rust/src/libstd/rt/task.rs
Brian Anderson 3c9e393354 std::rt: Run local storage cleanup and the box annihilator inside the try/catch
And before collect_failure. These are both running user dtors and need to be handled
in the task try/catch block and before the final task cleanup code.
2013-08-03 14:43:16 -07:00

576 lines
18 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Language-level runtime services that should reasonably expected
//! to be available 'everywhere'. Local heaps, GC, unwinding,
//! local storage, and logging. Even a 'freestanding' Rust would likely want
//! to implement this.
use borrow;
use cast::transmute;
use cleanup;
use libc::{c_void, uintptr_t};
use ptr;
use prelude::*;
use option::{Option, Some, None};
use rt::kill::Death;
use rt::local::Local;
use rt::logging::StdErrLogger;
use super::local_heap::LocalHeap;
use rt::sched::{Scheduler, SchedHandle};
use rt::stack::{StackSegment, StackPool};
use rt::context::Context;
use unstable::finally::Finally;
use task::spawn::Taskgroup;
use cell::Cell;
// The Task struct represents all state associated with a rust
// task. There are at this point two primary "subtypes" of task,
// however instead of using a subtype we just have a "task_type" field
// in the struct. This contains a pointer to another struct that holds
// the type-specific state.
pub struct Task {
heap: LocalHeap,
gc: GarbageCollector,
storage: LocalStorage,
logger: StdErrLogger,
unwinder: Unwinder,
taskgroup: Option<Taskgroup>,
death: Death,
destroyed: bool,
// FIXME(#6874/#7599) use StringRef to save on allocations
name: Option<~str>,
coroutine: Option<Coroutine>,
sched: Option<~Scheduler>,
task_type: TaskType
}
pub enum TaskType {
GreenTask(Option<~SchedHome>),
SchedTask
}
/// A coroutine is nothing more than a (register context, stack) pair.
pub struct Coroutine {
/// The segment of stack on which the task is currently running or
/// if the task is blocked, on which the task will resume
/// execution.
priv current_stack_segment: StackSegment,
/// Always valid if the task is alive and not running.
saved_context: Context
}
/// Some tasks have a deciated home scheduler that they must run on.
pub enum SchedHome {
AnySched,
Sched(SchedHandle)
}
pub struct GarbageCollector;
pub struct LocalStorage(*c_void, Option<extern "Rust" fn(*c_void)>);
pub struct Unwinder {
unwinding: bool,
}
impl Task {
// A helper to build a new task using the dynamically found
// scheduler and task. Only works in GreenTask context.
pub fn build_homed_child(f: ~fn(), home: SchedHome) -> ~Task {
let f = Cell::new(f);
let home = Cell::new(home);
do Local::borrow::<Task, ~Task> |running_task| {
let mut sched = running_task.sched.take_unwrap();
let new_task = ~running_task.new_child_homed(&mut sched.stack_pool,
home.take(),
f.take());
running_task.sched = Some(sched);
new_task
}
}
pub fn build_child(f: ~fn()) -> ~Task {
Task::build_homed_child(f, AnySched)
}
pub fn build_homed_root(f: ~fn(), home: SchedHome) -> ~Task {
let f = Cell::new(f);
let home = Cell::new(home);
do Local::borrow::<Task, ~Task> |running_task| {
let mut sched = running_task.sched.take_unwrap();
let new_task = ~Task::new_root_homed(&mut sched.stack_pool,
home.take(),
f.take());
running_task.sched = Some(sched);
new_task
}
}
pub fn build_root(f: ~fn()) -> ~Task {
Task::build_homed_root(f, AnySched)
}
pub fn new_sched_task() -> Task {
Task {
heap: LocalHeap::new(),
gc: GarbageCollector,
storage: LocalStorage(ptr::null(), None),
logger: StdErrLogger,
unwinder: Unwinder { unwinding: false },
taskgroup: None,
death: Death::new(),
destroyed: false,
coroutine: Some(Coroutine::empty()),
name: None,
sched: None,
task_type: SchedTask
}
}
pub fn new_root(stack_pool: &mut StackPool,
start: ~fn()) -> Task {
Task::new_root_homed(stack_pool, AnySched, start)
}
pub fn new_child(&mut self,
stack_pool: &mut StackPool,
start: ~fn()) -> Task {
self.new_child_homed(stack_pool, AnySched, start)
}
pub fn new_root_homed(stack_pool: &mut StackPool,
home: SchedHome,
start: ~fn()) -> Task {
Task {
heap: LocalHeap::new(),
gc: GarbageCollector,
storage: LocalStorage(ptr::null(), None),
logger: StdErrLogger,
unwinder: Unwinder { unwinding: false },
taskgroup: None,
death: Death::new(),
destroyed: false,
name: None,
coroutine: Some(Coroutine::new(stack_pool, start)),
sched: None,
task_type: GreenTask(Some(~home))
}
}
pub fn new_child_homed(&mut self,
stack_pool: &mut StackPool,
home: SchedHome,
start: ~fn()) -> Task {
Task {
heap: LocalHeap::new(),
gc: GarbageCollector,
storage: LocalStorage(ptr::null(), None),
logger: StdErrLogger,
unwinder: Unwinder { unwinding: false },
taskgroup: None,
// FIXME(#7544) make watching optional
death: self.death.new_child(),
destroyed: false,
name: None,
coroutine: Some(Coroutine::new(stack_pool, start)),
sched: None,
task_type: GreenTask(Some(~home))
}
}
pub fn give_home(&mut self, new_home: SchedHome) {
match self.task_type {
GreenTask(ref mut home) => {
*home = Some(~new_home);
}
SchedTask => {
rtabort!("type error: used SchedTask as GreenTask");
}
}
}
pub fn take_unwrap_home(&mut self) -> SchedHome {
match self.task_type {
GreenTask(ref mut home) => {
let out = home.take_unwrap();
return *out;
}
SchedTask => {
rtabort!("type error: used SchedTask as GreenTask");
}
}
}
pub fn run(&mut self, f: &fn()) {
rtdebug!("run called on task: %u", borrow::to_uint(self));
// The only try/catch block in the world. Attempt to run the task's
// client-specified code and catch any failures.
