walk_block(self, b);
self.in_skip_block = old_skip_count;
}
}
/// Helper for discovering nodes to check for stability
pub fn check_item(tcx: &ty::ctxt, item: &hir::Item, warn_about_defns: bool,
cb: &mut FnMut(DefId, Span, &Option<&Stability>, &Option<Deprecation>)) {
match item.node {
hir::ItemExternCrate(_) => {
// compiler-generated `extern crate` items have a dummy span.
if item.span == DUMMY_SP { return }
let cnum = match tcx.sess.cstore.extern_mod_stmt_cnum(item.id) {
Some(cnum) => cnum,
None => return,
};
let id = DefId { krate: cnum, index: CRATE_DEF_INDEX };
maybe_do_stability_check(tcx, id, item.span, cb);
}
// For implementations of traits, check the stability of each item
// individually as it's possible to have a stable trait with unstable
// items.
hir::ItemImpl(_, _, _, Some(ref t), _, ref impl_items) => {
let trait_did = tcx.def_map.borrow().get(&t.ref_id).unwrap().def_id();
let trait_items = tcx.trait_items(trait_did);
for impl_item in impl_items {
let item = trait_items.iter().find(|item| {
item.name() == impl_item.name
}).unwrap();
if warn_about_defns {
maybe_do_stability_check(tcx, item.def_id(), impl_item.span, cb);
}
}
}
_ => (/* pass */)
}
}
/// Helper for discovering nodes to check for stability
pub fn check_expr(tcx: &ty::ctxt, e: &hir::Expr,
cb: &mut FnMut(DefId, Span, &Option<&Stability>, &Option<Deprecation>)) {
let span;
let id = match e.node {
hir::ExprMethodCall(i, _, _) => {
span = i.span;
let method_call = ty::MethodCall::expr(e.id);
tcx.tables.borrow().method_map[&method_call].def_id
}
hir::ExprField(ref base_e, ref field) => {
span = field.span;
match tcx.expr_ty_adjusted(base_e).sty {
ty::TyStruct(def, _) => def.struct_variant().field_named(field.node).did,
_ => tcx.sess.span_bug(e.span,
"stability::check_expr: named field access on non-struct")
}
}
hir::ExprTupField(ref base_e, ref field) => {
span = field.span;
match tcx.expr_ty_adjusted(base_e).sty {
ty::TyStruct(def, _) => def.struct_variant().fields[field.node].did,
ty::TyTuple(..) => return,
_ => tcx.sess.span_bug(e.span,
"stability::check_expr: unnamed field access on \
something other than a tuple or struct")
}
}
hir::ExprStruct(_, ref expr_fields, _) => {
let type_ = tcx.expr_ty(e);
match type_.sty {
ty::TyStruct(def, _) => {
// check the stability of each field that appears
// in the construction expression.
for field in expr_fields {
let did = def.struct_variant()
.field_named(field.name.node)
.did;
maybe_do_stability_check(tcx, did, field.span, cb);
}
// we're done.
return
}
// we don't look at stability attributes on
// struct-like enums (yet...), but it's definitely not
// a bug to have construct one.
ty::TyEnum(..) => return,
_ => {
tcx.sess.span_bug(e.span,
&format!("stability::check_expr: struct construction \
of non-struct, type {:?}",
type_));
}
}
}
_ => return
};
maybe_do_stability_check(tcx, id, span, cb);
}
pub fn check_path(tcx: &ty::ctxt, path: &hir::Path, id: ast::NodeId,
cb: &mut FnMut(DefId, Span, &Option<&Stability>, &Option<Deprecation>)) {
match tcx.def_map.borrow().get(&id).map(|d| d.full_def()) {
Some(def::DefPrimTy(..)) => {}
Some(def::DefSelfTy(..)) => {}
Some(def) => {
maybe_do_stability_check(tcx, def.def_id(), path.span, cb);
}
None => {}
}
}
pub fn check_path_list_item(tcx: &ty::ctxt, item: &hir::PathListItem,
cb: &mut FnMut(DefId, Span, &Option<&Stability>, &Option<Deprecation>)) {
match tcx.def_map.borrow().get(&item.node.id()).map(|d| d.full_def()) {
Some(def::DefPrimTy(..)) => {}
Some(def) => {
maybe_do_stability_check(tcx, def.def_id(), item.span, cb);
}
None => {}
}
}
pub fn check_pat(tcx: &ty::ctxt, pat: &hir::Pat,
cb: &mut FnMut(DefId, Span, &Option<&Stability>, &Option<Deprecation>)) {
debug!("check_pat(pat = {:?})", pat);
if is_internal(tcx, pat.span) { return; }
let v = match tcx.pat_ty_opt(pat) {
Some(&ty::TyS { sty: ty::TyStruct(def, _), .. }) => def.struct_variant(),
Some(_) | None => return,
};
match pat.node {
// Foo(a, b, c)
// A Variant(..) pattern `hir::PatEnum(_, None)` doesn't have to be recursed into.
hir::PatEnum(_, Some(ref pat_fields)) => {
for (field, struct_field) in pat_fields.iter().zip(&v.fields) {
maybe_do_stability_check(tcx, struct_field.did, field.span, cb)
}
}
// Foo { a, b, c }
hir::PatStruct(_, ref pat_fields, _) => {
for field in pat_fields {
let did = v.field_named(field.node.name).did;
maybe_do_stability_check(tcx, did, field.span, cb);
}
}
// everything else is fine.
