rust/src/libsyntax/parse/common.rs

378 lines
11 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use ast;
use codemap::{BytePos, spanned};
use parse::lexer::reader;
use parse::parser::Parser;
use parse::token;
use opt_vec;
use opt_vec::OptVec;
// SeqSep : a sequence separator (token)
// and whether a trailing separator is allowed.
pub struct SeqSep {
sep: Option<token::Token>,
trailing_sep_allowed: bool
}
pub fn seq_sep_trailing_disallowed(t: token::Token) -> SeqSep {
SeqSep {
sep: Some(t),
trailing_sep_allowed: false,
}
}
pub fn seq_sep_trailing_allowed(t: token::Token) -> SeqSep {
SeqSep {
sep: Some(t),
trailing_sep_allowed: true,
}
}
pub fn seq_sep_none() -> SeqSep {
SeqSep {
sep: None,
trailing_sep_allowed: false,
}
}
// maps any token back to a string. not necessary if you know it's
// an identifier....
pub fn token_to_str(reader: @reader, token: &token::Token) -> ~str {
token::to_str(reader.interner(), token)
}
pub impl Parser {
// convert a token to a string using self's reader
fn token_to_str(&self, token: &token::Token) -> ~str {
token::to_str(self.reader.interner(), token)
}
// convert the current token to a string using self's reader
fn this_token_to_str(&self) -> ~str {
self.token_to_str(self.token)
}
fn unexpected_last(&self, t: &token::Token) -> ! {
self.span_fatal(
*self.last_span,
fmt!(
"unexpected token: `%s`",
self.token_to_str(t)
)
);
}
fn unexpected(&self) -> ! {
self.fatal(
fmt!(
"unexpected token: `%s`",
self.this_token_to_str()
)
);
}
// expect and consume the token t. Signal an error if
// the next token is not t.
fn expect(&self, t: &token::Token) {
if *self.token == *t {
self.bump();
} else {
self.fatal(
fmt!(
"expected `%s` but found `%s`",
self.token_to_str(t),
self.this_token_to_str()
)
)
}
}
fn parse_ident(&self) -> ast::ident {
self.check_strict_keywords();
self.check_reserved_keywords();
match *self.token {
token::IDENT(i, _) => {
self.bump();
i
}
token::INTERPOLATED(token::nt_ident(*)) => {
self.bug("ident interpolation not converted to real token");
}
_ => {
self.fatal(
fmt!(
"expected ident, found `%s`",
self.this_token_to_str()
)
);
}
}
}
fn parse_path_list_ident(&self) -> ast::path_list_ident {
let lo = self.span.lo;
let ident = self.parse_ident();
let hi = self.last_span.hi;
spanned(lo, hi, ast::path_list_ident_ { name: ident,
id: self.get_id() })
}
// consume token 'tok' if it exists. Returns true if the given
// token was present, false otherwise.
fn eat(&self, tok: &token::Token) -> bool {
return if *self.token == *tok { self.bump(); true } else { false };
}
// Storing keywords as interned idents instead of strings would be nifty.
// A sanity check that the word we are asking for is a known keyword
// NOTE: this could be done statically....
fn require_keyword(&self, word: &str) {
if !self.keywords.contains_equiv(&word) {
self.bug(fmt!("unknown keyword: %s", word));
}
}
// return true when this token represents the given string, and is not
// followed immediately by :: .
fn token_is_word(&self, word: &str, tok: &token::Token) -> bool {
match *tok {
token::IDENT(sid, false) => { word == *self.id_to_str(sid) }
_ => { false }
}
}
fn token_is_keyword(&self, word: &str, tok: &token::Token) -> bool {
self.require_keyword(word);
self.token_is_word(word, tok)
}
fn is_keyword(&self, word: &str) -> bool {
self.token_is_keyword(word, &copy *self.token)
}
fn id_is_any_keyword(&self, id: ast::ident) -> bool {
self.keywords.contains(self.id_to_str(id))
}
fn is_any_keyword(&self, tok: &token::Token) -> bool {
match *tok {
token::IDENT(sid, false) => {
self.keywords.contains(self.id_to_str(sid))
}
_ => false
}
}
// if the given word is not a keyword, signal an error.
// if the next token is the given keyword, eat it and return
// true. Otherwise, return false.
fn eat_keyword(&self, word: &str) -> bool {
self.require_keyword(word);
let is_kw = match *self.token {
token::IDENT(sid, false) => word == *self.id_to_str(sid),
_ => false
};
if is_kw { self.bump() }
is_kw
}
// if the given word is not a keyword, signal an error.
// if the next token is not the given word, signal an error.