do self.unwinder.try {
// Run the task main function, then do some cleanup.
do f.finally {
// Destroy task-local storage. This may run user dtors.
match self.storage {
LocalStorage(ptr, Some(ref dtor)) => {
(*dtor)(ptr)
}
_ => ()
}
// Destroy remaining boxes. Also may run user dtors.
unsafe { cleanup::annihilate(); }
}
}
// FIXME(#7544): We pass the taskgroup into death so that it can be
// dropped while the unkillable counter is set. This should not be
// necessary except for an extraneous clone() in task/spawn.rs that
// causes a killhandle to get dropped, which mustn't receive a kill
// signal since we're outside of the unwinder's try() scope.
// { let _ = self.taskgroup.take(); }
self.death.collect_failure(!self.unwinder.unwinding, self.taskgroup.take());
self.destroyed = true;
}
// New utility functions for homes.
pub fn is_home_no_tls(&self, sched: &~Scheduler) -> bool {
match self.task_type {
GreenTask(Some(~AnySched)) => { false }
GreenTask(Some(~Sched(SchedHandle { sched_id: ref id, _}))) => {
*id == sched.sched_id()
}
GreenTask(None) => {
rtabort!("task without home");
}
SchedTask => {
// Awe yea
rtabort!("type error: expected: GreenTask, found: SchedTask");
}
}
}
pub fn homed(&self) -> bool {
match self.task_type {
GreenTask(Some(~AnySched)) => { false }
GreenTask(Some(~Sched(SchedHandle { _ }))) => { true }
GreenTask(None) => {
rtabort!("task without home");
}
SchedTask => {
rtabort!("type error: expected: GreenTask, found: SchedTask");
}
}
}
// Grab both the scheduler and the task from TLS and check if the
// task is executing on an appropriate scheduler.
pub fn on_appropriate_sched() -> bool {
do Local::borrow::<Task,bool> |task| {
let sched_id = task.sched.get_ref().sched_id();
let sched_run_anything = task.sched.get_ref().run_anything;
match task.task_type {
GreenTask(Some(~AnySched)) => {
rtdebug!("anysched task in sched check ****");
sched_run_anything
}
GreenTask(Some(~Sched(SchedHandle { sched_id: ref id, _ }))) => {
rtdebug!("homed task in sched check ****");
*id == sched_id
}
GreenTask(None) => {
rtabort!("task without home");
}
SchedTask => {
rtabort!("type error: expected: GreenTask, found: SchedTask");
}
}
}
}
}
impl Drop for Task {
fn drop(&self) {
rtdebug!("called drop for a task: %u", borrow::to_uint(self));
assert!(self.destroyed)
}
}
// Coroutines represent nothing more than a context and a stack
// segment.
impl Coroutine {
pub fn new(stack_pool: &mut StackPool, start: ~fn()) -> Coroutine {
static MIN_STACK_SIZE: uint = 2000000; // XXX: Too much stack
let start = Coroutine::build_start_wrapper(start);
let mut stack = stack_pool.take_segment(MIN_STACK_SIZE);
let initial_context = Context::new(start, &mut stack);
Coroutine {
current_stack_segment: stack,
saved_context: initial_context
}
}
pub fn empty() -> Coroutine {
Coroutine {
current_stack_segment: StackSegment::new(0),
saved_context: Context::empty()
}
}
fn build_start_wrapper(start: ~fn()) -> ~fn() {
let start_cell = Cell::new(start);
let wrapper: ~fn() = || {
// First code after swap to this new context. Run our
// cleanup job.
unsafe {
// Again - might work while safe, or it might not.
do Local::borrow::<Scheduler,()> |sched| {
(sched).run_cleanup_job();
}
// To call the run method on a task we need a direct
// reference to it. The task is in TLS, so we can
// simply unsafe_borrow it to get this reference. We
// need to still have the task in TLS though, so we
// need to unsafe_borrow.