_ => {}
}
}
fn maybe_do_stability_check(tcx: &ty::ctxt, id: DefId, span: Span,
cb: &mut FnMut(DefId, Span,
&Option<&Stability>, &Option<Deprecation>)) {
if is_internal(tcx, span) {
debug!("maybe_do_stability_check: \
skipping span={:?} since it is internal", span);
return;
}
let (stability, deprecation) = if is_staged_api(tcx, id) {
(lookup_stability(tcx, id), None)
} else {
(None, lookup_deprecation(tcx, id))
};
debug!("maybe_do_stability_check: \
inspecting id={:?} span={:?} of stability={:?}", id, span, stability);
cb(id, span, &stability, &deprecation);
}
fn is_internal(tcx: &ty::ctxt, span: Span) -> bool {
tcx.sess.codemap().span_allows_unstable(span)
}
fn is_staged_api(tcx: &ty::ctxt, id: DefId) -> bool {
match tcx.trait_item_of_item(id) {
Some(ty::MethodTraitItemId(trait_method_id))
if trait_method_id != id => {
is_staged_api(tcx, trait_method_id)
}
_ => {
*tcx.stability.borrow_mut().staged_api.entry(id.krate).or_insert_with(
|| tcx.sess.cstore.is_staged_api(id.krate))
}
}
}
/// Lookup the stability for a node, loading external crate
/// metadata as necessary.
pub fn lookup_stability<'tcx>(tcx: &ty::ctxt<'tcx>, id: DefId) -> Option<&'tcx Stability> {
if let Some(st) = tcx.stability.borrow().stab_map.get(&id) {
return *st;
}
let st = lookup_stability_uncached(tcx, id);
tcx.stability.borrow_mut().stab_map.insert(id, st);
st
}
pub fn lookup_deprecation<'tcx>(tcx: &ty::ctxt<'tcx>, id: DefId) -> Option<Deprecation> {
if let Some(depr) = tcx.stability.borrow().depr_map.get(&id) {
return depr.clone();
}
let depr = lookup_deprecation_uncached(tcx, id);
tcx.stability.borrow_mut().depr_map.insert(id, depr.clone());
depr
}
fn lookup_stability_uncached<'tcx>(tcx: &ty::ctxt<'tcx>, id: DefId) -> Option<&'tcx Stability> {
debug!("lookup(id={:?})", id);
if id.is_local() {
None // The stability cache is filled partially lazily
} else {
tcx.sess.cstore.stability(id).map(|st| tcx.intern_stability(st))
}
}
fn lookup_deprecation_uncached<'tcx>(tcx: &ty::ctxt<'tcx>, id: DefId) -> Option<Deprecation> {
debug!("lookup(id={:?})", id);
if id.is_local() {
None // The stability cache is filled partially lazily
} else {
tcx.sess.cstore.deprecation(id)
}
}
/// Given the list of enabled features that were not language features (i.e. that
/// were expected to be library features), and the list of features used from
/// libraries, identify activated features that don't exist and error about them.
pub fn check_unused_or_stable_features(sess: &Session,
lib_features_used: &FnvHashMap<InternedString,
StabilityLevel>) {
let ref declared_lib_features = sess.features.borrow().declared_lib_features;
let mut remaining_lib_features: FnvHashMap<InternedString, Span>
= declared_lib_features.clone().into_iter().collect();
let stable_msg = "this feature is stable. attribute no longer needed";
for &span in &sess.features.borrow().declared_stable_lang_features {
sess.add_lint(lint::builtin::STABLE_FEATURES,
ast::CRATE_NODE_ID,
span,
stable_msg.to_string());
}
for (used_lib_feature, level) in lib_features_used {
match remaining_lib_features.remove(used_lib_feature) {
Some(span) => {
if *level == Stable {
sess.add_lint(lint::builtin::STABLE_FEATURES,
ast::CRATE_NODE_ID,
span,
stable_msg.to_string());
}
}
None => ( /* used but undeclared, handled during the previous ast visit */ )
}
}
for &span in remaining_lib_features.values() {
sess.add_lint(lint::builtin::UNUSED_FEATURES,
ast::CRATE_NODE_ID,
span,
"unused or unknown feature".to_string());
}
}