// otherwise, eat it.
fn expect_keyword(&self, word: &str) {
self.require_keyword(word);
if !self.eat_keyword(word) {
self.fatal(
fmt!(
"expected `%s`, found `%s`",
word,
self.this_token_to_str()
)
);
}
}
// return true if the given string is a strict keyword
fn is_strict_keyword(&self, word: &str) -> bool {
self.strict_keywords.contains_equiv(&word)
}
// signal an error if the current token is a strict keyword
fn check_strict_keywords(&self) {
match *self.token {
token::IDENT(_, false) => {
let w = token_to_str(self.reader, &copy *self.token);
self.check_strict_keywords_(w);
}
_ => ()
}
}
// signal an error if the given string is a strict keyword
fn check_strict_keywords_(&self, w: &str) {
if self.is_strict_keyword(w) {
self.span_err(*self.last_span,
fmt!("found `%s` in ident position", w));
}
}
// return true if this is a reserved keyword
fn is_reserved_keyword(&self, word: &str) -> bool {
self.reserved_keywords.contains_equiv(&word)
}
// signal an error if the current token is a reserved keyword
fn check_reserved_keywords(&self) {
match *self.token {
token::IDENT(_, false) => {
let w = token_to_str(self.reader, &copy *self.token);
self.check_reserved_keywords_(w);
}
_ => ()
}
}
// signal an error if the given string is a reserved keyword
fn check_reserved_keywords_(&self, w: &str) {
if self.is_reserved_keyword(w) {
self.fatal(fmt!("`%s` is a reserved keyword", w));
}
}
// expect and consume a GT. if a >> is seen, replace it
// with a single > and continue. If a GT is not seen,
// signal an error.
fn expect_gt(&self) {
if *self.token == token::GT {
self.bump();
} else if *self.token == token::BINOP(token::SHR) {
self.replace_token(
token::GT,
self.span.lo + BytePos(1u),
self.span.hi
);
} else {
let mut s: ~str = ~"expected `";
s += self.token_to_str(&token::GT);
s += ~"`, found `";
s += self.this_token_to_str();
s += ~"`";
self.fatal(s);
}
}
// parse a sequence bracketed by '<' and '>', stopping
// before the '>'.
fn parse_seq_to_before_gt<T: Copy>(
&self,
sep: Option<token::Token>,
f: &fn(&Parser) -> T
) -> OptVec<T> {
let mut first = true;
let mut v = opt_vec::Empty;
while *self.token != token::GT
&& *self.token != token::BINOP(token::SHR) {
match sep {
Some(ref t) => {
if first { first = false; }
else { self.expect(t); }
}
_ => ()
}
v.push(f(self));
}
return v;
}
fn parse_seq_to_gt<T: Copy>(
&self,
sep: Option<token::Token>,
f: &fn(&Parser) -> T
) -> OptVec<T> {
let v = self.parse_seq_to_before_gt(sep, f);
self.expect_gt();
return v;
}
// parse a sequence, including the closing delimiter. The function
// f must consume tokens until reaching the next separator or
// closing bracket.
fn parse_seq_to_end<T: Copy>(
&self,
ket: &token::Token,
sep: SeqSep,
f: &fn(&Parser) -> T
) -> ~[T] {
let val = self.parse_seq_to_before_end(ket, sep, f);
self.bump();
val
}
// parse a sequence, not including the closing delimiter. The function
// f must consume tokens until reaching the next separator or
// closing bracket.
fn parse_seq_to_before_end<T: Copy>(
&self,
ket: &token::Token,
sep: SeqSep,
f: &fn(&Parser) -> T
) -> ~[T] {
let mut first: bool = true;
let mut v: ~[T] = ~[];
while *self.token != *ket {
match sep.sep {
Some(ref t) => {
if first { first = false; }
else { self.expect(t); }
}
_ => ()
}
if sep.trailing_sep_allowed && *self.token == *ket { break; }
v.push(f(self));
}
return v;
}
// parse a sequence, including the closing delimiter. The function
// f must consume tokens until reaching the next separator or
// closing bracket.
fn parse_unspanned_seq<T: Copy>(
&self,
bra: &token::Token,
ket: &token::Token,
sep: SeqSep,
f: &fn(&Parser) -> T
) -> ~[T] {
self.expect(bra);
let result = self.parse_seq_to_before_end(ket, sep, f);
self.bump();
result
}
// NB: Do not use this function unless you actually plan to place the
// spanned list in the AST.
fn parse_seq<T: Copy>(
&self,
bra: &token::Token,
ket: &token::Token,
sep: SeqSep,
f: &fn(&Parser) -> T
) -> spanned<~[T]> {
let lo = self.span.lo;
self.expect(bra);
let result = self.parse_seq_to_before_end(ket, sep, f);
let hi = self.span.hi;
self.bump();
spanned(lo, hi, result)
}
}