let task = Local::unsafe_borrow::<Task>();
do (*task).run {
// N.B. Removing `start` from the start wrapper
// closure by emptying a cell is critical for
// correctness. The ~Task pointer, and in turn the
// closure used to initialize the first call
// frame, is destroyed in the scheduler context,
// not task context. So any captured closures must
// not contain user-definable dtors that expect to
// be in task context. By moving `start` out of
// the closure, all the user code goes our of
// scope while the task is still running.
let start = start_cell.take();
start();
};
}
// We remove the sched from the Task in TLS right now.
let sched = Local::take::<Scheduler>();
// ... allowing us to give it away when performing a
// scheduling operation.
sched.terminate_current_task()
};
return wrapper;
}
/// Destroy coroutine and try to reuse stack segment.
pub fn recycle(self, stack_pool: &mut StackPool) {
match self {
Coroutine { current_stack_segment, _ } => {
stack_pool.give_segment(current_stack_segment);
}
}
}
}
// Just a sanity check to make sure we are catching a Rust-thrown exception
static UNWIND_TOKEN: uintptr_t = 839147;
impl Unwinder {
pub fn try(&mut self, f: &fn()) {
use unstable::raw::Closure;
unsafe {
let closure: Closure = transmute(f);
let code = transmute(closure.code);
let env = transmute(closure.env);
let token = rust_try(try_fn, code, env);
assert!(token == 0 || token == UNWIND_TOKEN);
}
extern fn try_fn(code: *c_void, env: *c_void) {
unsafe {
let closure: Closure = Closure {
code: transmute(code),
env: transmute(env),
};
let closure: &fn() = transmute(closure);
closure();
}
}
extern {
#[rust_stack]
fn rust_try(f: *u8, code: *c_void, data: *c_void) -> uintptr_t;
}
}
pub fn begin_unwind(&mut self) -> ! {
self.unwinding = true;
unsafe {
rust_begin_unwind(UNWIND_TOKEN);
return transmute(());
}
extern {
fn rust_begin_unwind(token: uintptr_t);
}
}
}
#[cfg(test)]
mod test {
use rt::test::*;
#[test]
fn local_heap() {
do run_in_newsched_task() {
let a = @5;
let b = a;
assert!(*a == 5);
assert!(*b == 5);
}
}
#[test]
fn tls() {
use local_data;
do run_in_newsched_task() {
static key: local_data::Key<@~str> = &local_data::Key;
local_data::set(key, @~"data");
assert!(*local_data::get(key, |k| k.map(|&k| *k)).get() == ~"data");
static key2: local_data::Key<@~str> = &local_data::Key;
local_data::set(key2, @~"data");
assert!(*local_data::get(key2, |k| k.map(|&k| *k)).get() == ~"data");
}
}
#[test]
fn unwind() {
do run_in_newsched_task() {
let result = spawntask_try(||());
rtdebug!("trying first assert");
assert!(result.is_ok());
let result = spawntask_try(|| fail!());
rtdebug!("trying second assert");
assert!(result.is_err());
}
}
#[test]
fn rng() {
do run_in_newsched_task() {
use rand::{rng, Rng};
let mut r = rng();
let _ = r.next();
}
}
#[test]
fn logging() {
do run_in_newsched_task() {
info!("here i am. logging in a newsched task");
}
}
#[test]
fn comm_oneshot() {
use comm::*;
do run_in_newsched_task {
let (port, chan) = oneshot();
send_one(chan, 10);
assert!(recv_one(port) == 10);
}
}
#[test]
fn comm_stream() {
use comm::*;
do run_in_newsched_task() {
let (port, chan) = stream();
chan.send(10);
assert!(port.recv() == 10);
}
}
#[test]
fn comm_shared_chan() {
use comm::*;
do run_in_newsched_task() {
let (port, chan) = stream();
let chan = SharedChan::new(chan);
chan.send(10);
assert!(port.recv() == 10);
}
}
#[test]
fn linked_failure() {
do run_in_newsched_task() {
let res = do spawntask_try {
spawntask_random(|| fail!());
};
assert!(res.is_err());
}
}
#[test]
fn heap_cycles() {
use option::{Option, Some, None};
do run_in_newsched_task {
struct List {
next: Option<@mut List>,
}
let a = @mut List { next: None };
let b = @mut List { next: Some(a) };
a.next = Some(b);
}
}
// XXX: This is a copy of test_future_result in std::task.
// It can be removed once the scheduler is turned on by default.
#[test]
fn future_result() {
do run_in_newsched_task {
use option::{Some, None};
use task::*;
let mut result = None;
let mut builder = task();
builder.future_result(|r| result = Some(r));
do builder.spawn {}
assert_eq!(result.unwrap().recv(), Success);
result = None;
let mut builder = task();
builder.future_result(|r| result = Some(r));
builder.unlinked();
do builder.spawn {
fail!();
}
assert_eq!(result.unwrap().recv(), Failure);
}
}
}